51
|
Endothelin-1 Induces Degeneration of Cultured Motor Neurons Through a Mechanism Mediated by Nitric Oxide and PI3K/Akt Pathway. Neurotox Res 2017; 32:58-70. [PMID: 28285347 DOI: 10.1007/s12640-017-9711-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/08/2017] [Accepted: 02/23/2017] [Indexed: 12/13/2022]
Abstract
Endothelin-1 (ET-1) is a vasoactive peptide produced by activated astrocytes and microglia and is implicated in initiating and sustaining reactive gliosis in neurodegenerative diseases. We have previously suggested that ET-1 can play a role in the pathophysiology of amyotrophic lateral sclerosis (ALS). Indeed, we reported that this peptide is abundantly expressed in reactive astrocytes in the spinal cord of SOD1-G93A mice and ALS patients and exerts a toxic effect on motor neurons (MNs) in an in vitro model of mixed spinal cord cultures enriched with reactive astrocytes. Here, we explored the possible mechanisms underlying the toxic effect of ET-1 on cultured MNs. We show that ET-1 toxicity is not directly caused by oxidative stress or activation of cyclooxygenase-2 but requires the synthesis of nitric oxide and is mediated by a reduced activation of the phosphoinositide 3-kinase pathway. Furthermore, we observed that ET-1 is also toxic for microglia, although its effect on MNs is independent of the presence of this type of glial cells. Our study confirms that ET-1 may contribute to MN death and corroborates the view that the modulation of ET-1 signaling might be a therapeutic strategy to slow down MN degeneration in ALS.
Collapse
|
52
|
Unno K, Hara A, Nakagawa A, Iguchi K, Ohshio M, Morita A, Nakamura Y. Anti-stress effects of drinking green tea with lowered caffeine and enriched theanine, epigallocatechin and arginine on psychosocial stress induced adrenal hypertrophy in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1365-1374. [PMID: 27765356 DOI: 10.1016/j.phymed.2016.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Theanine, an amino acid in tea, has significant anti-stress effects on animals and humans. However, the anti-stress effects of drinking green tea have not yet been elucidated. HYPOTHESIS/PURPOSE The present study aimed to explore anti-stress effects of green tea and roles of tea components in a mouse model of psychosocial stress. STUDY DESIGN We examined anti-stress effects of three types of green teas, theanine-rich "Gyokuro", standard "Sencha", and Sencha with lowered caffeine (low-caffeine green tea). Furthermore, the roles of tea components such as caffeine, catechins, and other amino acids in anti-stress effects were examined. METHODS To prepare low-caffeine green tea, plucked new tea leaves were treated with a hot-water spray. Mice were psychosocially stressed from a conflict among male mice under confrontational housing. Mice consumed each tea that was eluted with room temperature water ad libitum. As a marker for the stress response, adrenal hypertrophy was compared with mice that ingested water. RESULTS Caffeine was significantly lowered by spraying hot-water on tea leaves. While epigallocatechin gallate (EGCG) is the main catechin in tea leaves, epigallocatechin (EGC) was mainly infused into water at room temperature. Adrenal hypertrophy was significantly suppressed in mice that ingested theanine-rich and low-caffeine green tea that were eluted with water at room temperature. Caffeine and EGCG suppressed the anti-stress effects of theanine while EGC and arginine (Arg) retained these effects. CONCLUSION These results suggest that drinking green tea exhibits anti-stress effects, where theanine, EGC and Arg cooperatively abolish the counter-effect of caffeine and EGCG on psychosocial stress induced adrenal hypertrophy in mice.
