51
|
Hall-Andersen J, Kaasgaard SG, Janfelt C. MALDI imaging of enzymatic degradation of glycerides by lipase on textile surface. Chem Phys Lipids 2017; 211:100-106. [PMID: 29122612 DOI: 10.1016/j.chemphyslip.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023]
Abstract
Most modern laundry detergents contain enzymes such as proteases, amylases, and lipases for more efficient removal of stains containing proteins, carbohydrates, and lipids during wash at low temperature. The function of the lipases is to hydrolyse the hydrophobic triglycerides from fats and oils to the more hydrophilic lipids diglycerides, monoglycerides and free fatty acids. Here, we use MALDI imaging to study the effect of enzymatic degradation of triglycerides by lipases directly on the textile surface. Textile samples were created by using swatches of different textile blends, adding a lipid stain and simulating washing cycles using well-defined detergents with lipase concentrations ranging between 0 and 0.5ppm. After washing, the textile swatches as well as cryo-sections of the swatches were imaged using MALDI imaging in positive ion mode at pixel sizes of 15-75μm. Similar samples were imaged by DESI-MSI for comparison. Despite the rough surface and non-conductive nature of textile, MALDI imaging of glycerides on textile was readily possible. The results show extensive enzymatic degradation of triglycerides into diglycerides, and images suggest that this degradation takes place in a quite heterogeneous manner as also observed in images of cross-sections. DESI-imaging reveals the same kind of enzymatic degradation, but with a more homogeneous appearance. While the enzymatic degradation is exemplified in a few images, the overall degradations process was monitored by extraction of ion intensities from 298 individual ion masses of mono-, di- and triglycerides and free fatty acids. MALDI imaging of glycerides was possible directly from a textile surface, allowing visualization of the enzymatic degradation of fatty stains on textile during the laundry process. The images showed an inhomogeneous presence of diglycerides after lipase treatment both in planar images of the textile surface as well as in cross-sections suggesting a non-uniform enzyme effect or extraction of the lipase reaction products from the textile.
Collapse
Affiliation(s)
- Jonatan Hall-Andersen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
52
|
Fujii M, Ohara R, Matsumi A, Ohura K, Koizumi N, Imai T, Watanabe Y. Effect of alcohol on skin permeation and metabolism of an ester-type prodrug in Yucatan micropig skin. Eur J Pharm Sci 2017; 109:280-287. [DOI: 10.1016/j.ejps.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/12/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|
53
|
Todo H. Transdermal Permeation of Drugs in Various Animal Species. Pharmaceutics 2017; 9:pharmaceutics9030033. [PMID: 28878145 PMCID: PMC5620574 DOI: 10.3390/pharmaceutics9030033] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 01/05/2023] Open
Abstract
Excised human skin is utilized for in vitro permeation experiments to evaluate the safety and effect of topically-applied drugs by measuring its skin permeation and concentration. However, ethical considerations are the major problem for using human skin to evaluate percutaneous absorption. Moreover, large variations have been found among human skin specimens as a result of differences in age, race, and anatomical donor site. Animal skins are used to predict the in vivo human penetration/permeation of topically-applied chemicals. In the present review, skin characteristics, such as thickness of skin, lipid content, hair follicle density, and enzyme activity in each model are compared to human skin. In addition, intra- and inter-individual variation in animal models, permeation parameter correlation between animal models and human skin, and utilization of cultured human skin models are also descried. Pig, guinea pig, and hairless rat are generally selected for this purpose. Each animal model has advantages and weaknesses for utilization in in vitro skin permeation experiments. Understanding of skin permeation characteristics such as permeability coefficient (P), diffusivity (D), and partition coefficient (K) for each skin model would be necessary to obtain better correlations for animal models to human skin permeation.
Collapse
Affiliation(s)
- Hiroaki Todo
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
54
|
Boiteau JG, Ouvry G, Arlabosse JM, Astri S, Beillard A, Bhurruth-Alcor Y, Bonnary L, Bouix-Peter C, Bouquet K, Bourotte M, Cardinaud I, Comino C, Deprez B, Duvert D, Féret A, Hacini-Rachinel F, Harris CS, Luzy AP, Mathieu A, Millois C, Orsini N, Pascau J, Pinto A, Piwnica D, Polge G, Reitz A, Reversé K, Rodeville N, Rossio P, Spiesse D, Tabet S, Taquet N, Tomas L, Vial E, Hennequin LF. Discovery and process development of a novel TACE inhibitor for the topical treatment of psoriasis. Bioorg Med Chem 2017; 26:945-956. [PMID: 28818461 DOI: 10.1016/j.bmc.2017.07.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 01/15/2023]
Abstract
Targeting the TNFα pathway is a validated approach to the treatment of psoriasis. In this pathway, TACE stands out as a druggable target and has been the focus of in-house research programs. In this article, we present the discovery of clinical candidate 26a. Starting from hits plagued with poor solubility or genotoxicity, 26a was identified through thorough multiparameter optimisation. Showing robust in vivo activity in an oxazolone-mediated inflammation model, the compound was selected for development. Following a polymorph screen, the hydrochloride salt was selected and the synthesis was efficiently developed to yield the API in 47% overall yield.
