Lightfoot G, Kennedy V. Cortical Electric Response Audiometry Hearing Threshold Estimation: Accuracy, Speed, and the Effects of Stimulus Presentation Features.
Ear Hear 2006;
27:443-56. [PMID:
16957496 DOI:
10.1097/01.aud.0000233902.53432.48]
[Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES
A number of stimulus presentation features of the tone burst-evoked N1-P2 cortical response were investigated to identify any advantage over simple stimulation when the test is used for hearing threshold estimation. The speed of establishing objective thresholds at 1, 3, and 8 kHz in both ears was also measured in what was designed to be an efficient test protocol, together with the precision of the threshold estimates with reference to subjects' conventional audiograms.
DESIGN
Twenty-four volunteer subjects were recruited and tested by both behavioral and electrophysiological methods. A low-intensity, 3-kHz stimulus was used when the stimulus features were studied. The parameter was the N1-P2 amplitude.
RESULTS
Changing the side of presentation (randomly or by alternating ears), varying the interstimulus interval and inserting a 10-second recovery period midway though an averaging run had no demonstrable effect on response amplitude, both individually or in combination, contrary to earlier reports. Establishing the 6 threshold estimates took an average 20.6 minutes. The mean error in the N1-P2 threshold estimate was 6.5 dB, with no significant effect of frequency. After correcting for this bias, 94% of individual threshold estimates were within 15 dB of the behavioral threshold and 80% were within 10 dB.
CONCLUSIONS
This study suggests that cortical electric response audiometry has a performance that is as good as or better than the auditory brain stem response for threshold estimation in adults and that sophisticated stimulation techniques do not appear to be required. An efficient test protocol that automates many laborious tasks reduces the test time to less than half that previously reported in the literature for this response.
Collapse