51
|
Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M, Freibaum BD, Cika J, Coughlin M, Messing J, Molliex A, Maxwell BA, Kim NC, Temirov J, Moore J, Kolaitis RM, Shaw TI, Bai B, Peng J, Kriwacki RW, Taylor JP. C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell 2016; 167:774-788.e17. [PMID: 27768896 PMCID: PMC5079111 DOI: 10.1016/j.cell.2016.10.002] [Citation(s) in RCA: 525] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Expansion of a hexanucleotide repeat GGGGCC (G4C2) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Transcripts carrying (G4C2) expansions undergo unconventional, non-ATG-dependent translation, generating toxic dipeptide repeat (DPR) proteins thought to contribute to disease. Here, we identify the interactome of all DPRs and find that arginine-containing DPRs, polyGly-Arg (GR) and polyPro-Arg (PR), interact with RNA-binding proteins and proteins with low complexity sequence domains (LCDs) that often mediate the assembly of membrane-less organelles. Indeed, most GR/PR interactors are components of membrane-less organelles such as nucleoli, the nuclear pore complex and stress granules. Genetic analysis in Drosophila demonstrated the functional relevance of these interactions to DPR toxicity. Furthermore, we show that GR and PR altered phase separation of LCD-containing proteins, insinuating into their liquid assemblies and changing their material properties, resulting in perturbed dynamics and/or functions of multiple membrane-less organelles.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peipei Zhang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mohona Sarkar
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jaclyn Cika
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maura Coughlin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amandine Molliex
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian A Maxwell
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nam Chul Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Moore
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Regina-Maria Kolaitis
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bing Bai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
52
|
Heyn P, Salmonowicz H, Rodenfels J, Neugebauer KM. Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos. RNA Biol 2016; 14:752-760. [PMID: 27858508 DOI: 10.1080/15476286.2016.1255397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nuclear bodies are cellular compartments that lack lipid bilayers and harbor specific RNAs and proteins. Recent proposals that nuclear bodies form through liquid-liquid phase separation leave the question of how different nuclear bodies maintain their distinct identities unanswered. Here we investigate Cajal bodies (CBs), histone locus bodies (HLBs) and nucleoli - involved in assembly of the splicing machinery, histone mRNA 3' end processing, and rRNA processing, respectively - in the embryos of the zebrafish, Danio rerio. We take advantage of the transcriptional silence of the 1-cell embryo and follow nuclear body appearance as zygotic transcription becomes activated. CBs are present from fertilization onwards, while HLB and nucleolar components formed foci several hours later when histone genes and rDNA became active. HLB formation was blocked by transcription inhibition, suggesting nascent histone transcripts recruit HLB components like U7 snRNP. Surprisingly, we found that U7 base-pairing with nascent histone transcripts was not required for localization to HLBs. Rather, the type of Sm ring assembled on U7 determined its targeting to HLBs or CBs; the spliceosomal Sm ring targeted snRNAs to CBs while the specialized U7 Sm-ring localized to HLBs, demonstrating the contribution of protein constituents to the distinction among nuclear bodies. Thus, nucleolar, HLB, and CB components can mix in early embryogenesis when transcription is naturally or artificially silenced. These data support a model in which transcription of specific gene loci nucleates nuclear body components with high specificity and fidelity to perform distinct regulatory functions.
Collapse
Affiliation(s)
- Patricia Heyn
- a Max Planck Institute of Molecular Cell Biology and Genetics , Dresden , Germany
| | - Hanna Salmonowicz
- a Max Planck Institute of Molecular Cell Biology and Genetics , Dresden , Germany
| | - Jonathan Rodenfels
- b Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , USA
| | - Karla M Neugebauer
- b Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
53
|
Trinkle-Mulcahy L, Sleeman JE. The Cajal body and the nucleolus: "In a relationship" or "It's complicated"? RNA Biol 2016; 14:739-751. [PMID: 27661468 DOI: 10.1080/15476286.2016.1236169] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
From their initial identification as 'nucleolar accessory bodies' more than a century ago, the relationship between Cajal bodies and nucleoli has been a subject of interest and controversy. In this review, we seek to place recent developments in the understanding of the physical and functional relationships between the 2 structures in the context of historical observations. Biophysical models of nuclear body formation, the molecular nature of CB/nucleolus interactions and the increasing list of joint roles for CBs and nucleoli, predominantly in assembling ribonucleoprotein (RNP) complexes, are discussed.
