51
|
Sharif M, Wu X, Yu Y, Zhang T, Zhang Z. Estimation of diffusivity and intermolecular interaction strength of secondary and tertiary amine for CO2 absorption process by molecular dynamic simulation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2027406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maimoona Sharif
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi'an, People’s Republic of China
| | - Xiaomei Wu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi'an, People’s Republic of China
| | - Yunsong Yu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi'an, People’s Republic of China
| | - Tingting Zhang
- College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, People’s Republic of China
| | - Zaoxiao Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi'an, People’s Republic of China
| |
Collapse
|
52
|
Conformations and stability of capsaicin in bulk solvents: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
53
|
Omrani S, Ghasemi M, Mahmoodpour S, Shafiei A, Rostami B. Insights from molecular dynamics on CO2 diffusion coefficient in saline water over a wide range of temperatures, pressures, and salinity: CO2 geological storage implications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
54
|
Allers JP, Priest CW, Greathouse JA, Alam TM. Using Computationally-Determined Properties for Machine Learning Prediction of Self-Diffusion Coefficients in Pure Liquids. J Phys Chem B 2021; 125:12990-13002. [PMID: 34793167 DOI: 10.1021/acs.jpcb.1c07092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to predict transport properties of liquids quickly and accurately will greatly improve our understanding of fluid properties both in bulk and complex mixtures, as well as in confined environments. Such information could then be used in the design of materials and processes for applications ranging from energy production and storage to manufacturing processes. As a first step, we consider the use of machine learning (ML) methods to predict the diffusion properties of pure liquids. Recent results have shown that Artificial Neural Networks (ANNs) can effectively predict the diffusion of pure compounds based on the use of experimental properties as the model inputs. In the current study, a similar ANN approach is applied to modeling diffusion of pure liquids using fluid properties obtained exclusively from molecular simulations. A diverse set of 102 pure liquids is considered, ranging from small polar molecules (e.g., water) to large nonpolar molecules (e.g., octane). Self-diffusion coefficients were obtained from classical molecular dynamics (MD) simulations. Since nearly all the molecules are organic compounds, a general set of force field parameters for organic molecules was used. The MD methods are validated by comparing physical and thermodynamic properties with experiment. Computational input features for the ANN include physical properties obtained from the MD simulations as well as molecular properties from quantum calculations of individual molecules. Fluid properties describing the local liquid structure were obtained from center of mass radial distribution functions (COM-RDFs). Feature sensitivity analysis revealed that isothermal compressibility, heat of vaporization, and the thermal expansion coefficient were the most impactful properties used as input for the ANN model to predict the MD simulated self-diffusion coefficients. The MD-based ANN successfully predicts the MD self-diffusion coefficients with only a subset (2 to 3) of the available computationally determined input features required. A separate ANN model was developed using literature experimental self-diffusion coefficients as model targets. Although this second ML model was not as successful due to a limited number of data points, a good correlation is still observed between experimental and ML predicted self-diffusion coefficients.
Collapse
Affiliation(s)
- Joshua P Allers
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Chad W Priest
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jeffery A Greathouse
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Todd M Alam
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.,ACC Consulting New Mexico, Cedar Crest, New Mexico 87008, United States
| |
Collapse
|
55
|
Butts CT, Martin RW. Bayesian estimation of the hydroxyl radical diffusion coefficient at low temperature and high pressure from atomistic molecular dynamics. J Chem Phys 2021; 155:194504. [PMID: 34800943 DOI: 10.1063/5.0064995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hydroxyl radical is the primary reactive oxygen species produced by the radiolysis of water and is a significant source of radiation damage to living organisms. Mobility of the hydroxyl radical at low temperatures and/or high pressures is hence a potentially important factor in determining the challenges facing psychrophilic and/or barophilic organisms in high-radiation environments (e.g., ice-interface or undersea environments in which radiative heating is a potential heat and energy source). Here, we estimate the diffusion coefficient for the hydroxyl radical in aqueous solution using a hierarchical Bayesian model based on atomistic molecular dynamics trajectories in TIP4P/2005 water over a range of temperatures and pressures.
Collapse
Affiliation(s)
- Carter T Butts
- Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, California 92697, USA
| | - Rachel W Martin
- Departments of Chemistry and Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
56
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
57
|
Bellussi FM, Roscioni OM, Ricci M, Fasano M. Anisotropic Electrostatic Interactions in Coarse-Grained Water Models to Enhance the Accuracy and Speed-Up Factor of Mesoscopic Simulations. J Phys Chem B 2021; 125:12020-12027. [PMID: 34704761 PMCID: PMC8573754 DOI: 10.1021/acs.jpcb.1c07642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Water models with
realistic physical–chemical properties
are essential to study a variety of biomedical processes or engineering
technologies involving molecules or nanomaterials. Atomistic models
of water are constrained by the feasible computational capacity, but
calibrated coarse-grained (CG) ones can go beyond these limits. Here,
we compare three popular atomistic water models with their corresponding
CG model built using finite-size particles such as ellipsoids. Differently
from previous approaches, short-range interactions are accounted for
with the generalized Gay–Berne potential, while electrostatic
and long-range interactions are computed from virtual charges inside
the ellipsoids. Such an approach leads to a quantitative agreement
between the original atomistic models and their CG counterparts. Results
show that a timestep of up to 10 fs can be achieved to integrate the
equations of motion without significant degradation of the physical
observables extracted from the computed trajectories, thus unlocking
a significant acceleration of water-based mesoscopic simulations at
a given accuracy.