Collapse
Affiliation(s)
- Keiko Unno
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Tea Science Center, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Ayane Hara
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Aimi Nakagawa
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazuaki Iguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Megumi Ohshio
- Department of Functional Plant Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Akio Morita
- Department of Functional Plant Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
53
|
Hami J, Hosseini M, Nezhad SV, Shahi S, Lotfi N, Ehsani H, Sadeghi A. Beneficial effects of L-arginine on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuronal degeneration in substantia nigra of Balb/c mice. Adv Biomed Res 2016; 5:140. [PMID: 27656609 PMCID: PMC5025923 DOI: 10.4103/2277-9175.187374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/09/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND L-arginine has been recently investigated and proposed to reduce neurological damage after various experimental models of neuronal cellular damage. In this study, we aim to evaluate the beneficial effects of L-arginine administration on the numerical density of dark neurons (DNs) in the substantia nigra pars compacta (SNc) of Balb/c mice subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. MATERIALS AND METHODS Male Balb/c mice were randomly divided into 4 groups (n = 7 each): MPTP only; saline only (control); MPTP + L-arginine; and L-arginine only. The animals were infused intranasally with a single intranasal administration of the proneurotoxin MPTP (1 mg/nostril). L-arginine (300 mg/kg) was administrated intraperitoneally once daily for 1-week starting from 3 days after MPTP administration. Cavalieri principle method was used to estimate the numerical density of DNs in the SNc of different studied groups. RESULTS Twenty days following MPTP administration, the number of DNs was significantly increased when compared to sham-control and L-arginine-control groups (P < 0.05). Nevertheless, our results showed that L-arginine administration significantly decreased the numerical density of DNs in SNc of mice. CONCLUSION This investigation provides new insights in experimental models of Parkinson's disease, indicating that L-arginine represents a potential treatment agent for dopaminergic neuron degeneration in SNc observed in Parkinson's disease patients.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Department of Public Health, Research Centre of Experimental Medicine, Deputy of Research and Technology, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Vafaei Nezhad
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sekineh Shahi
- Department of Biology, School of Sciences, Payam-e-Noor University, Tehran, Iran
| | - Nassim Lotfi
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Ehsani
- Student of Medicine, Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Akram Sadeghi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
54
|
Mirmiran P, Bahadoran Z, Ghasemi A, Azizi F. The Association of Dietary l-Arginine Intake and Serum Nitric Oxide Metabolites in Adults: A Population-Based Study. Nutrients 2016; 8:nu8050311. [PMID: 27213443 PMCID: PMC4882723 DOI: 10.3390/nu8050311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to investigate whether regular dietary intake of l-arginine is associated with serum nitrate + nitrite (NOx). In this cross-sectional study, 2771 men and women, who had participated in the third examination of the Tehran Lipid and Glucose Study (2006–2008), were recruited. Demographics, anthropometrics and biochemical variables were evaluated. Dietary data were collected using a validated 168-food item semi-quantitative food frequency questionnaire and dietary intake of l-arginine was calculated. To determine any association between dietary l-arginine and serum NOx, linear regression models with adjustment for potential confounders were used. Mean age of participants (39.2% men) was 45.9 ± 15.9 years. After adjustment for all potential confounding variables, a significant positive association was observed between l-arginine intake and serum NOx concentrations in the fourth quartile of l-arginine (β = 6.63, 95% CI = 4.14, 9.12, p for trend = 0.001), an association stronger in women. Further analysis, stratified by age, body mass index and hypertension status categories, showed a greater association in middle-aged and older adults (β = 9.12, 95% CI = 3.99, 13.6 and β = 12.1, 95% CI = 6.48, 17.7, respectively). l-arginine intakes were also strongly associated with serum NOx levels in overweight and obese subjects in the upper quartile (β = 10.7, 95% CI = 5.43, 16.0 and β = 11.0, 95% CI = 4.29, 17.5); a greater association was also observed between l-arginine intakes and serum NOx in non-hypertensive (HTN) compared to HTN subjects (β = 2.65, 95% CI = 2.1–3.2 vs. β = 1.25, 95% CI = −1.64–4.15). Dietary l-arginine intakes were associated to serum NOx and this association may be affected by sex, age, body mass index, and hypertension status.
