Narasimhan B, Sharma D, Kumar P, Yogeeswari P, Sriram D. Synthesis, antimicrobial and antimycobacterial evaluation of [2-(substituted phenyl)-imidazol-1-yl]-pyridin-3-yl-methanones.
J Enzyme Inhib Med Chem 2011;
26:720-7. [PMID:
21250824 DOI:
10.3109/14756366.2010.548331]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A series of [2-(substituted phenyl)-imidazol-1-yl]-pyridin-3-yl-methanones (1-11) were synthesized and screened for their antimicrobial and antimycobacterial activities. Further, a series of [2-(substituted phenyl)-benzimidazol-1-yl]-pyridin-3-yl-methanones (12-20) reported in our earlier study was also screened for their antimycobacterial activity. The antimycobacterial activity results indicated that [2-(4-Nitro-phenyl)-imidazol-1-yl]-pyridin-3-yl-methanone (8, minimum inhibitory concentration [MIC] = 3.13 µg) was equipotent as standard drug ciprofloxacin and [2-(4-Nitro-phenyl)-benzimidazol-1-yl]-pyridin-3-yl-methanone (16, MIC = 1.56 µg) was equipotent as standard drug ethambutol. The results of antimicrobial screening demonstrated that 2-[1-(Pyridine-3-carbonyl)-1H-imidazol-2-yl]-benzoic acid (compound 11, MIC = 0.002 µg) was two times more effective than standard drug ciprofloxacin (MIC = 0.004 µg) against tested bacterial strains and [2-(2,5-Dimethyl-phenyl)-imidazol-1-yl]-pyridin-3-yl-methanone (compound 3, MIC = 0.005 µg) was equipotent to the reference compound, fluconazole against tested fungal strains.
Collapse