Collapse
Affiliation(s)
- Jean-Guy Boiteau
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France.
| | - Gilles Ouvry
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France.
| | | | - Stéphanie Astri
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Audrey Beillard
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | | | - Laetitia Bonnary
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Claire Bouix-Peter
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Karine Bouquet
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Marilyne Bourotte
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Isabelle Cardinaud
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Catherine Comino
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Benoît Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Denis Duvert
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Angélique Féret
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | | | - Craig S Harris
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Anne-Pascale Luzy
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Arnaud Mathieu
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Corinne Millois
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Nicolas Orsini
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Jonathan Pascau
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Artur Pinto
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - David Piwnica
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Gaëlle Polge
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Arnaud Reitz
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Kevin Reversé
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Nicolas Rodeville
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Patricia Rossio
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Delphine Spiesse
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Samuel Tabet
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Nathalie Taquet
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Loïc Tomas
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Emmanuel Vial
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| | - Laurent F Hennequin
- Nestlé Skin Health R&D, Les Templiers 2400 Route des Colles, 06410 Biot, France
| |
Collapse
|
55
|
Johnson KM, Phan TTN, Albertolle ME, Guengerich FP. Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates trans-retinol to 3,4-dehydroretinol. J Biol Chem 2017; 292:13672-13687. [PMID: 28701464 DOI: 10.1074/jbc.m116.773937] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/29/2017] [Indexed: 11/06/2022] Open
Abstract
Recently, zebrafish and human cytochrome P450 (P450) 27C1 enzymes have been shown to be retinoid 3,4-desaturases. The enzyme is unusual among mammalian P450s in that the predominant oxidation is a desaturation and in that hydroxylation represents only a minor pathway. We show by proteomic analysis that P450 27C1 is localized to human skin, with two proteins of different sizes present, one being a cleavage product of the full-length form. P450 27C1 oxidized all-trans-retinol to 3,4-dehydroretinol, 4-hydroxy (OH) retinol, and 3-OH retinol in a 100:3:2 ratio. Neither 3-OH nor 4-OH retinol was an intermediate in desaturation. No kinetic burst was observed in the steady state; neither the rate of substrate binding nor product release was rate-limiting. Ferric P450 27C1 reduction by adrenodoxin was 3-fold faster in the presence of the substrate and was ∼5-fold faster than the overall turnover. Kinetic isotope effects of 1.5-2.3 (on kcat/Km ) were observed with 3,3-, 4,4-, and 3,3,4,4-deuterated retinol. Deuteration at C-4 produced a 4-fold increase in 3-hydroxylation due to metabolic switching, with no observable effect on 4-hydroxylation. Deuteration at C-3 produced a strong kinetic isotope effect for 3-hydroxylation but not 4-hydroxylation. Analysis of the products of deuterated retinol showed a lack of scrambling of a putative allylic radical at C-3 and C-4. We conclude that the most likely catalytic mechanism begins with abstraction of a hydrogen atom from C-4 (or possibly C-3) initiating the desaturation pathway, followed by a sequential abstraction of a hydrogen atom or proton-coupled electron transfer. Adrenodoxin reduction and hydrogen abstraction both contribute to rate limitation.
Collapse
Affiliation(s)
- Kevin M Johnson
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Thanh T N Phan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Matthew E Albertolle
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
56
|
Comparative assessment of local tolerance of alcohols commonly used in alcohol-based hand rubs for hand hygiene. Toxicol In Vitro 2017; 44:142-153. [PMID: 28700953 DOI: 10.1016/j.tiv.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/21/2022]
Abstract
Hand hygiene plays a key role in nosocomial infection prevention. To achieve users' adherence, products' dermal tolerance is essential. We aimed at making a comparative assessment of skin irritation and phototoxicity of the 3 alcohols commonly used in alcohol-based hand rubs (Ethanol, Propan-2-ol, Propan-1-ol) at 60, 70, 80 or 85% w/w in water or with co-formulates (hydrating, emollient and skin protective agents). In vitro validated OECD methods 439 and 432 were used. For irritation, EpiSkin™ Small Model was the chosen Reconstructed Human Epidermis (RhE). For phototoxicity, co-formulates alone or in mixture with and without alcohol were tested using BALB/c 3T3 cell cultures. Whilst Ethanol and Propan-2-ol could not be differentiated and displayed good skin tolerance profiles, Propan-1-ol based products lead to significant viability impairments of RhE at 60, 70 or 80% and at 60% in the presence of co-formulates. However, these results could not be reproduced in another RhE model. Taking also into account bibliographic data on Propan-1-ol, this suggests that our results are probably related to a lack of specificity of the used RhE. Therefore, it can be relevant in case of significant results to use two different RhE models before performing any classification and/or performing any complementary tests.
Collapse
|
57
|
Bacqueville D, Jacques C, Duprat L, Jamin EL, Guiraud B, Perdu E, Bessou-Touya S, Zalko D, Duplan H. Characterization of xenobiotic metabolizing enzymes of a reconstructed human epidermal model from adult hair follicles. Toxicol Appl Pharmacol 2017; 329:190-201. [PMID: 28601433 DOI: 10.1016/j.taap.2017.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 11/15/2022]
Abstract
In this study, a comprehensive characterization of xenobiotic metabolizing enzymes (XMEs) based on gene expression and enzyme functionality was made in a reconstructed skin epidermal model derived from the outer root sheath (ORS) of hair follicles (ORS-RHE). The ORS-RHE model XME gene profile was consistent with native human skin. Cytochromes P450 (CYPs) consistently reported to be detected in native human skin were also present at the gene level in the ORS-RHE model. The highest Phase I XME gene expression levels were observed for alcohol/aldehyde dehydrogenases and (carboxyl) esterases. The model was responsive to the CYP inducers, 3-methylcholanthrene (3-MC) and β-naphthoflavone (βNF) after topical and systemic applications, evident at the gene and enzyme activity level. Phase II XME levels were generally higher than those of Phase I XMEs, the highest levels were GSTs and transferases, including NAT1. The presence of functional CYPs, UGTs and SULTs was confirmed by incubating the models with 7-ethoxycoumarin, testosterone, benzo(a)pyrene and 3-MC, all of which were rapidly metabolized within 24h after topical application. The extent of metabolism was dependent on saturable and non-saturable metabolism by the XMEs and on the residence time within the model. In conclusion, the ORS-RHE model expresses a number of Phase I and II XMEs, some of which may be induced by AhR ligands. Functional XME activities were also demonstrated using systemic or topical application routes, supporting their use in cutaneous metabolism studies. Such a reproducible model will be of interest when evaluating the cutaneous metabolism and potential toxicity of innovative dermo-cosmetic ingredients.
