Docosahexaenoic Acid Inhibits PTP1B Phosphatase and the Viability of MCF-7 Breast Cancer Cells.
Nutrients 2019;
11:nu11112554. [PMID:
31652764 PMCID:
PMC6893741 DOI:
10.3390/nu11112554]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND
Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid compound present in deep water fishes and dietary supplements, with a wide spectrum of potential health benefits, ranging from neurological to anti-inflammatory.
METHODS
Due to the fact that DHA is considered a breast cancer risk reducer, we examined the impact of DHA on MCF-7 breast cancer cells' viability and its inhibitory properties on protein tyrosine phosphatase 1B (PTP1B), a pro-oncogenic phosphatase.
RESULTS
We found that DHA is able to lower both the enzymatic activity of PTP1B phosphatase and the viability of MCF-7 breast cancer cells. We showed that unsaturated DHA possesses a significantly higher inhibitory activity toward PTP1B in comparison to similar fatty acids. We also performed a computational analysis of DHA binding to PTP1B and discovered that it is able to bind to an allosteric binding site.
CONCLUSIONS
Utilizing both a recombinant enzyme and cellular models, we demonstrated that DHA can be considered a potential pharmacological agent for the prevention of breast cancer.
Collapse