Collapse
Affiliation(s)
| | | | | | - Matteo Fasano
- Department of Energy, Politecnico di Torino, Torino 10129, Italy
| |
Collapse
|
58
|
Gao Z, Wu W, Sun W, Wang B. Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11281-11291. [PMID: 34520212 DOI: 10.1021/acs.langmuir.1c01796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism remains unclear. This study numerically investigates the bulk NB stabilization with molecular dynamics (MD) methods: the all-atom (AA) MD simulation is used for NBs of several nanometers diameter; the coarse-grained (CG) MD simulation is for the NBs of about 100 nm. The NB properties are statistically obtained and analyzed, including the inner density, inner pressure, surface charge, interfacial hydrogen bond (HB), and gaseous diffusion. The results show that the gas inside an NB has ultrahigh density (tens of kilograms per cubic meter). A double-layer surface charge exists on the NB. The inner/outer layer is positively/negatively charged, and the electrostatic stress can counteract part of the surface tension. In addition, the interfacial HB is weakened by the interaction between gas and water molecules, causing less surface tension. The above features are beneficial to NB stabilization. The NB equilibrium radii solved by the interfacial mechanical equilibrium equation agree with the MD results, indicating that this equation can describe the force balance of an NB as small as several nanometers. Besides, supersaturation appears to be necessary for the NB thermodynamic equilibrium. Based on Henry's law and the ideal gas law, the theoretical analysis suggests that the stability of the NB thermodynamic equilibrium is conditional: the number of gas molecules in NBs should be more than half that dissolved in liquid. This study unravels a stabilized bulk NB's properties and discusses the NB equilibrium and stabilization mechanism, which will advance the understanding and application of bulk NBs.
Collapse
Affiliation(s)
- Zhan Gao
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wangxia Wu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Weitao Sun
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Bing Wang
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
59
|
Kadaoluwa Pathirannahalage SP, Meftahi N, Elbourne A, Weiss ACG, McConville CF, Padua A, Winkler DA, Costa Gomes M, Greaves TL, Le TC, Besford QA, Christofferson AJ. Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:4521-4536. [PMID: 34406000 DOI: 10.1021/acs.jcim.1c00794] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Water is a unique solvent that is ubiquitous in biology and present in a variety of solutions, mixtures, and materials settings. It therefore forms the basis for all molecular dynamics simulations of biological phenomena, as well as for many chemical, industrial, and materials investigations. Over the years, many water models have been developed, and it remains a challenge to find a single water model that accurately reproduces all experimental properties of water simultaneously. Here, we report a comprehensive comparison of structural and dynamic properties of 30 commonly used 3-point, 4-point, 5-point, and polarizable water models simulated using consistent settings and analysis methods. For the properties of density, coordination number, surface tension, dielectric constant, self-diffusion coefficient, and solvation free energy of methane, models published within the past two decades consistently show better agreement with experimental values compared to models published earlier, albeit with some notable exceptions. However, no single model reproduced all experimental values exactly, highlighting the need to carefully choose a water model for a particular study, depending on the phenomena of interest. Finally, machine learning algorithms quantified the relationship between the water model force field parameters and the resulting bulk properties, providing insight into the parameter-property relationship and illustrating the challenges of developing a water model that can accurately reproduce all properties of water simultaneously.
Collapse
Affiliation(s)
- Sachini P Kadaoluwa Pathirannahalage
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, Lyon 69342, France
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Alessia C G Weiss
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Chris F McConville
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Agilio Padua
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, Lyon 69342, France
| | - David A Winkler
- School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
| | | | - Tamar L Greaves
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Tu C Le
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Quinn A Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Andrew J Christofferson
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
60
|
Wolanin J, Michel L, Tabacchioni D, Zanotti JM, Peters J, Imaz I, Coasne B, Plazanet M, Picard C. Heterogeneous Microscopic Dynamics of Intruded Water in a Superhydrophobic Nanoconfinement: Neutron Scattering and Molecular Modeling. J Phys Chem B 2021; 125:10392-10399. [PMID: 34492185 DOI: 10.1021/acs.jpcb.1c06791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With their strong confining porosity and versatile surface chemistry, zeolitic imidazolate frameworks-including the prototypical ZIF-8-display exceptional properties for various applications. In particular, the forced intrusion of water at high pressure (∼25 MPa) into ZIF-8 nanopores is of interest for energy storage. Such a system reveals also ideal to study experimentally water dynamics and thermodynamics in an ultrahydrophobic confinement. Here, we report on neutron scattering experiments to probe the molecular dynamics of water within ZIF-8 nanopores under high pressure up to 38 MPa. In addition to an overall confinement-induced slowing down, we provide evidence for strong dynamical heterogeneities with different underlying molecular dynamics. Using complementary molecular simulations, these heterogeneities are found to correspond to different microscopic mechanisms inherent to vicinal molecules located in strongly adsorbing sites (ligands) and other molecules nanoconfined in the cavity center. These findings unveil a complex microscopic dynamics, which results from the combination of surface residence times and exchanges between the cavity surface and center.
Collapse
Affiliation(s)
- J Wolanin
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - L Michel
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - D Tabacchioni
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - J M Zanotti
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - J Peters
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.,Institut Laue Langevin, 38042 Grenoble, France
| | - I Imaz
- Catalan Insitute of Nanoscience and Nanotechnology, 08193 Barcelona, Spain
| | - B Coasne
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - M Plazanet
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - C Picard
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
61
|
Chen X, Wang Y, Wu L, Zhang W, Hu Y. Testing and validation of a self-diffusion coefficient model based on molecular dynamics simulations. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
62
|
Celebi AT, Dawass N, Moultos OA, Vlugt TJH. How sensitive are physical properties of choline chloride-urea mixtures to composition changes: Molecular dynamics simulations and Kirkwood-Buff theory. J Chem Phys 2021; 154:184502. [PMID: 34241035 DOI: 10.1063/5.0049064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Deep eutectic solvents (DESs) have emerged as a cheaper and greener alternative to conventional organic solvents. Choline chloride (ChCl) mixed with urea at a molar ratio of 1:2 is one of the most common DESs for a wide range of applications such as electrochemistry, material science, and biochemistry. In this study, molecular dynamics simulations are performed to study the effect of urea content on the thermodynamic and transport properties of ChCl and urea mixtures. With increased mole fraction of urea, the number of hydrogen bonds (HBs) between cation-anion and ion-urea decreases, while the number of HBs between urea-urea increases. Radial distribution functions (RDFs) for ChCl-urea and ChCl-ChCl pairs shows a significant decrease as the mole fraction of urea increases. Using the computed RDFs, Kirkwood-Buff Integrals (KBIs) are computed. KBIs show that interactions of urea-urea become stronger, while interactions of urea-ChCl and ChCl-ChCl pairs become slightly weaker with increasing mole fraction of urea. All thermodynamic factors are found larger than one, indicating a non-ideal mixture. Our results also show that self- and collective diffusivities increase, while viscosities decrease with increasing urea content. This is mainly due to the weaker interactions between ions and urea, resulting in enhanced mobilities. Ionic conductivities exhibit a non-monotonic behavior. Up to a mole fraction of 0.5, the ionic conductivities increase with increasing urea content and then reach a plateau.