Collapse
Affiliation(s)
- Daniel Bacqueville
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France.
| | - Carine Jacques
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Laure Duprat
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Beatrice Guiraud
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Elisabeth Perdu
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Hélène Duplan
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| |
Collapse
|
58
|
Emulsion-Based Intradermal Delivery of Melittin in Rats. Molecules 2017; 22:molecules22050836. [PMID: 28534835 PMCID: PMC6154715 DOI: 10.3390/molecules22050836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
Bee venom (BV) has long been used as a traditional medicine. The aim of the present study was to formulate a BV emulsion with good rheological properties for dermal application and investigate the effect of formulation on the permeation of melittin through dermatomed rat skin. A formulated emulsion containing 1% (w/v) BV was prepared. The emulsion was compared with distilled water (DW) and 25% (w/v) N-methyl-2-pyrrolidone (NMP) in DW. Permeation of melittin from aqueous solution through the dermatomed murine skin was evaluated using the Franz diffusion cells. Samples of receptor cells withdrawn at pre-determined time intervals were measured for melittin amount. After the permeation study, the same skin was used for melittin extraction. In addition, a known amount of melittin (5 μg/mL) was added to stratum corneum, epidermis, and dermis of the rat skin, and the amount of melittin was measured at pre-determined time points. The measurement of melittin from all samples was done with HPLC-MS/MS. No melittin was detected in the receptor phase at all time points in emulsion, DW, or NMP groups. When the amount of melittin was further analyzed in stratum corneum, epidermis, and dermis from the permeation study, melittin was still not detected. In an additional experiment, the amount of melittin added to all skin matrices was corrected against the amount of melittin recovered. While the total amount of melittin was retained in the stratum corneum, less than 10% of melittin remained in epidermis and dermis within 15 and 30 min, respectively. Skin microporation with BV emulsion facilitates the penetration of melittin across the stratum corneum into epidermis and dermis, where emulsified melittin could have been metabolized by locally-occurring enzymes.
Collapse
|
59
|
Balakirski G, Merk HF. Cutaneous allergic drug reactions: update on pathophysiology, diagnostic procedures and differential diagnosic. Cutan Ocul Toxicol 2017; 36:307-316. [DOI: 10.1080/15569527.2017.1319379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Galina Balakirski
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| | - Hans F. Merk
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
60
|
The application of skin metabolomics in the context of transdermal drug delivery. Pharmacol Rep 2017; 69:252-259. [DOI: 10.1016/j.pharep.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/17/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023]
|
61
|
Affiliation(s)
- Hiroaki Todo
- Graduate School of Pharmaceutical Sciences, Josai University Laboratory of Pharmaceutics and Cosmeceutics
| |
Collapse
|
62
|
Hönzke S, Gerecke C, Elpelt A, Zhang N, Unbehauen M, Kral V, Fleige E, Paulus F, Haag R, Schäfer-Korting M, Kleuser B, Hedtrich S. Tailored dendritic core-multishell nanocarriers for efficient dermal drug delivery: A systematic top-down approach from synthesis to preclinical testing. J Control Release 2016; 242:50-63. [PMID: 27349353 DOI: 10.1016/j.jconrel.2016.06.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Drug loaded dendritic core-multishell (CMS) nanocarriers are of especial interest for the treatment of skin diseases, owing to their striking dermal delivery efficiencies following topical applications. CMS nanocarriers are composed of a polyglycerol core, connected by amide-bonds to an inner alkyl shell and an outer methoxy poly(ethylene glycol) shell. Since topically applied nanocarriers are subjected to biodegradation, the application of conventional amide-based CMS nanocarriers (10-A-18-350) has been limited by the potential production of toxic polyglycerol amines. To circumvent this issue, three tailored ester-based CMS nanocarriers (10-E-12-350, 10-E-15-350, 10-E-18-350) of varying inner alkyl chain length were synthesized and comprehensively characterized in terms of particle size, drug loading, biodegradation and dermal drug delivery efficiency. Dexamethasone (DXM), a potent drug widely used for the treatment of inflammatory skin diseases, was chosen as a therapeutically relevant test compound for the present study. Ester- and amide-based CMS nanocarriers delivered DXM more efficiently into human skin than a commercially available DXM cream. Subsequent in vitro and in vivo toxicity studies identified CMS (10-E-15-350) as the most biocompatible carrier system. The anti-inflammatory potency of DXM-loaded CMS (10-E-15-350) nanocarriers was assessed in TNFα supplemented skin models, where a significant reduction of the pro-inflammatory cytokine IL-8 was seen, with markedly greater efficacy than commercial DXM cream. In summary, we report the rational design and characterization of tailored, biodegradable, ester-based CMS nanocarriers, and their subsequent stepwise screening for biocompatibility, dermal delivery efficiency and therapeutic efficacy in a top-down approach yielding the best carrier system for topical applications.
Collapse
Affiliation(s)
- Stefan Hönzke
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | - Christian Gerecke
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Germany
| | - Anja Elpelt
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | - Nan Zhang
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | - Michael Unbehauen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Vivian Kral
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | | | - Florian Paulus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | | | - Burkhard Kleuser
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Germany
| | - Sarah Hedtrich
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany.
| |
Collapse
|
63
|
Helke KL, Nelson KN, Sargeant AM, Jacob B, McKeag S, Haruna J, Vemireddi V, Greeley M, Brocksmith D, Navratil N, Stricker-Krongrad A, Hollinger C. Pigs in Toxicology. Toxicol Pathol 2016; 44:575-90. [DOI: 10.1177/0192623316639389] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both a rodent and a nonrodent species are required for evaluation in nonclinical safety studies conducted to support human clinical trials. Historically, dogs and nonhuman primates have been the nonrodent species of choice. Swine, especially the miniature swine or minipigs, are increasingly being used in preclinical safety as an alternate nonrodent species. The pig is an appropriate option for these toxicology studies based on metabolic pathways utilized in xenobiotic biotransformation. Both similarities and differences exist in phase I and phase II biotransformation pathways between humans and pigs. There are numerous breeds of pigs, yet only a few of these breeds are characterized with regard to both xenobiotic-metabolizing enzymes and background pathology findings. Some specific differences in these enzymes based on breed and sex are known. Although swine have been used extensively in biomedical research, there is also a paucity of information in the current literature detailing the incidence of background lesions and differences between commonly used breeds. Here, the xenobiotic-metabolizing enzymes are compared between humans and pigs, and minipig background pathology changes are reviewed with emphasis on breed differences.
