51
|
Prospects of molecular markers in Fusarium species diversity. Appl Microbiol Biotechnol 2011; 90:1625-39. [DOI: 10.1007/s00253-011-3209-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/26/2022]
|
52
|
Barabote RD, Thekkiniath J, Strauss RE, Vediyappan G, Fralick JA, San Francisco MJ. Xenobiotic efflux in bacteria and fungi: a genomics update. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 77:237-306. [PMID: 21692371 DOI: 10.1002/9780470920541.ch6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ravi D Barabote
- Department of Plant Sciences, University of California, Davis, California, USA
| | | | | | | | | | | |
Collapse
|
53
|
Peterson SW, Jurjevic Z, Bills GF, Stchigel AM, Guarro J, Vega FE. Genus Hamigera, six new species and multilocus DNA sequence based phylogeny. Mycologia 2010; 102:847-64. [PMID: 20648752 DOI: 10.3852/09-268] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genus Hamigera was erected for Talaro-myces species that make asci singly instead of in chains. Initially it contained two species, H. avellanea and H. striata. We describe six new species in the genus, H. fusca, H. inflata, H. insecticola, H. pallida, H. paravellanea and H. terricola. Merimbla ingelheimensis is a distinct anamorphic species in the Hamigera clade. None of our DNA sequence data (BT2, calmodulin, ITS, 1su rDNA, RPB2, Tsr1 and Mcm7) supported the placement of H. striata in the same clade as H. avellanea, thus we accepted Talaromyces striatus. In addition to Hamigera species we examined the phylogenetic disposition of Warcupiella spinulosa, Penicillium megasporum, Penicillium arenicola and Merimbla humicoloides. Despite nominal similarity of some of these species to Merimbla, none of these species are part of the Hamigera clade and M. humicoloides is placed in Penicillium to have a monophyletic genus Hamigera.
Collapse
Affiliation(s)
- Stephen W Peterson
- Microbial Genomics and Bioprocessing Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604, USA.
| | | | | | | | | | | |
Collapse
|
54
|
Salichos L, Rokas A. The diversity and evolution of circadian clock proteins in fungi. Mycologia 2010; 102:269-78. [PMID: 20361495 DOI: 10.3852/09-073] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Circadian rhythms are endogenous cellular patterns that associate multiple physiological and molecular functions with time. The Neurospora circadian system contains at least three oscillators: the FRQ/WC-dependent circadian oscillator (FWO), whose core components are the FRQ, WC-1, WC-2, FRH, and FWD-1 proteins; the WC-dependent circadian oscillator (WC-FLO); and one or more FRQ/ WC-independent oscillators (FLO). Little is known about the distribution of homologs of the Neurospora clock proteins or about the molecular foundations of circadian rhythms across fungi. Here, we examined 64 diverse fungal proteomes for homologs of all five Neurospora clock proteins and retraced their evolutionary history. The FRH and FWD-1 proteins were likely present in the fungal ancestor. WC-1 and WC-2 homologs are absent from the early diverging chytrids and Microsporidia but are present in all other major clades. In contrast to the deep origins of these four clock proteins FRQ homologs are taxonomically restricted within Sordariomycetes, Leotiomycetes and Dothideomycetes. The large number of FRH and FWD-1 homologs identified and their lack of concordance with the fungal species phylogeny indicate that they likely underwent multiple rounds of duplications and losses. In contrast, the FRQ, WC-1 and WC-2 proteins exhibit relatively few duplications and losses. A notable exception is the 10 FRQ-like proteins in Fusarium oxysporum, which resulted from nine duplication events. Our results suggest that the machinery required for FWO oscillator function is taxonomically restricted within Ascomycetes. Although the WC proteins are widely distributed, the functional diversity of the few non-Neurospora circadian oscillators suggests that a WC-FLO oscillator is unlikely to fully explain the observed rhythms. The contrast between the diversity of circadian oscillators and the conservation of most of their machinery is likely best explained by considering the centrality of noncircadian functions in which RNA helicase (FRH), F-box (FWD-1), WC-1 and WC-2 (light-sensing) proteins participate in fungi and eukaryotes.
Collapse
Affiliation(s)
- Leonidas Salichos
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
55
|
Pérez-Ortega S, Ríos ADL, Crespo A, Sancho LG. Symbiotic lifestyle and phylogenetic relationships of the bionts of Mastodia tessellata (Ascomycota, incertae sedis). AMERICAN JOURNAL OF BOTANY 2010; 97:738-52. [PMID: 21622440 DOI: 10.3732/ajb.0900323] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The biological nature of some symbioses is unclear because it is often not easy to discern whether the symbionts obtain any benefits from the association. Mastodia tessellata, a symbiosis between a leafy green alga and a fungus of uncertain phylogenetic position, is among the most investigated, controversial, and poorly understood associations. Because it has been difficult to determine whether this association is mutually beneficial or parasitic, not all scientists accept M. tessellata as a true lichen symbiosis. Mastodia tessellata is thus an interesting model to illustrate the interactions and processes that occur in fungal-algal symbioses. To improve our understanding of this association, we address the phylogenetic positions of the bionts involved and examine their interactions at the ultrastructural level. Examining the nuLSU and nuSSU gene regions of the mycobiont and the rbcL gene region of the photobiont, we found the fungus to be related to a group of marine species in the genus Verrucaria, family Verrucariaceae, despite its present ascription to the family Mastodiaceae. In addition, the photobiont of the symbiosis emerged as closely related to the North American species Prasiola borealis. Our electron microscopy observations provide new information on the process of fungal colonization of the algal thalli, as well as on relationships between the symbionts during different stages of colonization. The special features of this lichen symbiosis are discussed and compared with other examples of fungal symbioses in nature.