Collapse
Affiliation(s)
- Alper T Celebi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Noura Dawass
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
63
|
Barani Pour S, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A. The study of structure and interactions of glucose-based natural deep eutectic solvents by molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
64
|
Tsanai M, Frederix PWJM, Schroer CFE, Souza PCT, Marrink SJ. Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model. Chem Sci 2021; 12:8521-8530. [PMID: 34221333 PMCID: PMC8221187 DOI: 10.1039/d1sc00374g] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023] Open
Abstract
Complex coacervates are liquid-liquid phase separated systems, typically containing oppositely charged polyelectrolytes. They are widely studied for their functional properties as well as their potential involvement in cellular compartmentalization as biomolecular condensates. Diffusion and partitioning of solutes into a coacervate phase are important to address because their highly dynamic nature is one of their most important functional characteristics in real-world systems, but are difficult to study experimentally or even theoretically without an explicit representation of every molecule in the system. Here, we present an explicit-solvent, molecular dynamics coarse-grain model of complex coacervates, based on the Martini 3.0 force field. We demonstrate the accuracy of the model by reproducing the salt dependent coacervation of poly-lysine and poly-glutamate systems, and show the potential of the model by simulating the partitioning of ions and small nucleotides between the condensate and surrounding solvent phase. Our model paves the way for simulating coacervates and biomolecular condensates in a wide range of conditions, with near-atomic resolution.
Collapse
Affiliation(s)
- Maria Tsanai
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Pim W J M Frederix
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Carsten F E Schroer
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, University of Lyon Lyon France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| |
Collapse
|
65
|
Rahbari A, Garcia-Navarro JC, Ramdin M, van den Broeke LJP, Moultos OA, Dubbeldam D, Vlugt TJH. Effect of Water Content on Thermodynamic Properties of Compressed Hydrogen. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2021; 66:2071-2087. [PMID: 34054140 PMCID: PMC8154567 DOI: 10.1021/acs.jced.1c00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Force field-based molecular simulations were used to calculate thermal expansivities, heat capacities, and Joule-Thomson coefficients of binary (standard) hydrogen-water mixtures for temperatures between 366.15 and 423.15 K and pressures between 50 and 1000 bar. The mole fraction of water in saturated hydrogen-water mixtures in the gas phase ranges from 0.004 to 0.138. The same properties were calculated for pure hydrogen at 323.15 K and pressures between 100 and 1000 bar. Simulations were performed using the TIP3P and a modified TIP4P force field for water and the Marx, Vrabec, Cracknell, Buch, and Hirschfelder force fields for hydrogen. The vapor-liquid equilibria of hydrogen-water mixtures were calculated along the melting line of ice Ih, corresponding to temperatures between 264.21 and 272.4 K, using the TIP3P force field for water and the Marx force field for hydrogen. In this temperature range, the solubilities and the chemical potentials of hydrogen and water were obtained. Based on the computed solubility data of hydrogen in water, the freezing-point depression of water was computed ranging from 264.21 to 272.4 K. The modified TIP4P and Marx force fields were used to improve the solubility calculations of hydrogen-water mixtures reported in our previous study [Rahbari A.;J. Chem. Eng. Data2019, 64, 4103-4115] for temperatures between 323 and 423 K and pressures ranging from 100 to 1000 bar. The chemical potentials of ice Ih were calculated as a function of pressure between 100 and 1000 bar, along the melting line for temperatures between 264.21 and 272.4 K, using the IAPWS equation of state for ice Ih. We show that at low pressures, the presence of water has a large effect on the thermodynamic properties of compressed hydrogen. Our conclusions may have consequences for the energetics of a hydrogen refueling station using electrochemical hydrogen compressors.
Collapse
Affiliation(s)
- Ahmadreza Rahbari
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | | | - Mahinder Ramdin
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Leo J. P. van den Broeke
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - David Dubbeldam
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
66
|
Fei S, Hsu WL, Delaunay JJ, Daiguji H. Molecular dynamics study of water confined in MIL-101 metal-organic frameworks. J Chem Phys 2021; 154:144503. [PMID: 33858173 DOI: 10.1063/5.0040909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular dynamics simulations of water adsorbed in Material Institute Lavoisier MIL-101(Cr) metal-organic frameworks are performed to analyze the kinetic properties of water molecules confined in the framework at 298.15 K and under different vapor pressures and clarify the water adsorption mechanism in MIL-101(Cr). The terahertz frequency-domain spectra (THz-FDS) of water are calculated by applying fast Fourier transform to the configurational data of water molecules. According to the characteristic frequencies in the THz-FDS, the dominant motions of water molecules in MIL-101(Cr) can be categorized into three types: (1) low-frequency translational motion (0-0.5 THz), (2) medium-frequency vibrational motion (2-2.5 THz), and (3) high-frequency vibrational motion (>6 THz). Each type of water motion is confirmed by visualizing the water configuration in MIL-101(Cr). The ratio of the number of water molecules with low-frequency translational motion to the total number of water molecules increases with the increase in vapor pressure. In contrast, that with medium-frequency vibrational motion is found to decrease with vapor pressure, exhibiting a pronounced decrease after water condensation has started in the cavities. That with the high-frequency vibrational motion is almost independent of the vapor pressure. The interactions between different types of water molecules affect the THz-FDS. Furthermore, the self-diffusion coefficient and the velocity auto-correlation function are calculated to clarify the adsorption state of the water confined in MIL-101(Cr). To confirm that the general trend of the THz-FDS does not depend on the water model, the simulations are performed using three water models, namely, rigid SPC/E, flexible SPC/E, and rigid TIP5PEw.