Collapse
Affiliation(s)
- Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| | - Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| |
Collapse
|
55
|
Felicio T, Esmerino E, Vidal V, Cappato L, Garcia R, Cavalcanti R, Freitas M, Conte Junior C, Padilha M, Silva M, Raices R, Arellano D, Bollini H, Pollonio M, Cruz A. Physico-chemical changes during storage and sensory acceptance of low sodium probiotic Minas cheese added with arginine. Food Chem 2016; 196:628-37. [DOI: 10.1016/j.foodchem.2015.09.102] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 10/23/2022]
|
56
|
Pang R, Ali A. The Chinese approach to complementary and alternative medicine treatment for interstitial cystitis/bladder pain syndrome. Transl Androl Urol 2016; 4:653-61. [PMID: 26816867 PMCID: PMC4708546 DOI: 10.3978/j.issn.2223-4683.2015.08.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Management of interstitial cystitis/bladder pain syndrome (IC/BPS) remains a challenge due to poor understanding on its etiology. Complementary and alternative medicine (CAM), as an optional treatment, has been widely used, because no definitive conventional therapy is available. The different domain of CAM provides miscellaneous treatments for IC/BPS, which mainly include dietary modification, nutraceuticals, bladder training, biofeedback, yoga, massage, physical therapy, Qigong, traditional Chinese medicine and acupuncture. Clinical evidence has shown that each therapy can certainly benefit a portion of IC/BPS patients. However, the target patient group of each therapy has not been well studied and randomized, controlled trials are needed to further confirm the efficacy and reliability of CAM on managing IC/BPS. Despite these limitations, CAM therapeutic characteristics including non-invasive and effectiveness for specific patients allow clinicians and patients to realize multimodal and individualized therapy for IC/BPS.
Collapse
Affiliation(s)
- Ran Pang
- 1 Department of Urology, Guang An Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China ; 2 Department of Urology, Dalhousie University, Halifax, NS, Canada
| | - Abdullah Ali
- 1 Department of Urology, Guang An Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China ; 2 Department of Urology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
57
|
Hyperargininemia due to arginase I deficiency: the original patients and their natural history, and a review of the literature. Amino Acids 2015; 47:1751-62. [DOI: 10.1007/s00726-015-2032-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/13/2015] [Indexed: 12/30/2022]
|
58
|
Nasyrova RF, Ivashchenko DV, Ivanov MV, Neznanov NG. Role of nitric oxide and related molecules in schizophrenia pathogenesis: biochemical, genetic and clinical aspects. Front Physiol 2015; 6:139. [PMID: 26029110 PMCID: PMC4426711 DOI: 10.3389/fphys.2015.00139] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/18/2015] [Indexed: 12/14/2022] Open
Abstract
Currently, schizophrenia is considered a multifactorial disease. Over the past 50 years, many investigators have considered the role of toxic free radicals in the etiology of schizophrenia. This is an area of active research which is still evolving. Here, we review the recent data and current concepts on the roles of nitric oxide (NO) and related molecules in the pathogenesis of schizophrenia. NO is involved in storage, uptake and release of mediators and neurotransmitters, including glutamate, acetylcholine, noradrenaline, GABA, taurine and glycine. In addition, NO diffuses across cell membranes and activates its own extrasynaptic receptors. Further, NO is involved in peroxidation and reactive oxidative stress. Investigations reveal significant disturbances in NO levels in the brain structures (cerebellum, hypothalamus, hippocampus, striatum) and fluids of subjects with schizophrenia. Given the roles of NO in central nervous system development, these changes may result in neurodevelopmental changes associated with schizophrenia. We describe here the recent literature on NOS gene polymorphisms on schizophrenia, which all point to consistent results. We also discuss how NO may be a new target for the therapy of mental disorders. Currently there have been 2 randomized double-blind placebo-controlled trials of L-lysine as an NOS inhibitor in the CNS.
