51
|
Liu C, Choi H, Johnson ZI, Tian J, Shapiro IM, Risbud MV. Lack of evidence for involvement of TonEBP and hyperosmotic stimulus in induction of autophagy in the nucleus pulposus. Sci Rep 2017; 7:4543. [PMID: 28674405 PMCID: PMC5495809 DOI: 10.1038/s41598-017-04876-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/16/2017] [Indexed: 12/04/2022] Open
Abstract
Nucleus pulposus (NP) cells reside in a physiologically hyperosmotic environment within the intervertebral disc. TonEBP/NFAT5 is an osmo-sensitive transcription factor that controls expression of genes critical for cell survival under hyperosmotic conditions. A recent report on NP and studies of other cell types have shown that hyperosmolarity triggers autophagy. However, little is known whether such autophagy induction occurs through TonEBP. The goal of this study was to investigate the role of TonEBP in hyperosmolarity-dependent autophagy in NP. Loss-of-function studies showed that autophagy in NP cells was not TonEBP-dependent; hyperosmolarity did not upregulate autophagy as previously reported. NP tissue of haploinsufficient TonEBP mice showed normal pattern of LC3 staining. NP cells did not increase LC3-II or LC3-positive puncta under hyperosmotic conditions. Bafilomycin-A1 treatment and tandem mCherry-EGFP-LC3B reporter transfection demonstrated that the autophagic flux was unaffected by hyperosmolarity. Even under serum-free conditions, NP cells did not induce autophagy with increasing osmolarity. Hyperosmolarity did not change the phosphorylation of ULK1 by mTOR and AMPK. An ex vivo disc organ culture study supported that extracellular hyperosmolarity plays no role in promoting autophagy in the NP. We conclude that hyperosmolarity does not play a role in autophagy induction in NP cells.
Collapse
Affiliation(s)
- Chao Liu
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedics, The Central Hospital of Songjiang District, Shanghai, China
| | - Hyowon Choi
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zariel I Johnson
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jiwei Tian
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Irving M Shapiro
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
52
|
Schutt KL, Moseley JB. Transient activation of fission yeast AMPK is required for cell proliferation during osmotic stress. Mol Biol Cell 2017; 28:1804-1814. [PMID: 28515144 PMCID: PMC5491188 DOI: 10.1091/mbc.e17-04-0235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023] Open
Abstract
Transient activation of the cellular energy sensor AMPK during osmotic stress requires its energy-sensing subunit. Cellular ATP levels decrease during osmotic stress, which triggers energy stress, which in turn requires dynamic activation of AMPK. The heterotrimeric kinase AMPK acts as an energy sensor to coordinate cell metabolism with environmental status in species from yeast through humans. Low intracellular ATP leads to AMPK activation through phosphorylation of the activation loop within the catalytic subunit. Other environmental stresses also activate AMPK, but it is unclear whether cellular energy status affects AMPK activation under these conditions. Fission yeast AMPK catalytic subunit Ssp2 is phosphorylated at Thr-189 by the upstream kinase Ssp1 in low-glucose conditions, similar to other systems. Here we find that hyperosmotic stress induces strong phosphorylation of Ssp2-T189 by Ssp1. Ssp2-pT189 during osmotic stress is transient and leads to transient regulation of AMPK targets, unlike sustained activation by low glucose. Cells lacking this activation mechanism fail to proliferate after hyperosmotic stress. Activation during osmotic stress requires energy sensing by AMPK heterotrimer, and osmotic stress leads to decreased intracellular ATP levels. We observed mitochondrial fission during osmotic stress, but blocking fission did not affect AMPK activation. Stress-activated kinases Sty1 and Pmk1 did not promote AMPK activation but contributed to subsequent inactivation. Our results show that osmotic stress induces transient energy stress, and AMPK activation allows cells to manage this energy stress for proliferation in new osmotic states.