Collapse
Affiliation(s)
- Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | - Binod Jacob
- Charles River Laboratories, Spencerville, Ohio, USA
| | | | | | | | | | - Derek Brocksmith
- Sinclair Research Center and Sinclair Bio Resources, Auxvasse, Missouri, USA
| | | | | | - Charlotte Hollinger
- Zoological Health Program, Wildlife Conservation Society, Bronx, New York, USA
| |
Collapse
|
64
|
Thompson RA, Isin EM, Ogese MO, Mettetal JT, Williams DP. Reactive Metabolites: Current and Emerging Risk and Hazard Assessments. Chem Res Toxicol 2016; 29:505-33. [DOI: 10.1021/acs.chemrestox.5b00410] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Richard A. Thompson
- DMPK, Respiratory, Inflammation & Autoimmunity iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Emre M. Isin
- DMPK, Cardiovascular & Metabolic Diseases iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Monday O. Ogese
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, United Kingdom
| | - Jerome T. Mettetal
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, 35 Gatehouse Dr, Waltham, Massachusetts 02451, United States
| | - Dominic P. Williams
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, United Kingdom
| |
Collapse
|
65
|
Cort A, Ozben T, Saso L, De Luca C, Korkina L. Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4251912. [PMID: 26881027 PMCID: PMC4736404 DOI: 10.1155/2016/4251912] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Abstract
Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed.
Collapse
Affiliation(s)
- Aysegul Cort
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sanko University, İncili Pınar, Gazi Muhtar Paşa Bulvarı, Sehitkamil, 27090 Gaziantep, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Akdeniz University Medical Faculty, Campus, Dumlupınar Street, 07070 Antalya, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara De Luca
- Evidence-Based Well-Being (EB-WB) Ltd., 31 Alt-Stralau, 10245 Berlin, Germany
| | - Liudmila Korkina
- Centre of Innovative Biotechnological Investigations Nanolab, 197 Vernadskogo Prospekt, Moscow 119571, Russia
| |
Collapse
|
66
|
Skin sensitizer identification by IL-8 secretion and CD86 expression on THP-1 cells. Toxicol In Vitro 2015; 30:318-24. [DOI: 10.1016/j.tiv.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/14/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022]
|
67
|
Oranges T, Dini V, Romanelli M. Skin Physiology of the Neonate and Infant: Clinical Implications. Adv Wound Care (New Rochelle) 2015; 4:587-595. [PMID: 26487977 DOI: 10.1089/wound.2015.0642] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Significance: The skin is a complex and dynamic organ that performs several vital functions. The maturation process of the skin starts at birth with the adaption of the skin to the comparatively dry environment compared to the in utero milieu. This adaptive flexibility results in the unique properties of infant skin. To deliver appropriate care to infant skin, it is necessary to understand that it is evolving with unique characteristics. Recent Advances: The role of biophysical noninvasive techniques in the assessment of skin development underlines the importance of an objective evaluation of skin physiology parameters. Skin hydration, transepidermal water loss, and pH values are measurable with specific instruments that give us an accurate and reproducible assessment during infant skin maturation. The recording of these values, following standard measurement procedures, allows us to evaluate the integrity of the skin barrier and to monitor the functionality of the maturing skin over time. Critical Issues: During the barrier development, impaired skin function makes the skin vulnerable to chemical damage, microbial infections, and skin diseases, possibly compromising the general health of the infant. Preterm newborns, during the first weeks of life, have an even less developed skin barrier and, therefore, are even more at risk. Thus, it is extremely important to evaluate the risk of infection, skin breakdown, topical agent absorption, and the risk of thermoregulation failure. Future Directions: Detailed and objective evaluations of infant skin maturation are necessary to improve infant skin care. The results of these evaluations should be formed into general protocols that will allow doctors and caregivers to give more personalized care to full-term newborns, preterm newborns, and infants.
Collapse
Affiliation(s)
- Teresa Oranges
- Wound Healing Research Unit, Department of Dermatology, University of Pisa, Pisa, Italy
| | - Valentina Dini
- Wound Healing Research Unit, Department of Dermatology, University of Pisa, Pisa, Italy
| | - Marco Romanelli
- Wound Healing Research Unit, Department of Dermatology, University of Pisa, Pisa, Italy
| |
Collapse
|
68
|
Jones R, Marschmann M, Keller M, Qiu NH, Fowler S, Singer T, Schuler F, Funk C, Schadt S. Shedding light on minipig drug metabolism - elevated amide hydrolysis in vitro. Xenobiotica 2015; 46:483-94. [PMID: 26405846 DOI: 10.3109/00498254.2015.1089452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. In recent years, the minipig is increasingly used as a test species in non-clinical assessment of drug candidates. While there is good scientific evidence available concerning cytochrome P450-mediated metabolism in minipig, the knowledge of other metabolic pathways is more limited. 2. The aim of this study was to provide an understanding of when, why, and how drug metabolism in minipig differs from other species commonly used in non-clinical studies. In-house cross-species metabolite profile comparisons in hepatocytes and microsomes of 38 Roche development compounds were retrospectively analyzed to compare the metabolism among minipig, human, rat, dog, monkey, rabbit and mouse. 3. A significant contributor to the elevated metabolism observed for certain compounds in minipig was identified as amide hydrolysis. The hepatic amide hydrolysis activity in minipig was further investigated in subcellular liver fractions and a structure-activity relationship was established. When structural motifs according to the established SAR are excluded, coverage of major human metabolic pathways was shown to be higher in minipig than in dog, and only slightly lower than in cynomolgus monkey. 4. A strategy is presented for early identification of drug compounds which might not be suited to further investigation in minipig due to excessive hydrolytic metabolism.