Collapse
Affiliation(s)
- Regina F Nasyrova
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| | - Dmitriy V Ivashchenko
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| | - Mikhail V Ivanov
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| | - Nikolay G Neznanov
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| |
Collapse
|
59
|
Botanical Drug Puerarin Attenuates 6-Hydroxydopamine (6-OHDA)-Induced Neurotoxicity via Upregulating Mitochondrial Enzyme Arginase-2. Mol Neurobiol 2015; 53:2200-11. [DOI: 10.1007/s12035-015-9195-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
|
60
|
Davisson RL, Bates JN, Johnson AK, Lewis SJ. Effects of intracerebroventricular injections of 5-HT on systemic vascular resistances of conscious rats. Microvasc Res 2014; 95:116-23. [PMID: 25128748 PMCID: PMC4188728 DOI: 10.1016/j.mvr.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022]
Abstract
The aims of this study were to determine (i) the effects of intracerebroventricular (i.c.v.) injections of 5-hydroxytryptamine (5-HT, 10μg) on mean arterial blood pressure (MAP), heart rate (HR) and mesenteric (MR), renal (RR) and hindquarter (HQR) vascular resistances of conscious rats, (ii) the central 5-HT receptor subtype which mediates these effects, and (iii) the role of nitric oxide (NO) in the expression of these responses. The i.c.v. injection of 5-HT had minor effects on MAP but produced a decrease in HR (-18±4%), which lasted for 20min. The i.c.v. injection of 5-HT elicited marked increases in MR (+50±7%) and reductions in HQR (-31±3%). These responses occurred promptly and lasted for 25-35min. 5-HT also produced a transient decrease in RR (-26±8% at 10min). All of these responses were prevented by the prior i.c.v. injection of the 5-HT1/5-HT2-receptor antagonist, methysergide (10μg). The intravenous injection of the NO synthesis inhibitor, L-NAME (25μmol/kg), produced a sustained pressor response, bradycardia and increases in MR, RR and HQR. Subsequent i.c.v. injection of 5-HT produced a minor pressor response (+7±2%), bradycardia (-18±3%), an increase in MR (+52±8%) but no decreases in RR or HQR. This study demonstrates that i.c.v. 5-HT differentially affects peripheral vascular resistances by activation of central 5-HT1/5-HT2-receptors. It appears that L-NAME did not interfere with the central actions of 5-HT as it did not prevent the 5-HT-induced bradycardia or mesenteric vasoconstriction. Since the 5-HT-induced falls in RR and HQR were abolished by L-NAME, it is possible that these responses are mediated by an active neurogenic process involving the release of NO within the vasculature.
Collapse
Affiliation(s)
- Robin L. Davisson
- Departments of Biomedical Sciences (College of Veterinary Medicine), Ithaca, New York, and Cell and Developmental Biology (Weil Cornell Medical College), New York, New York, USA
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, USA
| | - Alan Kim Johnson
- Departments of Psychology, Health and Human Physiology, and Pharmacology, and the Francois M. Abboud Cardiovascular Research Center, The University of lowa, Iowa City, Iowa, USA
| | - Stephen J. Lewis
- Departments of Pediatrics and Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
61
|
Walter LT, Higa GSV, Schmeltzer C, Sousa E, Kinjo ER, Rüdiger S, Hamassaki DE, Cerchiaro G, Kihara AH. Functional regulation of neuronal nitric oxide synthase expression and activity in the rat retina. Exp Neurol 2014; 261:510-7. [PMID: 25116452 DOI: 10.1016/j.expneurol.2014.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/16/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022]
Abstract