Collapse
Affiliation(s)
- Shubo Fei
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Wei-Lun Hsu
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Jean-Jacques Delaunay
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hirofumi Daiguji
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
67
|
Agosta L, Dzugutov M, Hermansson K. Supercooled liquid-like dynamics in water near a fully hydrated titania surface: Decoupling of rotational and translational diffusion. J Chem Phys 2021; 154:094708. [PMID: 33685161 DOI: 10.1063/5.0039693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report an ab initio molecular dynamics (MD) simulation investigating the effect of a fully hydrated surface of TiO2 on the water dynamics. It is found that the universal relation between the rotational and translational diffusion characteristics of bulk water is broken in the water layers near the surface with the rotational diffusion demonstrating progressive retardation relative to the translational diffusion when approaching the surface. This kind of rotation-translation decoupling has so far only been observed in the supercooled liquids approaching glass transition, and its observation in water at a normal liquid temperature is of conceptual interest. This finding is also of interest for the application-significant studies of the water interaction with fully hydrated nanoparticles. We note that this is the first observation of rotation-translation decoupling in an ab initio MD simulation of water.
Collapse
Affiliation(s)
- Lorenzo Agosta
- Department of Chemistry-Ångström, Uppsala University, S-75121 Uppsala, Sweden
| | - Mikhail Dzugutov
- Department of Chemistry-Ångström, Uppsala University, S-75121 Uppsala, Sweden
| | - Kersti Hermansson
- Department of Chemistry-Ångström, Uppsala University, S-75121 Uppsala, Sweden
| |
Collapse
|
68
|
Zhang M, Sun B, Luo A, Huang S, Zhang X. Electrodialysis based direct air dehumidification: A molecular dynamics study on moisture diffusion and separation through graphene oxide membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
69
|
Zhao X, Luo T, Jin H. A predictive model for self-, Maxwell-Stefan, and Fick diffusion coefficients of binary supercritical water mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
70
|
García-Melgarejo V, Núñez-Rojas E, Alejandre J. United atom model via interactions with explicit water (UAMI-EW): Alcohols and ketones. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
71
|
Celebi AT, Vlugt TJH, Moultos OA. Thermal conductivity of aqueous solutions of reline, ethaline, and glyceline deep eutectic solvents; a molecular dynamics simulation study. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1876263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alper T. Celebi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
72
|
Erdős M, Frangou M, Vlugt TJH, Moultos OA. Diffusivity of α-, β-, γ-cyclodextrin and the inclusion complex of β-cyclodextrin: Ibuprofen in aqueous solutions; A molecular dynamics simulation study. FLUID PHASE EQUILIBRIA 2021; 528:112842. [PMID: 33024350 PMCID: PMC7529625 DOI: 10.1016/j.fluid.2020.112842] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/03/2020] [Accepted: 09/18/2020] [Indexed: 05/28/2023]
Abstract
Cyclodextrins (CDs) are widely used in drug delivery, catalysis, food and separation processes. In this work, a comprehensive simulation study on the diffusion of the native α-, β- and γ-CDs in aqueous solutions is carried out using Molecular Dynamics simulations. The effect of the system size on the computed self-diffusivity is investigated and it is found that the required correction can be as much as 75% of the final value. The effect of the water force field is examined and it is shown that the q4md-CD/TIP4P/2005 force field combination predicts the experimentally measured self-diffusion coefficients of CDs very accurately. The self-diffusion coefficients of the three native CDs were also computed in aqueous-NaCl solutions using the Joung and Cheatham (JC) and the Madrid-2019 force fields. It is found that Na+ ions have higher affinity towards the CDs when the JC force field is used and for this reason the predicted diffusivity of CDs is lower compared to simulations using the Madrid-2019 force field. As a model system for drug delivery and waste-water treatment applications, the diffusion of the β-CD:Ibuprofen inclusion complex in water is studied. In agreement with experiments for similar components, it is shown that the inclusion complex and the free β-CD have almost equal self-diffusion coefficients. Our analysis revealed that this is most likely caused by the almost full inclusion of the ibuprofen in the cavity of the β-CD. Our findings show that Molecular Dynamics simulation can be used to provide reasonable diffusivity predictions, and to obtain molecular-level understanding useful for industrial applications of CDs.
Collapse
Affiliation(s)
- Máté Erdős
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Michalis Frangou
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| |
Collapse
|
73
|
Temperature effect on water dynamics in tetramer phosphofructokinase matrix and the super-arrhenius respiration rate. Sci Rep 2021; 11:383. [PMID: 33431895 PMCID: PMC7801438 DOI: 10.1038/s41598-020-79271-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/26/2020] [Indexed: 11/08/2022] Open
Abstract
Advances in understanding the temperature effect on water dynamics in cellular respiration are important for the modeling of integrated energy processes and metabolic rates. For more than half a century, experimental studies have contributed to the understanding of the catalytic role of water in respiration combustion, yet the detailed water dynamics remains elusive. We combine a super-Arrhenius model that links the temperature-dependent exponential growth rate of a population of plant cells to respiration, and an experiment on isotope labeled 18O2 uptake to H218O transport role and to a rate-limiting step of cellular respiration. We use Phosphofructokinase (PFK-1) as a prototype because this enzyme is known to be a pacemaker (a rate-limiting enzyme) in the glycolysis process of respiration. The characterization shows that PFK-1 water matrix dynamics are crucial for examining how respiration (PFK-1 tetramer complex breathing) rates respond to temperature change through a water and nano-channel network created by the enzyme folding surfaces, at both short and long (evolutionary) timescales. We not only reveal the nano-channel water network of PFK-1 tetramer hydration topography but also clarify how temperature drives the underlying respiration rates by mapping the channels of water diffusion with distinct dynamics in space and time. The results show that the PFK-1 assembly tetramer possesses a sustainable capacity in the regulation of the water network toward metabolic rates. The implications and limitations of the reciprocal-activation-reciprocal-temperature relationship for interpreting PFK-1 tetramer mechanisms are briefly discussed.