Collapse
Affiliation(s)
- Russell Jones
- a Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd , Basel , Switzerland and
| | - Michaela Marschmann
- a Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd , Basel , Switzerland and
| | - Michael Keller
- b Institut fuer Pharmazeutische Wissenschaften, Albert-Ludwigs-Universitaet Freiburg , Freiburg , Germany
| | - Na Hong Qiu
- a Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd , Basel , Switzerland and
| | - Stephen Fowler
- a Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd , Basel , Switzerland and
| | - Thomas Singer
- a Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd , Basel , Switzerland and
| | - Franz Schuler
- a Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd , Basel , Switzerland and
| | - Christoph Funk
- a Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd , Basel , Switzerland and
| | - Simone Schadt
- a Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd , Basel , Switzerland and
| |
Collapse
|
69
|
Manwaring J, Rothe H, Obringer C, Foltz DJ, Baker TR, Troutman JA, Hewitt NJ, Goebel C. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro. Toxicol Appl Pharmacol 2015; 287:139-148. [DOI: 10.1016/j.taap.2015.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 01/20/2023]
|
70
|
|
71
|
Dumont C, Prieto P, Asturiol D, Worth A. Review of the Availability ofIn VitroandIn SilicoMethods for Assessing Dermal Bioavailability. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Coralie Dumont
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Pilar Prieto
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - David Asturiol
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Andrew Worth
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| |
Collapse
|
72
|
|
73
|
Dancik Y, Troutman JA, Jaworska J. Estimation of in vivo dose of dermally applied chemicals leading to estrogen/androgen receptor-mediated toxicity from in vitro data--Illustration with four reproductive toxicants. Reprod Toxicol 2015; 55:50-63. [PMID: 25597788 DOI: 10.1016/j.reprotox.2015.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 12/21/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022]
Abstract
We present a quantitative in vitro-in vivo extrapolation framework enabling the estimation of the external dermal exposure dose from in vitro experimental data relevant to a toxicity pathway of interest. The framework adapts elements of the biological pathway altering dose (BPAD) method [Judson et al. Chem Res Toxicol 2011;24:451] to the case of dermal exposure. Dermal doses of four toxicants equivalent to concentrations characterizing their effect on estrogen receptor α or androgen receptor activity in chemical-activated luciferase expression (CALUX) assays are estimated. The analysis shows that dermal BPADs, calculated from one in vitro concentration, can differ by up to a factor of 55, due to the impact applied dose and dermal exposure scenarios can have on skin permeation kinetics. These features should therefore be taken into account in risk assessment of dermally applied chemicals.
Collapse
Affiliation(s)
- Yuri Dancik
- The Procter & Gamble Company, 1853 Strombeek-Bever, Belgium.
| | | | | |
Collapse
|
74
|
Ratz-Łyko A, Arct J, Majewski S, Pytkowska K. Influence of Polyphenols on the Physiological Processes in the Skin. Phytother Res 2015; 29:509-17. [DOI: 10.1002/ptr.5289] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Ratz-Łyko
- Faculty of Cosmetology, Department of Cosmetic Chemistry; Academy of Cosmetics and Health Care; Podwale 13, Warsaw 00-252 Poland
| | - Jacek Arct
- Faculty of Cosmetology, Department of Cosmetic Chemistry; Academy of Cosmetics and Health Care; Podwale 13, Warsaw 00-252 Poland
| | - Sławomir Majewski
- Faculty of Cosmetology, Department of Cosmetic Chemistry; Academy of Cosmetics and Health Care; Podwale 13, Warsaw 00-252 Poland
- Department of Dermatology and Venereology; Medical University of Warsaw; Koszykowa 82 A 02-008 Warsaw Poland
| | - Katarzyna Pytkowska
- Faculty of Cosmetology, Department of Cosmetic Chemistry; Academy of Cosmetics and Health Care; Podwale 13, Warsaw 00-252 Poland
| |
Collapse
|
75
|
Phenol Esterase Activity of Porcine Skin. Eur J Pharm Biopharm 2015; 89:175-81. [DOI: 10.1016/j.ejpb.2014.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/21/2022]
|
76
|
Oesch F, Fabian E, Guth K, Landsiedel R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2014; 88:2135-90. [PMID: 25370008 PMCID: PMC4247477 DOI: 10.1007/s00204-014-1382-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/02/2014] [Indexed: 02/01/2023]
Abstract
The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the “Overview and Conclusions” section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions GmbH&Co.KG, Rheinblick 21, 55263, Wackernheim, Germany
| | | | | | | |
Collapse
|
77
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg H, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2014. [PMID: 25027500 DOI: 10.14573/altex1406111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
|
78
|
Wiegand C, Hewitt NJ, Merk HF, Reisinger K. Dermal Xenobiotic Metabolism: A Comparison between Native Human Skin, Four in vitro Skin Test Systems and a Liver System. Skin Pharmacol Physiol 2014; 27:263-75. [DOI: 10.1159/000358272] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022]
|
79
|
Bolleddula J, DeMent K, Driscoll JP, Worboys P, Brassil PJ, Bourdet DL. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules. Drug Metab Rev 2014; 46:379-419. [DOI: 10.3109/03602532.2014.924962] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
80
|
Aires V, Delmas D, Le Bachelier C, Latruffe N, Schlemmer D, Benoist JF, Djouadi F, Bastin J. Stilbenes and resveratrol metabolites improve mitochondrial fatty acid oxidation defects in human fibroblasts. Orphanet J Rare Dis 2014; 9:79. [PMID: 24898617 PMCID: PMC4051957 DOI: 10.1186/1750-1172-9-79] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022] Open
Abstract
Background Inborn enzyme defects of mitochondrial fatty acid beta-oxidation (FAO) form a large group of genetic disorders associated to variable clinical presentations ranging from life-threatening pediatric manifestations up to milder late onset phenotypes, including myopathy. Very few candidate drugs have been identified in this group of disorders. Resveratrol (RSV) is a natural polyphenol with anti-oxidant and anti-inflammatory effects, recently shown to have beneficial metabolic properties in mice models. Our study explores its possible effects on FAO and mitochondrial energy metabolism in human cells, which are still very little documented. Methods Using cells from controls and from patients with Carnitine Palmitoyl Transferase 2 (CPT2) or Very Long Chain AcylCoA Dehydrogenase (VLCAD) deficiency we characterized the metabolic effects of RSV, RSV metabolites, and other stilbenes. We also focused on analysis of RSV uptake, and on the effects of low RSV concentrations, considering the limited bioavailability of RSV in vivo. Results Time course of RSV accumulation in fibroblasts over 48 h of treatment were consistent with the resulting stimulation or correction of FAO capacities. At 48 h, half maximal and maximal FAO stimulations were respectively achieved for 37,5 microM (EC50) and 75 microM RSV, but we found that serum content of culture medium negatively modulated RSV uptake and FAO induction. Indeed, decreasing serum from 12% to 3% led to shift EC50 from 37,5 to 13 microM, and a 2.6-3.6-fold FAO stimulation was reached with 20 microM RSV at 3% serum, that was absent at 12% serum. Two other stilbenes often found associated with RSV, i.e. cis- RSV and piceid, also triggered significant FAO up-regulation. Resveratrol glucuro- or sulfo- conjugates had modest or no effects. In contrast, dihydro-RSV, one of the most abundant circulating RSV metabolites in human significantly stimulated FAO (1.3-2.3-fold). Conclusions This study provides the first compared data on mitochondrial effects of resveratrol, its metabolites, and other natural compounds of the stilbene family in human cells. The results clearly indicate that several of these compounds can improve mitochondrial FAO capacities in human FAO-deficient cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean Bastin
- INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris cedex 06, France.
