51
|
Isolation and identification of lactic acid bacteria from Tarag in Eastern Inner Mongolia of China by 16S rRNA sequences and DGGE analysis. Microbiol Res 2012; 167:110-5. [PMID: 21689912 DOI: 10.1016/j.micres.2011.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022]
Abstract
Tarag is a characteristic fermented dairy product with rich microflora (especially lactic acid bacteria), developed by the people of Mongolian nationality in Inner Mongolia of China and Mongolia throughout history. One hundred and ninety-eight samples of Tarag were collected from scattered households in Eastern Inner Mongolia, and total of 790 isolates of lactic acid bacteria (LAB) were isolated by traditional pure culture method. To identify these isolates and analyze their biodiversity, 16S rRNA gene sequences analysis and PCR-DGGE were performed respectively. The results showed that 790 isolates could be classified as 31 species and subspecies. Among these isolates, Lactobacillus helveticus (153 strains, about 19.4%), Lactococcus lactis subsp. lactis (132 strains, about 16.7%) and Lactobacillus casei (106 strains, about 11.0%) were considered as the predominated species in the traditional fermented dairy products (Tarag) in Eastern Inner Mongolia. It was shown that the biodiversity of LAB in Tarag in Inner Mongolia was very abundant, and this traditional fermented dairy product could be considered as valuable resources for LAB isolation and probiotic selection.
Collapse
|
52
|
Bonofiglio L, García E, Mollerach M. The galU gene expression in Streptococcus pneumoniae. FEMS Microbiol Lett 2012; 332:47-53. [PMID: 22507173 DOI: 10.1111/j.1574-6968.2012.02572.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/29/2012] [Accepted: 04/12/2012] [Indexed: 11/30/2022] Open
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is the main virulence factor making the bacterium resistant to phagocytosis. The galU gene of S. pneumoniae encodes a UDP-glucose pyrophosphorylase absolutely required for capsule biosynthesis. In silico analyses indicated that the galU gene is co-transcribed with the gpdA gene, and four putative promoter regions located upstream of gpdA were predicted. One of them behaved as a functional promoter in a promoter reporter system. It is conceivable that the sequence responsible for initiating transcription of gpdA-galU operon is an extended -10 site TATGATA(T/G)AAT. Semi-quantitative real-time reverse transcription PCR experiments indicated that galU was expressed mainly in the exponential phase of growth.
Collapse
Affiliation(s)
- Laura Bonofiglio
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
53
|
Thürmer A, Voigt B, Angelov A, Albrecht D, Hecker M, Liebl W. Proteomic analysis of the extremely thermoacidophilic archaeon Picrophilus torridus at pH and temperature values close to its growth limit. Proteomics 2012; 11:4559-68. [PMID: 22114103 DOI: 10.1002/pmic.201000829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The thermoacidophilic archaeon Picrophilus torridus belongs to the Thermoplasmatales order and is the most acidophilic organism known to date, growing under extremely acidic conditions around pH 0 (pH(opt) 1) and simultaneously at high temperatures up to 65°C. Some genome features that may be responsible for survival under these harsh conditions have been concluded from the analysis of its 1.55 megabase genome sequence. A proteomic map was generated for P. torridus cells grown to the mid-exponential phase. The soluble fraction of the cells was separated by isoelectric focusing in the pH ranges 4-7 and 3-10, followed by a two dimension (2D) on SDS-PAGE gels. A total of 717 Coomassie collodial-stained protein spots from both pH ranges (pH 4-7 and 3-10) were excised and subjected to LC-MS/MS, leading to the identification of 665 soluble protein spots. Most of the enzymes of the central carbon metabolism were identified on the 2D gels, corroborating biochemically the metabolic pathways predicted from the P. torridus genome sequence. The 2D master gels elaborated in this study represent useful tools for physiological studies of this thermoacidophilic organism. Based on quantitative 2D gel electrophoresis, a proteome study was performed to find pH- or temperature-dependent differences in the proteome composition under changing growth conditions. The proteome expression patterns at two different temperatures (50 and 70°C) and two different pH conditions (pH 0.5 and 1.8) were compared. Several proteins were up-regulated under most stress stimuli tested, pointing to general roles in coping with stress.