Collapse
|
74
|
Ma C, Chen Y, Sun GE, Li QM, Gao W, Jiang Q. Understanding water slippage through carbon nanotubes. Phys Chem Chem Phys 2021; 23:14737-14745. [PMID: 34190267 DOI: 10.1039/d1cp01148k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is a formidable challenge to understand water slippage through carbon nanotubes (CNTs), despite its great significance in fundamental research and technology. Herein, we propose an effective scheme to describe water slippage properties by extending two friction models - the phononic friction model and Einstein's diffusion model, both relying on the potential corrugation of water slippage. Our scheme effectively captures the tube-size effect on the viscosity and slippage of water molecules through CNTs. It also identifies the experimentally reported size-dependent transition from continuum to sub-continuum flow and further reveals that this transition is likely to be determined by the hydrogen bond instead of the structural transition or entropic change. Besides, the size-dependence of slip lengths is found to be controllable by temperature. Our methods are thus expected to be a useful basis for further studies on substance transport under confinement.
Collapse
Affiliation(s)
- Cong Ma
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Yun Chen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Guo En Sun
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Quan Ming Li
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Wang Gao
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
75
|
Water under extreme confinement in graphene: Oscillatory dynamics, structure, and hydration pressure explained as a function of the confinement width. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
76
|
Lee H, Ostadhassan M, Sun Z, Pu H, Liu B, Varma RS, Jang HW, Shokouhimher M. Diffusivity and hydrophobic hydration of hydrocarbons in supercritical CO 2 and aqueous brine. RSC Adv 2020; 10:37938-37946. [PMID: 35515164 PMCID: PMC9057232 DOI: 10.1039/d0ra06499h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/01/2020] [Indexed: 12/04/2022] Open
Abstract
CO2 injection (EOR and sequestration technique) creates the amalgamation of hydrocarbons, CO2, and aqueous brine in the subsurface. In this study, molecular dynamics (MD) simulations were used to investigate the diffusivity of hydrocarbon molecules in a realistic scenario of supercritical CO2 (SC-CO2) injection in the subsurface over a wide range of pressures (50 < P < 300 bar) and aqueous brine concentrations (0, 2, and 5% brine). To overcome existing challenges in traditional diffusivity calculation approaches, we took advantage of fundamental molecular-based methods, along with further verification of results by previously published experimental data. In this regard, computational methods and MD simulations were employed to compute diffusion coefficients of hydrocarbons (benzene and pentane). It was found that the presence of water and salt affects the thermodynamic properties of molecules where the intermolecular interactions caused the hydrophobic hydration of hydrocarbons coupled with ionic hydration due to hydrogen bond and ion-dipole interactions. Based on these results, it is demonstrated that the formation of water clusters in the SC-CO2 solvent is a major contributor to the diffusion of hydrophobic molecules. The outcome at different pressure conditions showed that hydrocarbons always would diffuse less in the presence of water. The slopes of linearly fitted MSD of benzene and pentane infinitely diluted in SC-CO2 is around 13 to 20 times larger than the slope with water molecules (4 wt%). When pressure increases (100–300 bar), the diffusion coefficients (D) of benzene and pentane decreases (around 1.2 × 10−9 to 0.4 × 10−9 and 2 × 10−9 to 1 × 10−9 m2 s−1, respectively). Furthermore, brine concentration generally plays a negative role in reducing the diffusivity of hydrocarbons due to the formation of water clusters as a result of hydrophobic and ionic hydration. Under the SC-CO2 rich (injection) system in the shale reservoir, the diffusion of hydrocarbon is correlated to the efficiency of hydrocarbon flow/recovery. Ultimately, this study will guide us to better understand the phenomena that would occur in nanopores of shale that undergo EOR or are becoming a target of CO2 sequestration. CO2 injection (EOR and sequestration technique) creates the amalgamation of hydrocarbons, CO2, and aqueous brine in the subsurface.![]()
Collapse
Affiliation(s)
- Hyeonseok Lee
- Department of Petroleum Engineering, University of North Dakota Grand Forks ND 58202 USA
| | - Mehdi Ostadhassan
- Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University Daqing 163318 China .,Department of Petroleum Engineering, Amirkabir University of Technology Tehran Iran
| | - Zheng Sun
- College of Petroleum Engineering, China University of Petroleum 102249 Beijing PR China
| | - Hui Pu
- Department of Petroleum Engineering, University of North Dakota Grand Forks ND 58202 USA
| | - Bo Liu
- Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University Daqing 163318 China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimher
- Department of Petroleum Engineering, University of North Dakota Grand Forks ND 58202 USA.,Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
77
|
Celebi AT, Jamali SH, Bardow A, Vlugt TJH, Moultos OA. Finite-size effects of diffusion coefficients computed from molecular dynamics: a review of what we have learned so far. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1810685] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alper T. Celebi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Seyed Hossein Jamali
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - André Bardow
- Energy & Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zürich, Switzerland
| | - Thijs J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
78
|
Salassi S, Cardellini A, Asinari P, Ferrando R, Rossi G. Water dynamics affects thermal transport at the surface of hydrophobic and hydrophilic irradiated nanoparticles. NANOSCALE ADVANCES 2020; 2:3181-3190. [PMID: 36134276 PMCID: PMC9419265 DOI: 10.1039/d0na00094a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/15/2020] [Indexed: 05/10/2023]
Abstract
Plasmonic nanoparticles, such as Au nanoparticles (NPs) coated with bio-compatible ligands, are largely studied and tested in nanomedicine for photothermal therapies. Nevertheless, no clear physical interpretation is currently available to explain thermal transport at the nanoparticle surface, where a solid-liquid (core-ligand) interface is coupled to a liquid-liquid (ligand-solvent) interface. This lack of understanding makes it difficult to control the temperature increase imposed by the irradiated NPs to the surrounding biological environment, and it has so far hindered the rational design of the NP surface chemistry. Here, atomistic molecular dynamics simulations are used to show that thermal transport at the nanoparticle surface depends dramatically on solvent diffusivity at the ligand-solvent interface. Furthermore, using physical indicators of water confinement around hydrophobic and hydrophilic ligands, a predictive model is developed to allow the engineering of NP coatings with the desired thermal conductivities at the nanoscale.