Collapse
Affiliation(s)
- Katherine L Schutt
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B Moseley
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
53
|
Sahni S, Bae DH, Jansson PJ, Richardson DR. The mechanistic role of chemically diverse metal ions in the induction of autophagy. Pharmacol Res 2017; 119:118-127. [DOI: 10.1016/j.phrs.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
54
|
RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death. Apoptosis 2017; 22:626-638. [DOI: 10.1007/s10495-017-1358-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Jiang LB, Meng DH, Lee SM, Liu SH, Xu QT, Wang Y, Zhang J. Dihydroartemisinin inhibits catabolism in rat chondrocytes by activating autophagy via inhibition of the NF-κB pathway. Sci Rep 2016; 6:38979. [PMID: 27941926 PMCID: PMC5150254 DOI: 10.1038/srep38979] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/16/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoarthritis is a disease with inflammatory and catabolic imbalance in cartilage. Dihydroartemisinin (DHA), a natural and safe anti-malarial agent, has been reported to inhibit inflammation, but its effects on chondrocytes have yet to be elucidated. We investigated the effects of DHA on catabolism in chondrocytes. Viability of SD rats chondrocytes was analyzed. Autophagy levels were determined via expression of autophagic markers LC3 and ATG5, GFP-LC3 analysis, acridine orange staining, and electron microscopy. ATG5 siRNA induced autophagic inhibition. Catabolic gene and chemokine expression was evaluated using qPCR. The NF-κB inhibitor SM7368 and p65 over-expression were used to analyze the role of NF-κB pathway in autophagic activation. A concentration of 1 μM DHA without cytotoxicity increased LC3-II and ATG5 levels as well as autophagosomal numbers in chondrocytes. DHA inhibited TNF-α-induced expression of MMP-3 and -9, ADAMTS5, CCL-2 and -5, and CXCL1, which was reversed by autophagic inhibition. TNF-α-stimulated nuclear translocation and degradation of the p65 and IκBα proteins, respectively, were attenuated in DHA-treated chondrocytes. NF-κB inhibition activated autophagy in TNF-α-treated chondrocytes, but p65 over-expression reduced the autophagic response to DHA. These results indicate that DHA might suppress the levels of catabolic and inflammatory factors in chondrocytes by promoting autophagy via NF-κB pathway inhibition.
Collapse
Affiliation(s)
- Li-Bo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - De-Hua Meng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Soo-Min Lee
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu-Hao Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qin-Tong Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
56
|
Borodkina AV, Shatrova AN, Deryabin PI, Griukova AA, Abushik PA, Antonov SM, Nikolsky NN, Burova EB. Calcium alterations signal either to senescence or to autophagy induction in stem cells upon oxidative stress. Aging (Albany NY) 2016; 8:3400-3418. [PMID: 27941214 PMCID: PMC5270676 DOI: 10.18632/aging.101130] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023]
Abstract
Intracellular calcium ([Ca2+]i) has been reported to play an important role in autophagy, apoptosis and necrosis, however, a little is known about its impact in senescence. Here we investigated [Ca2+]i contribution to oxidative stress-induced senescence of human endometrium-derived stem cells (hMESCs). In hMESCs sublethal H2O2-treatment resulted in a rapid calcium release from intracellular stores mediated by the activation of PLC/IP3/IP3R pathway. Notably, further senescence development was accompanied by persistently elevated [Ca2+]i levels. In H2O2-treated hMESCs, [Ca2+]i chelation by BAPTA-AM (BAPTA) was sufficient to prevent the expansion of the senescence phenotype, to decrease endogenous reactive oxygen species levels, to avoid G0/G1 cell cycle arrest, and finally to retain proliferation. Particularly, loading with BAPTA attenuated phosphorylation of the main DNA damage response members, including ATM, 53BP1 and H2A.X and reduced activation of the p53/p21/Rb pathway in H2O2-stimulated cells. Next, we revealed that BAPTA induced an early onset of AMPK-dependent autophagy in H2O2-treated cells as confirmed by both the phosphorylation status of AMPK/mTORC1 pathway and the dynamics of the LC3 lipidization. Summarizing the obtained data we can assume that calcium chelation is able to trigger short-term autophagy and to prevent the premature senescence of hMESCs under oxidative stress.
Collapse
Affiliation(s)
- Aleksandra V Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Alla N Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Pavel I Deryabin
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Anastasiia A Griukova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Polina A Abushik
- Laboratory of Comparative Neurophysiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Sergei M Antonov
- Laboratory of Comparative Neurophysiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Nikolay N Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Elena B Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
57
|
Abstract
The with-no-lysine (K) (WNK) kinases are an atypical family of protein kinases that regulate ion transport across cell membranes. Mutations that result in their overexpression cause hypertension-related disorders in humans. Of the four mammalian WNKs, only WNK1 is expressed throughout the body. We report that WNK1 inhibits autophagy, an intracellular degradation pathway implicated in several human diseases. Using small-interfering RNA-mediated WNK1 knockdown, we show autophagosome formation and autophagic flux are accelerated. In cells with reduced WNK1, basal and starvation-induced autophagy is increased. We also show that depletion of WNK1 stimulates focal class III phosphatidylinositol 3-kinase complex (PI3KC3) activity, which is required to induce autophagy. Depletion of WNK1 increases the expression of the PI3KC3 upstream regulator unc-51-like kinase 1 (ULK1), its phosphorylation, and activation of the kinase upstream of ULK1, the AMP-activated protein kinase. In addition, we show that the N-terminal region of WNK1 binds to the UV radiation resistance-associated gene (UVRAG) in vitro and WNK1 partially colocalizes with UVRAG, a component of a PI3KC3 complex. This colocalization decreases upon starvation of cells. Depletion of the SPS/STE20-related proline-alanine-rich kinase, a WNK1-activated enzyme, also induces autophagy in nutrient-replete or -starved conditions, but depletion of the related kinase and WNK1 substrate, oxidative stress responsive 1, does not. These results indicate that WNK1 inhibits autophagy by multiple mechanisms.
