52
|
Perumal M, Marimuthu P, Chen X. Investigation into the site-specific binding interactions between chlorogenic acid and ovalbumin using multi-spectroscopic and in silico simulation studies. J Biomol Struct Dyn 2021; 40:6619-6633. [PMID: 33627053 DOI: 10.1080/07391102.2021.1886992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The binding interactions of bioactive compounds with proteins are of great importance in the food, biochemistry and pharmaceutical fields. Herein, the binding mechanisms between 5-O-caffeoylquinic acid (5-CQA) and ovalbumin (OVA) were investigated by multi-spectroscopic studies combined with docking and molecular dynamics (MD) simulations. The emission intensity of OVA was quenched by 5-CQA and Stern-Volmer analysis indicated the existence of a static suppression by OVA-5-CQA complex formation. Thermodynamic parameters revealed that the formation of complex was spontaneously driven by electrostatic and hydrogen-bonding interactions. Circle dichroism analyses showed that 5-CQA decreased the α-helix content of OVA structure from 58.05% to 54.32% upon increased OVA:5-CQA ratio to 1:3. Molecular docking results suggested 5-CQA forms hydrogen bond interactions with N88, T91, K92, N94, S98, F99, S100 and L101 residues of OVA. The experimental values were in good agreement with the calculated binding free energy values obtained by MD simulation (R2 = 0.89).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manivel Perumal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL - Biochemistry) and Pharmaceutical Science Laboratory (PSL - Pharmacy), Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
55
|
Widyastuti N, Anjani G, Almira VG, Putri SE, Pratiwi AR. Effects of the administration of brewed Robusta coffee leaves on total antioxidant status in rats with high-fat, high-fructose diet-induced metabolic syndrome. POTRAVINARSTVO 2020. [DOI: 10.5219/1350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Robusta coffee (Coffea canephora) leaves contain phytochemical compounds and have antioxidant and anti-diabetic effects. This study investigated the effect of brewed Robusta coffee leaves on the total antioxidant status in metabolic syndrome rats. Metabolic syndrome in rats was induced by high-fat-fructose diet containing pork oil (20%), cholesterol (1.5%), cholic acid (0.5%), standard feed (80%), and fructose (1 mL per 200 g BW). The animals were categorized into normal control group (K1), metabolic syndrome control group without treatment (K2), mangiferin treatment group (X1), brewed Robusta coffee leaves 0.09 g per 200 BW group (X2), brewed Robusta coffee leaves 0.18 g per 200 BW group (X3), and brewed Robusta coffee leaves 0.36 g per 200 BW group (X4). Each dose of the coffee leaves was brewed with 3.6 mL of water at 70 °C for 10 min. The intervention was administered for 28 days. There was a significant increase in the total antioxidant status (p <0.000) in all the groups. In conclusion, the administration of brewed Robusta coffee leaves increased the total antioxidant status in metabolic syndrome rats.
Collapse
|
56
|
Chen X, Ding J, Ji D, He S, Ma H. Optimization of ultrasonic-assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. J Food Sci 2020; 85:1742-1751. [PMID: 32449951 DOI: 10.1111/1750-3841.15111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 02/01/2023]
Abstract
Coffee leaves contain various bioactive compounds that are beneficial for human health. However, there are very limited researches related to the extraction of the bioactive phytochemicals from coffee leaves. In the present study, the extraction conditions for bioactive components from coffee leaves were optimized using Taguchi design and response surface methodology (RSM). Taguchi design was used to screen significant factors that affected the yield of phytochemicals including trigonelline, caffeine, chlorogenic acids, mangiferin, and rutin, total phenolic content (TPC) and antioxidant activity. Sequentially, a Box-Behnken design (BBD) was used to optimize the extraction conditions. Three factors including Liquid-to-solid (L:S) ratio, ethanol concentration, and extraction temperature that significantly affected most of the phytochemical yields and antioxidant activity were selected from the six variables using Taguchi design. The optimal extraction conditions obtained from RSM were 30.3:1 L:S ratio, 54.5% ethanol, and 80 °C when simultaneously considered four responses, including TPC, the yields of mangiferin and 5-CQA and DPPH scavenging capacity. Under the optimal conditions, the experimental results for the above four responses were 62.1 mg gallic acid/g, 4.1 mg/g, 11.4 mg/g, and 356.9 µmol Trolox/g, respectively, which were close to the predicted values. About 97% of phytochemicals can be extracted in the first two times of extraction. In conclusion, the combination of Taguchi design and response surface methodology can be successfully used to screen and optimize the significant factors that affected the bioactive components extracted from coffee leaves. PRACTICAL APPLICATION: Coffee leaves, the byproducts of coffee plants, are considered no- or low-value although it has a long history for using them as tea-like beverage and ethnomedicine by locals in the coffee plant growing countries. Bioactive components extracted from coffee leaves can be used as ingredients in functional beverages, functional food, and natural health products. These applications will add values to coffee leaves as well as increase the incomes of coffee farmers and workers.