In the nervous system within physiological conditions, nitric oxide (NO) production depends on the activity of nitric oxide synthases (NOSs), and particularly on the expression of the neuronal isoform (nNOS). In the sensory systems, the role of NO is poorly understood. In this study, we identified nNOS-positive cells in the inner nuclear layer (INL) of the rat retina, with distinct characteristics such as somata size, immunolabeling level and location. Employing mathematical cluster analysis, we determined that nNOS amacrine cells are formed by two distinct populations. We next investigated the molecular identity of these cells, which did not show colocalization with calbindin (CB), choline acetyltransferase (ChAT), parvalbumin (PV) or protein kinase C (PKC), and only partial colocalization with calretinin (CR), revealing the accumulation of nNOS in specific amacrine cell populations. To access the functional, circuitry-related roles of these cells, we performed experiments after adaptation to different ambient light conditions. After 24h of dark-adaptation, we detected a subtle, yet statistically significant decrease in nNOS transcript levels, which returned to steady-state levels after 24h of normal light-dark cycle, revealing that nNOS expression is governed by ambient light conditions. Employing electron paramagnetic resonance (EPR), we demonstrated that dark-adaptation decreases NO production in the retina. Furthermore, nNOS accumulation changed in the dark-adapted retinas, with a general reduction in the inner plexiform layer. Finally, computational analysis based on clustering techniques revealed that dark-adaptation differently affected both types of nNOS-positive amacrine cells. Taken together, our data disclosed functional regulation of nNOS expression and activity, disclosing new circuitry-related roles of nNOS-positive cells. More importantly, this study indicated unsuspected roles for NO in the sensory systems, particularly related to adaptation to ambient demands.
Collapse
Affiliation(s)
- Lais Takata Walter
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
| | - Guilherme Shigueto Vilar Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | | | - Erica Sousa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
| | - Erika Reime Kinjo
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
| | - Sten Rüdiger
- Institute of Physics, Humboldt University at Berlin, Germany
| | - Dânia Emi Hamassaki
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Giselle Cerchiaro
- Núcleo de Cognição e Sistemas Complexos, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
| | - Alexandre Hiroaki Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| |
Collapse
|
62
|
Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation. J Comp Physiol B 2014; 184:835-53. [PMID: 25034132 DOI: 10.1007/s00360-014-0842-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 02/05/2023]
Abstract
Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia-reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.
Collapse
|
63
|
Lee SR, Pronto JRD, Sarankhuu BE, Ko KS, Rhee BD, Kim N, Mishchenko NP, Fedoreyev SA, Stonik VA, Han J. Acetylcholinesterase inhibitory activity of pigment echinochrome A from sea urchin Scaphechinus mirabilis. Mar Drugs 2014; 12:3560-73. [PMID: 24918454 PMCID: PMC4071590 DOI: 10.3390/md12063560] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/10/2014] [Accepted: 05/29/2014] [Indexed: 11/16/2022] Open
Abstract
Echinochrome A (EchA) is a dark-red pigment of the polyhydroxynaphthoquinone class isolated from sea urchin Scaphechinus mirabilis. Acetylcholinesterase (AChE) inhibitors are used in the treatment of various neuromuscular disorders, and are considered as strong therapeutic agents for the treatment of Alzheimer's disease (AD). Although EchA is clinically used to treat ophthalmic diseases and limit infarct formation during ischemia/ reperfusion injury, anti-AChE effect of EchA is still unknown. In this study, we investigated the anti-AChE effect of EchA in vitro. EchA and its exhausted form which lost anti-oxidant capacity did not show any significant cytotoxicy on the H9c2 and A7r5 cells. EchA inhibited AChE with an irreversible and uncompetitive mode. In addition, EchA showed reactive oxygen species scavenging activity, particularly with nitric oxide. These findings indicate new therapeutic potential for EchA in treating reduced acetylcholine-related diseases including AD and provide an insight into developing new AChE inhibitors.
