51
|
Duong VA, Nguyen TTL, Maeng HJ. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules 2020; 25:E4781. [PMID: 33081021 PMCID: PMC7587569 DOI: 10.3390/molecules25204781] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 02/01/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as potential drug delivery systems for various applications that are produced from physiological, biodegradable, and biocompatible lipids. The methods used to produce SLNs and NLCs have been well investigated and reviewed, but solvent injection method provides an alternative means of preparing these drug carriers. The advantages of solvent injection method include a fast production process, easiness of handling, and applicability in many laboratories without requirement of complicated instruments. The effects of formulations and process parameters of this method on the characteristics of the produced SLNs and NLCs have been investigated in several studies. This review describes the methods currently used to prepare SLNs and NLCs with focus on solvent injection method. We summarize recent development in SLNs and NLCs production using this technique. In addition, the effects of solvent injection process parameters on SLNs and NLCs characteristics are discussed.
Collapse
Affiliation(s)
- Van-An Duong
- Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
52
|
Karamchedu S, Tunki L, Kulhari H, Pooja D. Morin hydrate loaded solid lipid nanoparticles: Characterization, stability, anticancer activity, and bioavailability. Chem Phys Lipids 2020; 233:104988. [PMID: 33035545 DOI: 10.1016/j.chemphyslip.2020.104988] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023]
Abstract
Nanotechnology has come up as a protean field integrating concepts of alternate drug delivery systems using nanocarriers. The idea of encapsulating a drug molecule into a colloidal carrier like solid lipid nanoparticle has been a promising approach for development of nanomedicines. In this research work, a hydrophobic, natural, and an anticancer bioflavonoid, morin hydrate (MH) was encapsulated into solid lipid nanoparticles to overcome the issues of its poor aqueous solubility and low oral bioavailability. The prepared morin hydrate loaded solid lipid nanoparticles (MSN) were characterized by DLS, FTIR, and DSC analysis. The MSN showed nanoscale size, good steric stability, and release in simulated intestinal fluid. The in-vitro anticancer studies against human cervical cancer cells revealed the higher cytotoxicity of encapsulated MH than free or pure MH. MSN also demonstrated a significant improvement in pharmacokinetics of encapsulated MH.
Collapse
Affiliation(s)
- Swathi Karamchedu
- Department of Bioanalytical Sciences, Ramnarain Ruia College, Mumbai, 400019, India
| | - Lakshmi Tunki
- The Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India.
| | - Deep Pooja
- The Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, Melbourne, 3000, Australia.
| |
Collapse
|
54
|
Shahabadi N, Razlansari M, Khorshidi A, Zhaleh H. Investigation of controlled release properties and anticancer effect of folic acid conjugated magnetic core–shell nanoparticles as a dual responsive drug delivery system on A-549 and A-431 cancer cell lines. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04205-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
55
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
56
|
Alhakamy NA, Fahmy UA, Badr-Eldin SM, Ahmed OAA, Asfour HZ, Aldawsari HM, Algandaby MM, Eid BG, Abdel-Naim AB, Awan ZA, Alruwaili NK, Mohamed AI. Optimized Icariin Phytosomes Exhibit Enhanced Cytotoxicity and Apoptosis-Inducing Activities in Ovarian Cancer Cells. Pharmaceutics 2020; 12:E346. [PMID: 32290412 PMCID: PMC7238269 DOI: 10.3390/pharmaceutics12040346] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Icariin (ICA) is a flavonol glycoside that has pleiotropic pharmacological actions. It has cytotoxic effects against ovarian cancer cells and increases their chemosensitivity to chemotherapeutic drugs. Phytosomes are identified for their potential in drug delivery of cytotoxic agents. Thus, the purpose of this study was to determine the potential enhancement of ICA cytotoxicity activity in OVCAR-3 ovarian cancer cells via its formulation in phytosomes. ICA-phytosomal formulation was optimized using a Box-Behnken design. Particle size, shape, and in vitro drug release were used to characterize the optimized formula. The optimized formulation exhibited enhanced in vitro drug release. ICA-phytosomes exhibited enhanced cytotoxicity against ovarian cancer cells. Cell cycle analysis indicated accumulation of cells challenged with ICA-phytosomes in G2/M and pre-G1 phases. Staining of cells with annexin V indicated significant elevation of percentage cells with early and late apoptosis as well as total cell death. In addition, the formulation significantly disturbed mitochondrial membrane potential and cellular content of caspase 3. In addition, intracellular release of reactive oxygen species (ROS) was enhanced by ICA-phytosomes. In conclusion, phytosome formulation of ICA significantly potentiates its cytotoxic activities against OVCAR-3 cells. This is mediated, at least partly, by enhanced ICA cellular permeation, apoptosis, and ROS.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.); (H.M.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.); (H.M.A.)
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.); (H.M.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.); (H.M.A.)
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.); (H.M.A.)
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21579, Saudi Arabia;
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, Faculty of Pharmacy, Jouf University, Skaka 2014, Saudi Arabia;
| | - Amir I. Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Military Medical Academy, Cairo 11757, Egypt;
| |
Collapse
|