Collapse
|
58
|
Tris (1,3-dichloro-2-propyl) phosphate-induced apoptotic signaling pathways in SH-SY5Y neuroblastoma cells. Neurotoxicology 2016; 58:1-10. [PMID: 27816613 DOI: 10.1016/j.neuro.2016.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Abstract
Tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP, also known as TDCPP), an extensively used flame retardant, is frequently detected in the environment and biota. Recent studies have shown that TDCIPP has neurotoxic effects. In this study, we determined the mechanisms of TDCIPP-induced neurotoxicity in human neuroblastoma (SH-SY5Y) cells. By using morphological examination, flow cytometry, and mitochondrial membrane potential (ΔYm) measurement, we confirmed that exposure to TDCIPP caused apoptosis accompanied by the activation of apoptosis-related genes (e.g. Bax and Bcl-2) and caspase 3 protein in SH-SY5Y cells. Increased reactive oxygen species (ROS) formation and intracellular calcium ions ([Ca2+]i) were also observed in TDCIPP-treated SH-SY5Y cells. Exposure to TDCIPP led to the activation of protein markers of endoplasmic reticulum (ER) stress, including eukaryotic translation initiation factor 2a subunit (p-EIF2a), activation transcription factor (ATF4), glucose-regulated protein (GRP78), and the proapoptotic factor C/EBP homologous protein (CHOP). To determine the role of the ER in apoptosis, phenyl butyric acid (PBA), an ER stress inhibitor, was applied. Treatment with PBA effectively attenuated TDCIPP-induced ER stress and protected against apoptotic death in SH-SY5Y cells by inhibition of Bax expression and promotion of Bcl-2 expression. Furthermore, we found that pretreatment of the cells with the ROS scavenger N-acetyl cysteine (NAC) inhibited the ER stress response and prevented apoptosis. The combination of PBA and NAC pretreatment could further prevent TDCIPP induced ER-stress and apoptotic death compared with PBA or NAC pretreatment alone. Thus, in the present study, we demonstrated that TDCIPP induces cytotoxicity through a ROS-dependent mechanism involving ER stress and activation of mitochondrial apoptotic pathways in SH-SY5Y cells.
Collapse
|
59
|
Liu L, Pan Y, Song Y, Su X, Ke R, Yang L, Gao L, Li M. Activation of AMPK α2 inhibits airway smooth muscle cells proliferation. Eur J Pharmacol 2016; 791:235-243. [PMID: 27600020 DOI: 10.1016/j.ejphar.2016.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022]
Abstract
The aims of the present study were to examine the effect of adenosine monophosphate-activated protein kinase (AMPK) activation on airway smooth muscle cells (ASMCs) proliferation and to address its potential mechanisms. Platelet derived growth factor (PDGF) activated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, and this in turn up-regulated S-phase kinase-associated protein 2 (Skp2) and consequently reduced cyclin dependent kinase inhibitor 1B (p27) leading to ASMCs proliferation. Pre-incubation of cells with metformin, an AMPK activator, blocked PDGF-induced activation of mTOR and its downstream targets changes of Skp2 and p27 without changing Akt phosphorylation and inhibited ASMCs proliferation. Transfection of ASMCs with AMPK α2-specific small interfering RNA (siRNA) reversed the effect of metformin on mTOR phosphorylation, Skp2 and p27 protein expression and cell proliferation. Our study suggests that activation of AMPK, particularly AMPK α2, negatively regulates mTOR activity to suppress ASMCs proliferation and therefore has a potential value in the prevention and treatment of asthma by negatively modulating airway remodeling.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Yang Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Xiaofan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Rui Ke
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