| |
Collapse
|
81
|
Poet TS, Timchalk C, Hotchkiss JA, Bartels MJ. Chlorpyrifos PBPK/PD model for multiple routes of exposure. Xenobiotica 2014; 44:868-81. [DOI: 10.3109/00498254.2014.918295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
82
|
Gundert-Remy U, Bernauer U, Blömeke B, Döring B, Fabian E, Goebel C, Hessel S, Jäckh C, Lampen A, Oesch F, Petzinger E, Völkel W, Roos PH. Extrahepatic metabolism at the body's internal–external interfaces. Drug Metab Rev 2014; 46:291-324. [DOI: 10.3109/03602532.2014.900565] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
83
|
Eilstein J, Léreaux G, Budimir N, Hussler G, Wilkinson S, Duché D. Comparison of xenobiotic metabolizing enzyme activities in ex vivo human skin and reconstructed human skin models from SkinEthic. Arch Toxicol 2014; 88:1681-1694. [DOI: 10.1007/s00204-014-1218-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/19/2014] [Indexed: 11/30/2022]
|
84
|
Jacques C, Perdu E, Jamin EL, Cravedi JP, Mavon A, Duplan H, Zalko D. Effect of skin metabolism on dermal delivery of testosterone: qualitative assessment using a new short-term skin model. Skin Pharmacol Physiol 2014; 27:188. [PMID: 24642985 DOI: 10.1159/000351683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
Abstract
The skin is a metabolically active organ expressing biotransformation enzymes able to metabolize both endogenous molecules and xenobiotics. We investigated the impact of metabolism on the delivery of testosterone through the skin with an ex vivo pig ear skin system as an alternative model for human skin. Penetration, absorption and metabolic capabilities were investigated up to 72 h after application of [(14)C]-testosterone doses of 50-800 nmol on either fresh or frozen skin, with the latter model being metabolically inactive. Testosterone absorption and metabolite production were monitored by radio-HPLC and gas chromatography-mass spectrometry. Testosterone absorption through frozen skin was much lower, irrespective of the dose of testosterone applied, compared to fresh skin. Using fresh skin samples, >95% of the radioactivity recovered in culture media, as well as the skin itself, corresponded to metabolites. These results were compared with the metabolic data obtained from other in vitro systems (liver and skin microsomes). The present work leads to the conclusion that most of the enzymatic activities expressed in liver fractions are also expressed in pig and human skin. The metabolic activity of the skin can modulate the biological activity of pharmaceuticals (and xenobiotics). Consequently, it can also greatly affect transdermal drug delivery.
Collapse
Affiliation(s)
- C Jacques
- INRA, Toxalim (Research Center in Food Toxicology), Université de Toulouse, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
85
|
Niklasson IB, Ponting DJ, Luthman K, Karlberg AT. Bioactivation of Cinnamic Alcohol Forms Several Strong Skin Sensitizers. Chem Res Toxicol 2014; 27:568-75. [DOI: 10.1021/tx400428f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ida B. Niklasson
- Department
of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - David J. Ponting
- Department
of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Kristina Luthman
- Department
of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department
of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
86
|
Hopf N, Berthet A, Vernez D, Langard E, Spring P, Gaudin R. Skin permeation and metabolism of di(2-ethylhexyl) phthalate (DEHP). Toxicol Lett 2014; 224:47-53. [DOI: 10.1016/j.toxlet.2013.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
|
87
|
Development of a novel transdermal patch containing sumatriptan succinate for the treatment of migraine: in vitro and in vivo characterization. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50139-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
88
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg HT, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 2014; 31:441-77. [PMID: 25027500 PMCID: PMC4783151 DOI: 10.14573/altex.1406111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
Affiliation(s)
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany
| | | | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alan Goldberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - John Haycock
- Department of Materials Science of Engineering, University of Sheffield, Sheffield, UK
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Lisa Hoelting
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | | - Suzanne Kadereit
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Emily McVey
- Board for the Authorization of Plant Protection Products and Biocides, Wageningen, The Netherlands
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marc Lübberstedt
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Fozia Noor
- Biochemical Engineering, Saarland University, Saarbruecken, Germany
| | | | | | | | | | - Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Monika Schäfer-Korting
- Institute for Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Marie-Gabriele Zurich
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Swiss Center for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
89
|
Sharma AM, Uetrecht J. Bioactivation of drugs in the skin: relationship to cutaneous adverse drug reactions. Drug Metab Rev 2013; 46:1-18. [DOI: 10.3109/03602532.2013.848214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
90
|
Teubner W, Mehling A, Schuster PX, Guth K, Worth A, Burton J, van Ravenzwaay B, Landsiedel R. Computer models versus reality: how well do in silico models currently predict the sensitization potential of a substance. Regul Toxicol Pharmacol 2013; 67:468-85. [PMID: 24090701 DOI: 10.1016/j.yrtph.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022]
Abstract
National legislations for the assessment of the skin sensitization potential of chemicals are increasingly based on the globally harmonized system (GHS). In this study, experimental data on 55 non-sensitizing and 45 sensitizing chemicals were evaluated according to GHS criteria and used to test the performance of computer (in silico) models for the prediction of skin sensitization. Statistic models (Vega, Case Ultra, TOPKAT), mechanistic models (Toxtree, OECD (Q)SAR toolbox, DEREK) or a hybrid model (TIMES-SS) were evaluated. Between three and nine of the substances evaluated were found in the individual training sets of various models. Mechanism based models performed better than statistical models and gave better predictivities depending on the stringency of the domain definition. Best performance was achieved by TIMES-SS, with a perfect prediction, whereby only 16% of the substances were within its reliability domain. Some models offer modules for potency; however predictions did not correlate well with the GHS sensitization subcategory derived from the experimental data. In conclusion, although mechanistic models can be used to a certain degree under well-defined conditions, at the present, the in silico models are not sufficiently accurate for broad application to predict skin sensitization potentials.