Collapse
Affiliation(s)
- Sebastian Salassi
- Physics Department, University of Genoa via Dodecaneso 33 16146 Genoa Italy
| | - Annalisa Cardellini
- Department of Energy, Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Pietro Asinari
- Department of Energy, Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Riccardo Ferrando
- Physics Department, University of Genoa via Dodecaneso 33 16146 Genoa Italy
| | - Giulia Rossi
- Physics Department, University of Genoa via Dodecaneso 33 16146 Genoa Italy
| |
Collapse
|
79
|
Dasgupta N, Shin YK, Fedkin MV, van Duin A. ReaxFF molecular dynamics simulations of electrolyte-water systems at supercritical temperature. J Chem Phys 2020; 152:204502. [PMID: 32486685 DOI: 10.1063/5.0006676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have performed ReaxFF molecular dynamics simulations of alkali metal-chlorine pairs in different water densities at supercritical temperature (700 K) to elucidate the structural and dynamical properties of the system. The radial distribution function and the angular distribution function explain the inter-ionic structural and orientational arrangements of atoms during the simulation. The coordination number of water molecules in the solvation shell of ions increases with an increase in the radius of ions. We find that the self-diffusion coefficient of metal ions increases with a decrease in density under supercritical conditions due to the formation of voids within the system. The hydrogen bond dynamics has been interpreted by the residence time distribution of various ions, which shows Li+ having the highest water retaining capability. The void distribution within the system has been analyzed by using the Voronoi polyhedra algorithm providing an estimation of void formation within the system at high temperatures. We observe the formation of salt clusters of Na+ and K+ at low densities due to the loss of dielectric constants of ions. The diffusion of ions gets altered dramatically due to the formation of voids and nucleation of ions in the system.
Collapse
Affiliation(s)
- Nabankur Dasgupta
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yun Kyung Shin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Mark V Fedkin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Adri van Duin
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
80
|
Abal JPK, Bordin JR, Barbosa MC. Salt parameterization can drastically affect the results from classical atomistic simulations of water desalination by MoS 2 nanopores. Phys Chem Chem Phys 2020; 22:11053-11061. [PMID: 32373906 DOI: 10.1039/d0cp00484g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Water scarcity is a reality in our world, and scenarios predicted by leading scientists in this area indicate that it will worsen in the next decades. However, new technologies based on low-cost seawater desalination can prevent the worst scenarios, providing fresh water for humanity. With this goal, membranes based on nanoporous materials have been suggested in recent years. One of the materials suggested is MoS2, and classical Molecular Dynamics (MD) simulation is one of the most powerful tools to explore these nanomaterials. However, distinct force fields employed in MD simulations are parameterized based on distinct experimental quantities. In this paper, we compare two models of salt that were built based on distinct properties of water-salt mixtures. One model fits the hydration free energy and lattice properties, and the second fits the crystal density and the density and the dielectric constant of water and salt mixtures. To compare the models, MD simulations for salty water flow through nanopores of two sizes were used - one pore big enough to accommodate hydrated ions, and one smaller in which the ion has to dehydrate to enter - and two rigid water models from the TIP4P family - TIP4P/2005 and TIP4P/ε. Our results indicate that the water permeability and salt rejection by the membrane are more influenced by the salt model than by the water model, especially for the narrow pore. In fact, completely distinct mechanisms were observed, and they are related to the characteristics employed in the ion model parameterization. The results show that not only can the water model influence the outcomes, but the ion model plays a crucial role when the pore is small enough.
Collapse
Affiliation(s)
- João P K Abal
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil.
| | | | | |
Collapse
|
81
|
Jamali SH, Bardow A, Vlugt TJH, Moultos OA. Generalized Form for Finite-Size Corrections in Mutual Diffusion Coefficients of Multicomponent Mixtures Obtained from Equilibrium Molecular Dynamics Simulation. J Chem Theory Comput 2020; 16:3799-3806. [PMID: 32338889 PMCID: PMC7288667 DOI: 10.1021/acs.jctc.0c00268] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
The system-size dependence
of computed mutual diffusion coefficients
of multicomponent mixtures is investigated, and a generalized correction
term is derived. The generalized finite-size correction term was validated
for the ternary molecular mixture chloroform/acetone/methanol as well
as 28 ternary LJ systems. It is shown that only the diagonal elements of the Fick matrix
show system-size dependency. The finite-size effects of these elements
can be corrected by adding the term derived by Yeh and Hummer (J. Phys. Chem. B2004, 108, 15873–15879). By performing an eigenvalue analysis of the
finite-size effects of the matrix of Fick diffusivities we show that
the eigenvector matrix of Fick diffusivities does not depend on the
size of the simulation box. Only eigenvalues, which describe the speed
of diffusion, depend on the size of the system. An analytic relation
for finite-size effects of the matrix of Maxwell–Stefan diffusivities
was developed. All Maxwell–Stefan diffusivities depend on the
system size, and the required correction depends on the matrix of
thermodynamic factors.
Collapse
Affiliation(s)
- Seyed Hossein Jamali
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - André Bardow
- Institute of Technical Thermodynamics, RWTH Aachen University, 52056 Aachen, Germany.,Energy Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, 8092 Zürich, Switzerland
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
82
|
K VP, Sathian SP. The effect of temperature on water desalination through two-dimensional nanopores. J Chem Phys 2020; 152:164701. [PMID: 32357792 DOI: 10.1063/1.5143069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Two-dimensional (2D) materials such as graphene, molybdenum sulfide, and hexagonal boron nitride are widely studied for separation applications such as water desalination. Desalination across such 2D nanoporous membranes is largely influenced by the bulk transport properties of water, which are, in turn, sensitive to the operating temperature. However, there have been no studies on the effect of temperature on desalination through 2D nanopores. We investigated water desalination through hydrogen functionalized graphene nanopores of varying pore areas at temperatures 275.0 K, 300.0 K, 325.0 K, and 350.0 K. The water flux showed a direct relation with the diffusion coefficient and an inverse relation with the hydrogen-bond lifetime. As a direct consequence, the water flux was found to be related to the temperature as per the Arrhenius equation, similar to an activated process. The results from the present study improve the understanding on water and ion permeation across nanoporous 2D materials at different temperatures. Furthermore, the present investigation suggests a kinetic model, which can predict the water and ion permeation based on the characteristics of the nanopore.