Collapse
Affiliation(s)
- Laura Trinkle-Mulcahy
- a Department of Cellular and Molecular Medicine , Ottawa Institute of Systems Biology, University of Ottawa , Ottawa , ON , Canada
| | - Judith E Sleeman
- b BSRC Complex, School of Biology, University of St Andrews , UK
| |
Collapse
|
54
|
Abstract
Spliceosomal snRNPs are complex particles that proceed through a fascinating maturation pathway. Several steps of this pathway are closely linked to nuclear non-membrane structures called Cajal bodies. In this review, I summarize the last 20 y of research in this field. I primarily focus on snRNP biogenesis, specifically on the steps that involve Cajal bodies. I also evaluate the contribution of the Cajal body in snRNP quality control and discuss the role of snRNPs in Cajal body formation.
Collapse
Affiliation(s)
- David Staněk
- a Institute of Molecular Genetics, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
55
|
Abstract
Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.
Collapse
Affiliation(s)
- Miguel Lafarga
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Olga Tapia
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Ana M Romero
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Maria T Berciano
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| |
Collapse
|
56
|
Vogan JM, Zhang X, Youmans DT, Regalado SG, Johnson JZ, Hockemeyer D, Collins K. Minimized human telomerase maintains telomeres and resolves endogenous roles of H/ACA proteins, TCAB1, and Cajal bodies. eLife 2016; 5. [PMID: 27525486 PMCID: PMC5005035 DOI: 10.7554/elife.18221] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/14/2016] [Indexed: 01/22/2023] Open
Abstract
We dissected the importance of human telomerase biogenesis and trafficking pathways for telomere maintenance. Biological stability of human telomerase RNA (hTR) relies on H/ACA proteins, but other eukaryotes use other RNP assembly pathways. To investigate additional rationale for human telomerase assembly as H/ACA RNP, we developed a minimized cellular hTR. Remarkably, with only binding sites for telomerase reverse transcriptase (TERT), minimized hTR assembled biologically active enzyme. TERT overexpression was required for cellular interaction with minimized hTR, indicating that H/ACA RNP assembly enhances endogenous hTR-TERT interaction. Telomere maintenance by minimized telomerase was unaffected by the elimination of the telomerase holoenzyme Cajal body chaperone TCAB1 or the Cajal body scaffold protein Coilin. Surprisingly, wild-type hTR also maintained and elongated telomeres in TCAB1 or Coilin knockout cells, with distinct changes in telomerase action. Overall, we elucidate trafficking requirements for telomerase biogenesis and function and expand mechanisms by which altered telomere maintenance engenders human disease. DOI:http://dx.doi.org/10.7554/eLife.18221.001 Most cells in the human body can only divide a certain number of times before they die. This is because regions called telomeres at the ends of the cell’s DNA get shorter every time the cell divides, to the point that they disappear and halt cell growth. Particular types of cells – including some stem cells and cancer cells – can avoid death and continue to divide indefinitely because they produce an enzyme called telomerase that extends the telomere regions. The process by which the telomerase enzyme binds to and lengthens the DNA has several stages and involves many different proteins. One of the stages involves moving telomerase from the sites where it is assembled within the cell to a place where it can find telomeres in need of elongation (different areas within the cell compartment called the nucleus). Structures inside the nucleus called Cajal bodies were thought to help the enzyme bind to the telomeres. It is not clear why the process of extending telomeres is so complex. Vogan et al. engineered altered versions of telomerase that use simpler pathways to bind to and act on telomeres and inserted them into ‘pluripotent’ stem cells and cancer cells from humans. The experiments show that a pathway that helps to move the enzyme from its normal storage place in the nucleus is less important for extending telomeres in cancer cells than in pluripotent stem cells. Unexpectedly, Cajal bodies are not critical for bringing telomerase into contact with the telomeres in either cell type. The findings show that many of the proteins involved in extending telomeres in cells are not strictly essential. The simplified pathway developed by Vogan et al. opens up new opportunities to study the details of how telomerase extends telomeres. DOI:http://dx.doi.org/10.7554/eLife.18221.002
Collapse
Affiliation(s)
- Jacob M Vogan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xiaozhu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Daniel T Youmans
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Samuel G Regalado
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Joshua Z Johnson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
57
|
Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana. Genetics 2016; 203:1709-20. [PMID: 27317682 PMCID: PMC4981272 DOI: 10.1534/genetics.116.190751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/09/2016] [Indexed: 02/02/2023] Open
Abstract
Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein.
Collapse
|
58
|
Abstract
Low-complexity proteins undergo phase separation in vitro, forming hydrogels or liquid droplets. Whether these form in vivo, and under what conditions, is still unclear. In this issue, Hennig et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201504117) show that formation of the paraspeckle, a nuclear body that regulates gene expression, requires low-complexity prion-like domains (PLDs) within paraspeckle proteins. The same proteins were shown to form hydrogels, shedding light on the role of “functional aggregation” in nuclear substructure.
Collapse
|