Collapse
Affiliation(s)
- Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, 212013, P.R. China.,Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, 212013, P.R. China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Jian Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, 212013, P.R. China
| | - Dayi Ji
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, 212013, P.R. China
| | - Suqun He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, 212013, P.R. China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, 212013, P.R. China.,Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, 212013, P.R. China
| |
Collapse
|
57
|
Klingel T, Kremer JI, Gottstein V, Rajcic de Rezende T, Schwarz S, Lachenmeier DW. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020; 9:E665. [PMID: 32455549 PMCID: PMC7278860 DOI: 10.3390/foods9050665] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
The coffee plant Coffea spp. offers much more than the well-known drink made from the roasted coffee bean. During its cultivation and production, a wide variety of by-products are accrued, most of which are currently unused, thermally recycled, or used as animal feed. The aim of this review is to provide an overview of novel coffee products in the food sector and their current legal classification in the European Union (EU). For this purpose, we have reviewed the literature on the composition and safety of coffee flowers, leaves, pulp, husk, parchment, green coffee, silver skin, and spent coffee grounds. Some of these products have a history of consumption in Europe (green coffee), while others have already been used as traditional food in non-EU-member countries (coffee leaves, notification currently pending), or an application for authorization as novel food has already been submitted (husks, flour from spent coffee grounds). For the other products, toxicity and/or safety data appear to be lacking, necessitating further studies to fulfill the requirements of novel food applications.
Collapse
Affiliation(s)
- Tizian Klingel
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (T.K.); (J.I.K.); (V.G.); (T.R.d.R.)
| | - Jonathan I. Kremer
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (T.K.); (J.I.K.); (V.G.); (T.R.d.R.)
| | - Vera Gottstein
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (T.K.); (J.I.K.); (V.G.); (T.R.d.R.)
| | - Tabata Rajcic de Rezende
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (T.K.); (J.I.K.); (V.G.); (T.R.d.R.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (T.K.); (J.I.K.); (V.G.); (T.R.d.R.)
| |
Collapse
|
58
|
Chen X, Kitts DD, Ji D, Ding J. Free radical scavenging activities of phytochemical mixtures and aqueous methanolic extracts recovered from processed coffee leaves. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiumin Chen
- Department of Food Science and Engineering School of Food and Biological Engineering Jiangsu University # 301 Xuefu Road Jingkou District Zhenjiang Jiangsu Province 212013 China
| | - David D. Kitts
- Food, Nutrition, and Health University of British Columbia 2205 East Mall Vancouver BC V6T 1Z4 Canada
| | - Dayi Ji
- Department of Food Science and Engineering School of Food and Biological Engineering Jiangsu University # 301 Xuefu Road Jingkou District Zhenjiang Jiangsu Province 212013 China
| | - Jian Ding
- Department of Food Science and Engineering School of Food and Biological Engineering Jiangsu University # 301 Xuefu Road Jingkou District Zhenjiang Jiangsu Province 212013 China
| |
Collapse
|
59
|
Affiliation(s)
- Jianbo Xiao
- a Department of Food Science and Engineering , Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University , Guangzhou , China
| | - Weibin Bai
- a Department of Food Science and Engineering , Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University , Guangzhou , China
| |
Collapse
|