Collapse
Affiliation(s)
- Vishnu Prasad K
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Sarith P Sathian
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
83
|
Jin H, Ding W, Bai B, Cao C. Molecular dynamics simulation study used in systems with supercritical water. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Supercritical water (SCW) is a green solvent. The supercritical fluids have been increasingly concerned and studied in many areas such as SCW gasification, biofuel production, SCW hydrothermal conversion, organic wastes treatment and utilization, nanotechnology, etc. Because of the severe circumstances and rapid reactions in supercritical water, it is difficult for experimental researchers to disentangle various fundamental reaction steps from the intermediate and product distributions. From this perspective, molecular dynamics (MD) simulation based on quantum chemistry is an efficient tool for studying and exploring complex molecular systems. In recent years, molecular simulations and quantum chemical calculations have become powerful for illustrating the possible internal mechanism of a complex system. However, now there is no literature about the overview of MD simulation study of the system with SCW. Therefore, in this paper, an overview of MD simulation investigation applied in various systems with SCW is presented. In the current review we explore diverse research areas. Namely, the applications of MD simulation on investigating the properties of SCW, pyrolysis/gasification systems with SCW, dissolution systems and oxidation systems with SCW were summarized. And the corresponding problems in diverse systems were discussed. Furthermore, the advances and problems in MD simulation study were also discussed. Finally, possible directions for future research were outlined. This work is expected to be one reference for the further theoretical and molecular simulation investigations of systems involving SCW.
Collapse
Affiliation(s)
- Hui Jin
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an JiaoTong University , 710049, Shaanxi , China
| | - Weijing Ding
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an JiaoTong University , 710049, Shaanxi , China
| | - Bin Bai
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an JiaoTong University , 710049, Shaanxi , China
| | - Changqing Cao
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an JiaoTong University , 710049, Shaanxi , China
| |
Collapse
|
84
|
Zhou J, Ranjith P, Wanniarachchi W. Different strategies of foam stabilization in the use of foam as a fracturing fluid. Adv Colloid Interface Sci 2020; 276:102104. [PMID: 31978640 DOI: 10.1016/j.cis.2020.102104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
An attractive alternative to mitigate the adverse effects of conventional water-based fluids on the efficiency of hydraulic fracturing is to inject foam-based fracking fluids into reservoirs. The efficiency of foaming fluids in subsurface applications largely depends on the stability and transportation of foam bubbles in harsh environments with high temperature, pressure and salinity, all of which inevitably lead to poor foam properties and thus limit fracturing efficiency. The aim of this paper is to elaborate popular strategies of foam stabilization under reservoir conditions. Specifically, this review first discusses three major mechanisms governing foam decay and summarizes recent progress in research on these phenomena. Since surfactants, polymers, nanoparticles and their composites are popular options for foam stabilization, their stabilizing effects, especially the synergies in composites, are also reviewed. In addition to reporting experimental results, the paper also reports recent advances in interfacial properties via molecular dynamical simulation, which provide new insights into gas/liquid interfacial properties under the influence of surfactants at molecular scale. The results of both experiments and simulations indicate that foam additives play an essential role in foam stability and the synergic effects of surfactants and nanoparticles exhibit more favorable performance.
Collapse
|
85
|
Fiates J, Zhang Y, Franco LFM, Maginn EJ, Doubek G. Impact of anion shape on Li+ solvation and on transport properties for lithium–air batteries: a molecular dynamics study. Phys Chem Chem Phys 2020; 22:15842-15852. [DOI: 10.1039/d0cp00853b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here we report the influence of the anion shape over the solvation structure and transport properties over commonly employed Li–O2 electrolytes and discuss their implications for the device.
Collapse
Affiliation(s)
- Juliane Fiates
- School of Chemical Engineering
- University of Campinas
- Campinas 13083-852
- Brazil
- Department of Chemical and Biomolecular Engineering
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering
- University of Notre Dame
- Notre Dame
- USA
| | - Luís F. M. Franco
- School of Chemical Engineering
- University of Campinas
- Campinas 13083-852
- Brazil
| | - Edward J. Maginn
- Department of Chemical and Biomolecular Engineering
- University of Notre Dame
- Notre Dame
- USA
| | - Gustavo Doubek
- School of Chemical Engineering
- University of Campinas
- Campinas 13083-852
- Brazil
| |
Collapse
|
86
|
Tsimpanogiannis IN, Jamali SH, Economou IG, Vlugt TJH, Moultos OA. On the validity of the Stokes–Einstein relation for various water force fields. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1702729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ioannis N. Tsimpanogiannis
- Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH) Thermi-Thessaloniki, Greece
| | - Seyed Hossein Jamali
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | | | - Thijs J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
87
|
Celebi AT, Vlugt TJH, Moultos OA. Structural, Thermodynamic, and Transport Properties of Aqueous Reline and Ethaline Solutions from Molecular Dynamics Simulations. J Phys Chem B 2019; 123:11014-11025. [PMID: 31794220 PMCID: PMC6935864 DOI: 10.1021/acs.jpcb.9b09729] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Deep eutectic solvents (DESs) are a new generation of green solvents, which are considered an environmentally friendly alternative to ionic liquids and volatile organic compounds. The addition of controlled amounts of water to DESs has a significant effect on their microscopic structure and thus on their thermodynamic and transport properties. In this way, DESs can be modified, leading to solvents with improved characteristics. In this work, molecular dynamics (MD) simulations are performed to obtain a better understanding of the relation between the microscopic structure, molecular interactions, and thermophysical properties of aqueous reline and ethaline solutions at temperatures ranging from 303.15 to 363.15 K. For both reline and ethaline solutions, the hydrogen bond (HB) networks disappear with increasing mass fraction of water, and the intensity of radial distribution function (RDF) peaks decreases. For a mass fraction of water of 40%, most of the HBs between the compounds of reline and ethaline are broken, and DESs are fully dissolved in water. Consequently, a monotonic decrease in viscosities and an increase in self-diffusion coefficients are observed. Ionic conductivities show a nonmonotonic behavior with increasing water content. Up to 60% water mass fraction, the ionic conductivities increase with increasing water content. A further increase in the mass fraction of water decreases conductivities. For all studied systems, the HB network and the peaks of RDFs show relatively small changes for water mass fractions below 5% and beyond 40%. The MD results show that viscosities decrease with temperature, while diffusivities and ionic conductivities increase. The effect of the temperature on the structure of DES-water mixtures is negligible.