60
|
Jiang LB, Lee S, Wang Y, Xu QT, Meng DH, Zhang J. Adipose-derived stem cells induce autophagic activation and inhibit catabolic response to pro-inflammatory cytokines in rat chondrocytes. Osteoarthritis Cartilage 2016; 24:1071-81. [PMID: 26778531 DOI: 10.1016/j.joca.2015.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/18/2015] [Accepted: 12/27/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Adipose-derived stem cells (ADSCs) have been demonstrated to have an anti-apoptosis effect on chondrocytes; However, their effect on autophagic activation remains unclear. We sought to explore whether ADSCs can activate autophagy and inhibit IL-1β- and lipopolysaccharide (LPS)-induced catabolism in chondrocytes. METHODS ADSCs and chondrocytes were collected from SD rats. The biologic characteristics of ADSCs were analyzed by flow cytometric analysis, Oil red O and Alizarin Red staining. Autophagic level and autophagic flux were revealed by Western blotting for LC3-II and SQSTM1/P62, MDC (monodansylcadaverine) staining and mRFP-GFP-LC3 analysis. The mTOR pathway was investigated by Western blotting for p-mTOR. The mRNA level of matrix metalloproteinases (MMPs) and thrombospondin motifs (ADAMTSs) was detected by real-time PCR. RESULTS The typical surface markers and differentiation potentials of ADSCs were proved. ADSCs enhanced the expression of LC3-II/LC3-I and reduced SQSTM1 levels in IL-1β-induced chondrocytes after 24 and 48 h co-culturing and in LPS-induced chondrocytes after 48 h co-culturing respectively. mRFP-GFP-LC3 analysis suggested that autophagosomes and autolysosomes were formed earlier in IL-1β-treated chondrocytes than in LPS-treated chondrocytes. Bafilomycin A1 treatment further increased the LC3-II/LC3-I level in chondrocytes in co-culture with ADSCs. The mTOR pathway was inhibited in the chondrocytes in co-culture with ADSCs. Finally, ADSCs inhibited the increase of MMPs and ADAMTSs in chondrocytes induced by IL-1β and LPS. CONCLUSIONS ADSCs seem able to activate autophagy and inhibit catabolism in chondrocytes in an inflammation environment, and the mTOR pathway might be involved in the autophagy activation.
Collapse
Affiliation(s)
- Li-Bo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Soomin Lee
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qin-Tong Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - De-Hua Meng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
61
|
Zhang SJ, Yang W, Wang C, He WS, Deng HY, Yan YG, Zhang J, Xiang YX, Wang WJ. Autophagy: A double-edged sword in intervertebral disk degeneration. Clin Chim Acta 2016; 457:27-35. [PMID: 27018178 DOI: 10.1016/j.cca.2016.03.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Autophagy is a homeostatic mechanism through which intracellular damaged organelles and proteins are degraded and recycled in response to increased metabolic demands or stresses. Although primarily cytoprotective, dysfunction of autophagy is often associated with many degenerative diseases, including intervertebral disc (IVD) degeneration (IDD). As a main contributing factor to low back pain, IDD is the pathological basis for various debilitating spinal diseases. Either higher or lower levels of autophagy are observed in degenerative IVD cells. Despite the precise role of autophagy in disc degeneration that is still controversial, with difference from protection to aggravation, targeting autophagy has shown promise for mitigating disc degeneration. In the current review, we summarize the changes of autophagy in degenerative IVD cells and mainly discuss the relationship between autophagy and IDD. With continued efforts, modulation of the autophagic process could be a potential and attractive therapeutic strategy for degenerative disc disease.