Collapse
|
91
|
Gómez-Icazbalceta G, González-Sánchez I, Moreno J, Cerbón MA, Cervantes A. In vitro drug metabolism testing using blood-monocyte derivatives. Expert Opin Drug Metab Toxicol 2013; 9:1571-80. [PMID: 23984653 DOI: 10.1517/17425255.2013.831069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Monocytes and their cell derivatives can participate in drug metabolism. These cells express different Phase-I or -II drug metabolizing enzymes and can be differentiated into neo-hepatocytes (NeoHep) and represent a promising alternative strategy to test drug metabolism. This is particularly useful as primary human hepatocytes (PHH), are difficult to obtain and maintain in culture. AREAS COVERED The authors analyze the use of blood monocytes and their derivatives for the study of drug metabolism. They also compare them to the in vitro ability of cells from different sources including: PHH, immortalized hepatocytes, tumor cell lines and NeoHep. EXPERT OPINION The use of monocytes, macrophages, dendritic or Kupffer cells, to test drug metabolism, has serious limitations because these cells express lower levels of cytochrome P450 enzymes than PHH. The best available option, to replace PHH, have been tumor cell lines such as HepaRG, as well as immortalized hepatocytes from adult or fetal sources. Monocyte-derived NeoHep cells are novel and easily accessible cells, which express many drug metabolizing enzymes at levels comparable to PHH. These cells allow drug evaluation under a diverse genetic background. While these cells are in the early stages of evaluation and do need to be examined more thoroughly, they constitute a promising new tool for in vitro drug testing.
Collapse
Affiliation(s)
- Guillermo Gómez-Icazbalceta
- National Autonomous University of Mexico, Faculty of Chemistry, Department of Biology , Mexico City, D.F. 04510 , Mexico +52 55 5622 3820 ; +52 55 5616 2010 ;
| | | | | | | | | |
Collapse
|
92
|
Fabian E, Vogel D, Blatz V, Ramirez T, Kolle S, Eltze T, van Ravenzwaay B, Oesch F, Landsiedel R. Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization in vitro. Arch Toxicol 2013; 87:1683-96. [DOI: 10.1007/s00204-013-1090-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/27/2013] [Indexed: 01/10/2023]
|
93
|
Optimization of naltrexone diclofenac codrugs for sustained drug delivery across microneedle-treated skin. Pharm Res 2013; 31:148-59. [PMID: 23943543 DOI: 10.1007/s11095-013-1147-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose of this work was to optimize the structure of codrugs for extended delivery across microneedle treated skin. Naltrexone, the model compound was linked with diclofenac, a nonspecific cyclooxygenase inhibitor to enhance the pore lifetime following microneedle treatment and develop a 7 day transdermal system for naltrexone. METHODS Four different codrugs of naltrexone and diclofenac were compared in terms of stability and solubility. Transdermal flux, permeability and skin concentration of both parent drugs and codrugs were quantified to form a structure permeability relationship. RESULTS The results indicated that all codrugs bioconverted in the skin. The degree of conversion was dependent on the structure, phenol linked codrugs were less stable compared to the secondary alcohol linked structures. The flux of naltrexone across microneedle treated skin and the skin concentration of diclofenac were higher for the phenol linked codrugs. The polyethylene glycol link enhanced solubility of the codrugs, which translated into flux enhancement. CONCLUSION The current studies indicated that formulation stability of codrugs and the flux of naltrexone can be enhanced via structure design optimization. The polyethylene glycol linked naltrexone diclofenac codrug is better suited for a 7 day drug delivery system both in terms of stability and drug delivery.
Collapse
|
94
|
Bätz FM, Klipper W, Korting HC, Henkler F, Landsiedel R, Luch A, von Fritschen U, Weindl G, Schäfer-Korting M. Esterase activity in excised and reconstructed human skin – Biotransformation of prednicarbate and the model dye fluorescein diacetate. Eur J Pharm Biopharm 2013. [DOI: 10.1016/j.ejpb.2012.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
95
|
Sharma AM, Novalen M, Tanino T, Uetrecht JP. 12-OH-nevirapine sulfate, formed in the skin, is responsible for nevirapine-induced skin rash. Chem Res Toxicol 2013; 26:817-27. [PMID: 23590230 DOI: 10.1021/tx400098z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nevirapine (NVP) treatment is associated with a significant incidence of skin rash in humans, and it also causes a similar immune-mediated skin rash in Brown Norway (BN) rats. We have shown that the sulfate of a major oxidative metabolite, 12-OH-NVP, covalently binds in the skin. The fact that the sulfate metabolite is responsible for covalent binding in the skin does not prove that it is responsible for the rash. We used various inhibitors of sulfation to test whether this reactive sulfate is responsible for the skin rash. Salicylamide (SA), which depletes 3'-phosphoadenosine-5'-phosphosulfate (PAPS) in the liver, significantly decreased 12-OH-NVP sulfate in the blood, but it did not prevent covalent binding in the skin or the rash. Topical application of 1-phenyl-1-hexanol, a sulfotransferase inhibitor, prevented covalent binding in the skin as well as the rash, but only where it was applied. In vitro incubations of 12-OH-NVP with PAPS and cytosolic fractions from the skin of rats or from human skin also led to covalent binding that was inhibited by 1-phenyl-1-hexanol. Incubation of 12-OH-NVP with PAPS and sulfotransferase 1A1*1, a human isoform that is present in the skin, also led to covalent binding, and this binding was also inhibited by 1-phenyl-1-hexanol. We conclude that salicylamide did not deplete PAPS in the skin and was unable to prevent covalent binding or the rash, while topical 1-phenyl-1-hexanol inhibited sulfation of 12-OH-NVP in the skin and did prevent covalent binding and the rash. These results provide definitive evidence that 12-OH-NVP sulfate formed in skin is responsible for NVP-induced skin rashes. Sulfotransferase is one of the few metabolic enzymes with significant activity in the skin, and it may be responsible for the bioactivation of other drugs that cause skin rashes.