Collapse
Affiliation(s)
- Alper T Celebi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| |
Collapse
|
88
|
Yue S, Panagiotopoulos AZ. Dynamic properties of aqueous electrolyte solutions from non-polarisable, polarisable, and scaled-charge models. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1645901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shuwen Yue
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
89
|
Wu M, Wei W, Liu X, Liu K, Li S. Structure and dynamic properties of stretched water in graphene nanochannels by molecular dynamics simulation: effects of stretching extent. Phys Chem Chem Phys 2019; 21:19163-19171. [DOI: 10.1039/c9cp03981c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Water confined in nanochannels can be stretched with the variation of external pressure, leading to the more disordered microstructure and higher diffusion coefficient than bulk water.
Collapse
Affiliation(s)
- Mingbing Wu
- State Key Laboratory of Coal Combustion
- School of Energy and Power Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Wei Wei
- State Key Laboratory of Coal Combustion
- School of Energy and Power Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Xiaowei Liu
- State Key Laboratory of Coal Combustion
- School of Energy and Power Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Kang Liu
- MOE Key Laboratory of Hydrodynamic Transients
- School of Power and Mechanical Engineering
- Wuhan University
- Wuhan
- P. R. China
| | - Song Li
- State Key Laboratory of Coal Combustion
- School of Energy and Power Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| |
Collapse
|
90
|
Jamali SH, Westen TV, Moultos OA, Vlugt TJH. Optimizing Nonbonded Interactions of the OPLS Force Field for Aqueous Solutions of Carbohydrates: How to Capture Both Thermodynamics and Dynamics. J Chem Theory Comput 2018; 14:6690-6700. [PMID: 30407814 PMCID: PMC6293444 DOI: 10.1021/acs.jctc.8b00909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Knowledge on thermodynamic and transport
properties of aqueous
solutions of carbohydrates is of great interest for process and product
design in the food, pharmaceutical, and biotechnological industries.
Molecular simulation is a powerful tool to calculate these properties,
but current classical force fields cannot provide accurate estimates
for all properties of interest. The poor performance of the force
fields is mainly observed for concentrated solutions, where solute–solute
interactions are overestimated. In this study, we propose a method
to refine force fields, such that solute–solute interactions
are more accurately described. The OPLS force field combined with
the SPC/Fw water model is used as a basis. We scale the nonbonded
interaction parameters of sucrose, a disaccharide. The scaling factors
are chosen in such a way that experimental thermodynamic and transport
properties of aqueous solutions of sucrose are accurately reproduced.
Using a scaling factor of 0.8 for Lennard-Jones energy parameters
(ϵ) and a scaling factor of 0.95 for partial atomic charges
(q), we find excellent agreement between experiments
and computed liquid densities, thermodynamic factors, shear viscosities,
self-diffusion coefficients, and Fick (mutual) diffusion coefficients.
The transferability of these optimum scaling factors to other carbohydrates
is verified by computing thermodynamic and transport properties of
aqueous solutions of d-glucose, a monosaccharide. The good
agreement between computed properties and experiments suggests that
the scaled interaction parameters are transferable to other carbohydrates,
especially for concentrated solutions.
Collapse
Affiliation(s)
- Seyed Hossein Jamali
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Thijs van Westen
- Institute AMOLF , Science Park 104 , 1098XG , Amsterdam , The Netherlands.,Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , D-70569 Stuttgart , Germany
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| |
Collapse
|
91
|
Jamali SH, Hartkamp R, Bardas C, Söhl J, Vlugt TJH, Moultos OA. Shear Viscosity Computed from the Finite-Size Effects of Self-Diffusivity in Equilibrium Molecular Dynamics. J Chem Theory Comput 2018; 14:5959-5968. [PMID: 30296092 PMCID: PMC6236468 DOI: 10.1021/acs.jctc.8b00625] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A method is proposed for calculating
the shear viscosity of a liquid
from finite-size effects of self-diffusion coefficients in Molecular
Dynamics simulations. This method uses the difference in the self-diffusivities,
computed from at least two system sizes, and an analytic equation
to calculate the shear viscosity. To enable the efficient use of this
method, a set of guidelines is developed. The most efficient number
of system sizes is two and the large system is at least four times
the small system. The number of independent simulations for each system
size should be assigned in such a way that 50%–70% of the total
available computational resources are allocated to the large system.
We verified the method for
250 binary and 26 ternary Lennard-Jones systems, pure water, and an
ionic liquid ([Bmim][Tf2N]). The computed shear viscosities
are in good agreement with viscosities obtained from equilibrium Molecular
Dynamics simulations for all liquid systems far from the critical
point. Our results indicate that the proposed method is suitable for
multicomponent mixtures and highly viscous liquids. This may enable
the systematic screening of the viscosities of ionic liquids and deep
eutectic solvents.
Collapse
Affiliation(s)
- Seyed Hossein Jamali
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Remco Hartkamp
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Christos Bardas
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Jakob Söhl
- Delft Institute of Applied Mathematics , Delft University of Technology , van Mourik Broekmanweg 6 , 2628XE Delft , The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| |
Collapse
|