Vijayaraghavalu S, Labhasetwar V. Efficacy of decitabine-loaded nanogels in overcoming cancer drug resistance is mediated via sustained DNA methyltransferase 1 (DNMT1) depletion.
Cancer Lett 2013;
331:122-9. [PMID:
23305699 DOI:
10.1016/j.canlet.2012.12.009]
[Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 11/30/2022]
Abstract
DNA methyltransferase 1 (DNMT1) promotes DNA methylation to maintain cancer drug resistance. The epigenetic drug, decitabine (DAC) is a potent hypomethylating agent, but its effect is transient because of its instability. We tested the efficacy of DAC-loaded nanogels in doxorubicin-resistant breast cancer cells, DAC-resistant melanoma cells, and leukemia cells. DAC in nanogel sustained DNMT1 depletion, prolonged cell arrest in the G2/M cell-cycle phase, and significantly enhanced antiproliferative effect of DAC. The efficacy of DAC-loaded nanogels was more significant in resistant than sensitive cells. Our data suggest that effective delivery of DAC and prolonged DNMT1 depletion are critical to overcoming drug resistance.
Collapse