Collapse
Affiliation(s)
- Shu-Jun Zhang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wei Yang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Si He
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Hai-Yang Deng
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yong-Xiao Xiang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Jun Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
62
|
Jin Y, Bai Y, Ni H, Qiang L, Ye L, Shan Y, Zhou M. Activation of autophagy through calcium-dependent AMPK/mTOR and PKCθ pathway causes activation of rat hepatic stellate cells under hypoxic stress. FEBS Lett 2016; 590:672-82. [PMID: 26848942 DOI: 10.1002/1873-3468.12090] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/15/2016] [Accepted: 01/29/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Yuepeng Jin
- Department of Surgery; The First Affiliated Hospital; Wenzhou Medical University; China
| | | | - Haizhen Ni
- Department of Surgery; The First Affiliated Hospital; Wenzhou Medical University; China
| | - Li Qiang
- Wenzhou Medical University; China
| | - Lechi Ye
- Department of Oncological Surgery; The First Affiliated Hospital; Wenzhou Medical University; China
| | - Yunfeng Shan
- Department of Surgery; The First Affiliated Hospital; Wenzhou Medical University; China
| | - Mengtao Zhou
- Department of Surgery; The First Affiliated Hospital; Wenzhou Medical University; China
| |
Collapse
|
63
|
Yang L, Sui W, Li Y, Qi X, Wang Y, Zhou Q, Gao H. Substance P Inhibits Hyperosmotic Stress-Induced Apoptosis in Corneal Epithelial Cells through the Mechanism of Akt Activation and Reactive Oxygen Species Scavenging via the Neurokinin-1 Receptor. PLoS One 2016; 11:e0149865. [PMID: 26901348 PMCID: PMC4762577 DOI: 10.1371/journal.pone.0149865] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/06/2016] [Indexed: 11/29/2022] Open
Abstract
Hyperosmolarity has been recognized as an important pathological factor in dry eye leading to ocular discomfort and damage. As one of the major neuropeptides of corneal innervation, substance P (SP) has been shown to possess anti-apoptotic effects in various cells. The aim of this study was to determine the capacity and mechanism of SP against hyperosmotic stress-induced apoptosis in cultured corneal epithelial cells. The cells were exposed to hyperosmotic stress by the addition of high glucose in the presence or absence of SP. The results showed that SP inhibited hyperosmotic stress-induced apoptosis of mouse corneal epithelial cells. Moreover, SP promoted the recovery of phosphorylated Akt level, mitochondrial membrane potential, Ca2+ contents, intracellular reactive oxygen species (ROS) and glutathione levels that impaired by hyperosmotic stress. However, the antiapoptotic capacity of SP was partially suppressed by Akt inhibitor or glutathione depleting agent, while the neurokinin-1 (NK-1) receptor antagonist impaired Akt activation and ROS scavenging that promoted by SP addition. In conclusion, SP protects corneal epithelial cells from hyperosmotic stress-induced apoptosis through the mechanism of Akt activation and ROS scavenging via the NK-1 receptor.
Collapse
Affiliation(s)
- Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Wenjie Sui
- Shandong Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Yunqiu Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Yao Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
- * E-mail: (HG); (QZ)
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
- Shandong Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
- * E-mail: (HG); (QZ)
| |
Collapse
|
64
|
Li Y, Sun W, Han S, Li J, Ding S, Wang W, Yin Y. IGF-1-Involved Negative Feedback of NR2B NMDA Subunits Protects Cultured Hippocampal Neurons Against NMDA-Induced Excitotoxicity. Mol Neurobiol 2016; 54:684-696. [DOI: 10.1007/s12035-015-9647-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
|
65
|
ZHONG JIANBIN, LI XIE, WAN LIMEI, CHEN ZHIBANG, ZHONG SIMIN, XIAO SONGHUA, YAN ZHENGWEN. Knockdown of NogoA prevents MPP+-induced neurotoxicity in PC12 cells via the mTOR/STAT3 signaling pathway. Mol Med Rep 2015; 13:1427-33. [DOI: 10.3892/mmr.2015.4637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 11/17/2015] [Indexed: 11/06/2022] Open
|
66
|
Wang WJ, Yu XH, Wang C, Yang W, He WS, Zhang SJ, Yan YG, Zhang J. MMPs and ADAMTSs in intervertebral disc degeneration. Clin Chim Acta 2015; 448:238-46. [PMID: 26162271 DOI: 10.1016/j.cca.2015.06.023] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with low back pain, a leading cause of musculoskeletal disability worldwide. The major components of extracellular matrix (ECM) within the discs are type II collagen (Col II) and aggrecan. Excessive destruction of ECM, especially loss of Col II and aggrecan, plays a critical role in promoting the occurrence and development of IDD. Matrix metalloproteinases (MMPs) and a disintegrin and metalloprotease with thrombospondin motifs (ADAMTSs) are primary enzymes that degrade collagens and aggrecan. There is a large and growing body of evidence that many members of MMPs and ADAMTSs are highly expressed in degenerative IVD tissue and cells, and are closely involved in ECM breakdown and the process of disc degeneration. In contrast, targeting these enzymes has shown promise for promoting ECM repair and mitigating disc regeneration. In the current review, after a brief description regarding the biology of MMPs and ADAMTSs, we mainly focus on their expression profiles, roles and therapeutic potential in IDD. A greater understanding of the catabolic pathways involved in IDD will help to develop potential prophylactic or regenerative biological treatment for degenerative disc disease in the future.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| | - Xiao-Hua Yu
- Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wei Yang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Si He
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Shu-Jun Zhang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|