Collapse
Affiliation(s)
- Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Julius Ryan D Pronto
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Bolor-Erdene Sarankhuu
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Natalia P Mishchenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Sergey A Fedoreyev
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Valentin A Stonik
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| |
Collapse
|
64
|
Possible nitric oxide modulation in the protective effects of rutin against experimental head trauma-induced cognitive deficits: behavioral, biochemical, and molecular correlates. J Surg Res 2014; 188:268-79. [PMID: 24484907 DOI: 10.1016/j.jss.2013.12.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/28/2013] [Accepted: 12/30/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Traumatic head injury is turning out to be a major cause of disability and death. Nitric oxide (NO), an intercellular messenger plays a crucial role in the pathophysiology of several neurologic disorders. Therefore, the present study was designed to investigate the effects of rutin, a well-known flavonoid against cognitive deficits and neuroinflammation associated with traumatic head injury and the probable role of NO pathway in this effect. MATERIALS AND METHODS Wistar rats were exposed to head trauma using weight drop method and kept for a postsurgical rehabilitation period of 2 wk. Later, animals were administered with rutin (20, 40, and 80 mg/kg; per oral) alone and in combination with NO modulators such as N(G)-nitro-L-arginine methyl ester and L-arginine, daily for another 2 wk. RESULTS Head injury caused impaired spatial navigation in Morris water maze test and poor retention in elevated plus maze task. Furthermore, there was a significant rise in acetylcholinesterase activity, oxidative stress, neuroinflammation (tumor necrosis factor α), and neuronal apoptosis (caspase-3) in both cortex and hippocampal regions of traumatized rat brain. Rutin significantly attenuated these behavioral, biochemical, and molecular alterations associated with head trauma. Furthermore, pretreatment of N(G)-nitro-L-arginine methyl ester (10 mg/kg, intraperitoneally), a nonspecific nitric oxide synthase inhibitor, with subeffective dose of rutin (40 mg/kg) potentiated the protective effects; however, pretreatment of L-arginine (100 mg/kg; intraperitoneally), an NO donor, reversed the effects of rutin. CONCLUSIONS The present study suggests that NO modulation could possibly be involved in the neuroprotective effects of rutin against head trauma-induced cognitive deficits, neuroinflammation, and apoptotic signaling cascade.
Collapse
|
65
|
Pitts NL, Mykles DL. Nitric oxide production and sequestration in the sinus gland of the green shore crab, Carcinus maneas. J Exp Biol 2014; 218:353-62. [DOI: 10.1242/jeb.113522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
Molting in decapod crustaceans is regulated by molt-inhibiting hormone (MIH), a neuropeptide produced in the X-organ (XO)/sinus gland (SG) complex of the eyestalk ganglia (ESG). Pulsatile release of MIH from the SG suppresses ecdysteroidogenesis by the molting gland or Y-organ (YO). The hypothesis is that nitric oxide (NO), a neuromodulator that controls neurotransmitter release at presynaptic membranes, depresses the frequency and/or amount of MIH pulses to induce molting. NO synthase (NOS) mRNA was present in Carcinus maneas ESG and other tissues and NOS protein was present in the SG. A copper based ligand (CuFL), which reacts with NO to form a highly fluorescent product (NO-FL), was used to image NO in the ESG and SG and quantify the effects of NO scavenger (1 mM cPTIO), NOS inhibitor (1 mM L-NAME), and 1 mM sodium azide (NaN3) on NO production in the SG. Preincubation with cPTIO prior to CuFL loading decreased NO-FL fluorescence ~30%; including L-NAME had no additional effect. Incubating SG with L-NAME during preincubation and loading decreased NO-FL fluorescence ~40%, indicating that over half of the NO release was not directly dependent on NOS activity. Azide, which reacts with NO-binding metal groups in proteins, reduced NO-FL fluorescence to near background levels without extensive cell death. Spectral shift analysis showed that azide displaced NO from a soluble protein in SG extract. These data suggest that the SG contains NO-binding protein(s) that sequester NO and releases it over a prolonged period. This NO release may modulate neuropeptide secretion from the axon termini in the SG.
Collapse
|