Collapse
Affiliation(s)
- Andrea Thürmer
- Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
54
|
Nezhad MH, Knight M, Britz ML. Evidence of changes in cell surface proteins during growth of Lactobacillus casei under acidic conditions. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0033-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
55
|
Zhong Z, Zhang W, Du R, Meng H, Zhang H. Lactobacillus casei Zhang stimulates lipid metabolism in hypercholesterolemic rats by affecting gene expression in the liver. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
56
|
Wang JC, Zhang WY, Zhong Z, Wei AB, Bao QH, Zhang Y, Sun TS, Postnikoff A, Meng H, Zhang HP. Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk. ACTA ACUST UNITED AC 2012; 39:191-206. [DOI: 10.1007/s10295-011-1015-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/25/2011] [Indexed: 12/01/2022]
Abstract
Abstract
Lactobacillus casei Zhang is a widely recognized probiotic bacterium, which is being commercially used in China. To study the gene expression dynamics of L. casei Zhang during fermentation in soymilk, a whole genome microarray was used to screen for differentially expressed genes when grown to the lag phase, the late logarithmic phase, and the stationary phase. Comparisons of different transcripts next to each other revealed 162 and 63 significantly induced genes in the late logarithmic phase and stationary phase, of which the expression was at least threefold up-regulated and down-regulated, respectively. Approximately 38.4% of the up-regulated genes were associated with amino acid transport and metabolism notably for histidine and lysine biosynthesis, followed by genes/gene clusters involved in carbohydrate transport and metabolism, lipid transport and metabolism, and inorganic ion transport and metabolism. The analysis results suggest a complex stimulatory effect of soymilk-based ecosystem on the L. casei Zhang growth. On the other hand, it provides the very first insight into the molecular mechanism of L. casei strain for how it will adapt to the protein-rich environment.
Collapse
Affiliation(s)
- Ji-Cheng Wang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Wen-Yi Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Zhi Zhong
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Ai-Bin Wei
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Qiu-Hua Bao
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Yong Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Tian-Song Sun
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Andrew Postnikoff
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - He Meng
- grid.16821.3c 0000000403688293 School of Agriculture and Biology Shanghai Jiao Tong University 200240 Shanghai China
| | - He-Ping Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| |
Collapse
|
57
|
A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl Microbiol Biotechnol 2011; 93:707-22. [PMID: 22159611 DOI: 10.1007/s00253-011-3757-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/04/2011] [Accepted: 11/10/2011] [Indexed: 10/14/2022]
Abstract
Lactobacillus casei has traditionally been recognized as a probiotic and frequently used as an adjunct culture in fermented dairy products, where acid stress is an environmental condition commonly encountered. In the present study, we carried out a comparative physiological and proteomic study to investigate lactic-acid-induced alterations in Lactobacillus casei Zhang (WT) and its acid-resistant mutant. Analysis of the physiological data showed that the mutant exhibited 33.8% higher glucose phosphoenolpyruvate:sugar phosphotransferase system activity and lower glycolytic pH compared with the WT under acidic conditions. In addition, significant differences were detected in both cells during acid stress between intracellular physiological state, including intracellular pH, H(+)-ATPase activity, and intracellular ATP pool. Comparison of the proteomic data based on 2D-DIGE and i-TRAQ indicated that acid stress invoked a global change in both strains. The mutant protected the cells against acid damage by regulating the expression of key proteins involved in cellular metabolism, DNA replication, RNA synthesis, translation, and some chaperones. Proteome results were validated by Lactobacillus casei displaying higher intracellular aspartate and arginine levels, and the survival at pH 3.3 was improved 1.36- and 2.10-fold by the addition of 50-mM aspartate and arginine, respectively. To our knowledge, this is the first demonstration that aspartate may be involved in acid tolerance in Lactobacillus casei. Results presented here may help us understand acid resistance mechanisms and help formulate new strategies to enhance the industrial applications of this species.
Collapse
|
58
|
Majumder A, Sultan A, Jersie-Christensen RR, Ejby M, Schmidt BG, Lahtinen SJ, Jacobsen S, Svensson B. Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol. Proteomics 2011; 11:3470-81. [DOI: 10.1002/pmic.201100115] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/13/2011] [Accepted: 05/30/2011] [Indexed: 12/19/2022]
|
59
|
Savijoki K, Lietzén N, Kankainen M, Alatossava T, Koskenniemi K, Varmanen P, Nyman TA. Comparative Proteome Cataloging of Lactobacillus rhamnosus Strains GG and Lc705. J Proteome Res 2011; 10:3460-73. [DOI: 10.1021/pr2000896] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kirsi Savijoki
- Institute of Biotechnology, University of Helsinki, Finland
- Department of Food and Environmental Sciences, University of Helsinki, Finland
| | - Niina Lietzén
- Institute of Biotechnology, University of Helsinki, Finland
| | | | - Tapani Alatossava
- Department of Food and Environmental Sciences, University of Helsinki, Finland
| | | | - Pekka Varmanen
- Department of Food and Environmental Sciences, University of Helsinki, Finland
| | - Tuula A. Nyman
- Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
60
|
Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, Zhang H. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int J Food Microbiol 2011; 147:181-7. [DOI: 10.1016/j.ijfoodmicro.2011.04.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 03/25/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
|
61
|
Wu R, Sun Z, Wu J, Meng H, Zhang H. Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis. J Dairy Sci 2010; 93:3858-68. [DOI: 10.3168/jds.2009-2967] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/01/2010] [Indexed: 11/19/2022]
|
62
|
The antioxidative effects of probiotic Lactobacillus casei Zhang on the hyperlipidemic rats. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1255-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
63
|
Gao X, Zhang X, Zheng J, He F. Proteomics in China: Ready for prime time. SCIENCE CHINA-LIFE SCIENCES 2010; 53:22-33. [DOI: 10.1007/s11427-010-0027-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 12/28/2009] [Indexed: 12/27/2022]
|