Collapse
Affiliation(s)
- Amy M Sharma
- Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | | | | | | |
Collapse
|
96
|
Ghosh P, Pinninti RR, Hammell DC, Paudel KS, Stinchcomb AL. Development of a Codrug Approach for Sustained Drug Delivery Across Microneedle-Treated Skin. J Pharm Sci 2013; 102:1458-67. [DOI: 10.1002/jps.23469] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/06/2013] [Accepted: 01/17/2013] [Indexed: 11/09/2022]
|
97
|
Hewitt NJ, Edwards RJ, Fritsche E, Goebel C, Aeby P, Scheel J, Reisinger K, Ouédraogo G, Duche D, Eilstein J, Latil A, Kenny J, Moore C, Kuehnl J, Barroso J, Fautz R, Pfuhler S. Use of Human In Vitro Skin Models for Accurate and Ethical Risk Assessment: Metabolic Considerations. Toxicol Sci 2013; 133:209-17. [DOI: 10.1093/toxsci/kft080] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
98
|
Filling the gaps: need for research on cell-specific xenobiotic metabolism in the skin. Arch Toxicol 2013; 87:1873-5. [DOI: 10.1007/s00204-013-1031-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
|
99
|
Sharma AM, Klarskov K, Uetrecht J. Nevirapine bioactivation and covalent binding in the skin. Chem Res Toxicol 2013; 26:410-21. [PMID: 23387501 DOI: 10.1021/tx3004938] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nevirapine (NVP) treatment is associated with serious skin rashes that appear to be immune-mediated. We previously developed a rat model of this skin rash that is immune-mediated and is very similar to the rash in humans. Treatment of rats with the major NVP metabolite, 12-OH-NVP, also caused the rash. Most idiosyncratic drug reactions are caused by reactive metabolites; 12-OH-NVP forms a benzylic sulfate, which was detected in the blood of animals treated with NVP or 12-OH-NVP. This sulfate is presumably formed in the liver; however, the skin also has significant sulfotransferase activity. In this study, we used a serum against NVP to detect covalent binding in the skin of rats. There was a large artifact band in immunoblots of whole skin homogenates that interfered with detection of covalent binding; however, when the skin was separated into dermal and epidermal fractions, covalent binding was clearly present in the epidermis, which is also the location of sulfotransferases. In contrast to rats, treatment of mice with NVP did not result in covalent binding in the skin or skin rash. Although the reaction of 12-OH-NVP sulfate with nucleophiles such as glutathione is slow, incubation of this sulfate with homogenized human and rat skin led to extensive covalent binding. Incubations of 12-OH-NVP with the soluble fraction from a 9,000g centrifugation (S9) of rat or human skin homogenate in the presence of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) produced extensive covalent binding, but no covalent binding was detected with mouse skin S9, which suggests that the reason mice do not develop a rash is that they lack the required sulfotransferase. This is the first study to report covalent binding of NVP to rat and human skin. These data provide strong evidence that covalent binding of NVP in the skin is due to 12-OH-NVP sulfate, which is likely responsible for NVP-induced skin rash. Sulfation may represent a bioactivation pathway for other drugs that cause a skin rash.
Collapse
Affiliation(s)
- Amy M Sharma
- Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
100
|
Kirchmair J, Howlett A, Peironcely JE, Murrell DS, Williamson MJ, Adams SE, Hankemeier T, van Buren L, Duchateau G, Klaffke W, Glen RC. How Do Metabolites Differ from Their Parent Molecules and How Are They Excreted? J Chem Inf Model 2013; 53:354-67. [DOI: 10.1021/ci300487z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Johannes Kirchmair
- Unilever Centre for Molecular
Sciences Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Andrew Howlett
- Unilever Centre for Molecular
Sciences Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Julio E. Peironcely
- TNO Research Group Quality & Safety, P.O. Box 360, 3700 AJ Zeist, The Netherlands
- Leiden/Amsterdam
Center for Drug
Research, Leiden University, Einsteinweg,
2333 CC Leiden, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg, 2333 CL Leiden, The Netherlands
| | - Daniel S. Murrell
- Unilever Centre for Molecular
Sciences Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Mark J. Williamson
- Unilever Centre for Molecular
Sciences Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Samuel E. Adams
- Unilever Centre for Molecular
Sciences Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Thomas Hankemeier
- Leiden/Amsterdam
Center for Drug
Research, Leiden University, Einsteinweg,
2333 CC Leiden, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg, 2333 CL Leiden, The Netherlands
| | - Leo van Buren
- Unilever Research & Development, Olivier van Noortlaan, 3133 AT Vlaardingen, The Netherlands
| | - Guus Duchateau
- Unilever Research & Development, Olivier van Noortlaan, 3133 AT Vlaardingen, The Netherlands
| | - Werner Klaffke
- Unilever Research & Development, Olivier van Noortlaan, 3133 AT Vlaardingen, The Netherlands
| | - Robert C. Glen
- Unilever Centre for Molecular
Sciences Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| |
Collapse
|