51
|
Yan D, Xue Z, Li S, Zhong C. Comparison of cytotoxicity of Ag/ZnO and Ag@ZnO nanocomplexes to human umbilical vein endothelial cells in vitro. J Appl Toxicol 2020; 41:811-819. [PMID: 33314238 DOI: 10.1002/jat.4125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/01/2023]
Abstract
Novel metal and metal oxide-based nanocomplexes are being developed due to their superior properties compared with nanoparticles (NPs) based on single composition. In this study, we synthesized Ag-coated ZnO (Ag/ZnO) and Ag-doped ZnO (Ag@ZnO) NPs. The cytotoxicity and mechanisms associated with the synthesized NPs were investigated to understand the influence of Ag positions on biocompatibility of the NPs. After exposure to human umbilical vein endothelial cells (HUVECs), Ag/ZnO, Ag@ZnO, and ZnO NPs all significantly induced cytotoxicity, but the cytotoxic effects of Ag/ZnO and Ag@ZnO NPs were more modest in comparison with ZnO NPs. At cytotoxic concentrations, all NPs significantly induced intracellular Zn ions, which suggested a role of excessive Zn ions on cytotoxicity of NPs. All types of NPs significantly induced the expression of endoplasmic reticulum (ER) stress genes including DNA damage-inducible transcript 3 (DDIT3), X-box binding protein 1 (XBP-1), and ER to nucleus signaling 1 (ERN1), but Ag/ZnO and Ag@ZnO NPs were less effective to induce DDIT3 and XBP-1 expression compared with ZnO NPs. Not surprisingly, only ZnO NPs significantly induced the expression of caspase 3. Combined, the results from this study showed that Ag/ZnO and Ag@ZnO NPs were less cytotoxic and less potent to induce ER stress gene expression compared with ZnO NPs, but there were no significant differences between Ag/ZnO and Ag@ZnO NPs. Our results may provide novel understanding about the biocompatibility of Ag-ZnO nanocomplexes.
Collapse
Affiliation(s)
- Dejian Yan
- Institute of Advanced Materials, North China Electric Power University, Beijing, China
| | - Zhiyong Xue
- Institute of Advanced Materials, North China Electric Power University, Beijing, China
| | - Shuang Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Cheng Zhong
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
52
|
Zhu P, Zhang T, Li J, Ma J, Ouyang X, Zhao X, Xu M, Wang D, Xu Q. Near-infrared emission Cu, N-doped carbon dots for human umbilical vein endothelial cell labeling and their biocompatibility in vitro. J Appl Toxicol 2020; 41:789-798. [PMID: 33269515 DOI: 10.1002/jat.4119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023]
Abstract
Quantum dots (QDs) are luminescent semiconductor nanomaterials (NMs) with various biomedical applications, but the high toxicity associated with traditional QDs, such as Cd-based QDs, limits their uses in biomedicine. As such, the development of biocompatible metal-free QDs has gained extensive research interests. In this study, we synthesized near-infrared emission Cu, N-doped carbon dots (CDs) with optimal emission at 640 nm and a fluorescence quantum yield of 27.1% (in N,N-dimethylformamide [DMF]) by solvothermal method using o-phenylenediamine and copper acetate monohydrate. We thoroughly characterized the CDs and showed that they were highly fluorescent and stable under different conditions, although in highly acidic (pH = 1-2) or alkaline (pH = 12-13) solutions, a redshift or blueshift of fluorescence emission peak of Cu, N-doped CDs was also observed. When exposed to human umbilical vein endothelial cells (HUVECs), Cu, N-doped CDs only significantly induced cytotoxicity at very high concentrations (100 or 200 μg/ml), but their cytotoxicity appeared to be comparable with carbon black (CB) nanoparticles (NPs) at the same mass concentrations. As the mechanisms, 200 μg/ml Cu, N-doped CDs and CB NPs promoted endoplasmic reticulum (ER) stress proteins IRE1α and chop, leading to increased cleaved caspase 3/pro-caspase 3 ratio, but CB NPs were more effective. At noncytotoxic concentration (50 μg/ml), Cu, N-doped CDs successfully labeled HUVECs. In summary, we successfully prepared highly fluorescent and relatively biocompatible CDs to label HUVECs in vitro.
Collapse
Affiliation(s)
- Peide Zhu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Ting Zhang
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Jianxiong Li
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Junfei Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Xiangcheng Ouyang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Xuelin Zhao
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Meng Xu
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Deqing Wang
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| |
Collapse
|
53
|
Cheng X, Guo H, Xian Y, Xie X. Changes of lipid profiles in human umbilical vein endothelial cells exposed to zirconia nanoparticles with or without the presence of free fatty acids. J Appl Toxicol 2020; 41:765-774. [PMID: 33222186 DOI: 10.1002/jat.4114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Xiangjun Cheng
- Department of Orthopaedics The Second Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| | - Hao Guo
- Testing Department Chongqing Institute of Forensic Science Chongqing People's Republic of China
| | - Youqi Xian
- Application Department Thermo Fisher Scientific Chengdu People's Republic of China
| | - Xiaowei Xie
- Department of Orthopaedics The Second Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| |
Collapse
|