Collapse
Affiliation(s)
- Sergio Pérez-Ortega
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, E-28040 Madrid, Spain
| | | | | | | |
Collapse
|
56
|
Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. MYCORRHIZA 2010; 20:217-63. [PMID: 20191371 DOI: 10.1007/s00572-009-0274-x] [Citation(s) in RCA: 536] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 08/13/2009] [Indexed: 05/11/2023]
Abstract
The ectomycorrhizal (EcM) symbiosis involves a large number of plant and fungal taxa worldwide. During studies on EcM diversity, numerous misidentifications, and contradictory reports on EcM status have been published. This review aims to: (1) critically assess the current knowledge of the fungi involved in the EcM by integrating data from axenic synthesis trials, anatomical, molecular, and isotope studies; (2) group these taxa into monophyletic lineages based on molecular sequence data and published phylogenies; (3) investigate the trophic status of sister taxa to EcM lineages; (4) highlight other potentially EcM taxa that lack both information on EcM status and DNA sequence data; (5) recover the main distribution patterns of the EcM fungal lineages in the world. Based on critically examining original reports, EcM lifestyle is proven in 162 fungal genera that are supplemented by two genera based on isotopic evidence and 52 genera based on phylogenetic data. Additionally, 33 genera are highlighted as potentially EcM based on habitat, although their EcM records and DNA sequence data are lacking. Molecular phylogenetic and identification studies suggest that EcM symbiosis has arisen independently and persisted at least 66 times in fungi, in the Basidiomycota, Ascomycota, and Zygomycota. The orders Pezizales, Agaricales, Helotiales, Boletales, and Cantharellales include the largest number of EcM fungal lineages. Regular updates of the EcM lineages and genera therein can be found at the UNITE homepage http://unite.ut.ee/EcM_lineages . The vast majority of EcM fungi evolved from humus and wood saprotrophic ancestors without any obvious reversals. Herbarium records from 11 major biogeographic regions revealed three main patterns in distribution of EcM lineages: (1) Austral; (2) Panglobal; (3) Holarctic (with or without some reports from the Austral or tropical realms). The holarctic regions host the largest number of EcM lineages; none are restricted to a tropical distribution with Dipterocarpaceae and Caesalpiniaceae hosts. We caution that EcM-dominated habitats and hosts in South America, Southeast Asia, Africa, and Australia remain undersampled relative to the north temperate regions. In conclusion, EcM fungi are phylogenetically highly diverse, and molecular surveys particularly in tropical and south temperate habitats are likely to supplement to the present figures. Due to great risk of contamination, future reports on EcM status of previously unstudied taxa should integrate molecular identification tools with axenic synthesis experiments, detailed morphological descriptions, and/or stable isotope investigations. We believe that the introduced lineage concept facilitates design of biogeographical studies and improves our understanding about phylogenetic structure of EcM fungal communities.
Collapse
Affiliation(s)
- Leho Tedersoo
- Institute of Ecology and Earth Sciences and Natural History Museum of Tartu University, 40 Lai Street, 51005, Tartu, Estonia.
| | | | | |
Collapse
|
57
|
Oliveira M, Amorim MI, Ferreira E, Delgado L, Abreu I. Main airborne Ascomycota spores: characterization by culture, spore morphology, ribosomal DNA sequences and enzymatic analysis. Appl Microbiol Biotechnol 2010; 86:1171-81. [PMID: 20143229 DOI: 10.1007/s00253-010-2448-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 10/19/2022]
Abstract
The aim of this work was to identify the main allergy-related Ascomycetes fungal spores present in the atmosphere of Porto, using different and complementary techniques. The atmospheric sampling, performed in the atmosphere of Porto (Portugal) from August 2006 to July 2008, indicated Cladosporium, Penicillium, Aspergillus and Alternaria as the main fungal spore taxa. Alternaria and Cladosporium peaks were registered during summer. Aspergillus and Penicillium highest values were registered from late winter to early spring. Additionally, the Andersen sampler allowed the culture and isolation of the collected viable spores subsequently used for different identification approaches. The internal-transcribed spacer region of the nuclear ribosomal repeat unit sequences of airborne Ascomycetes fungi isolates revealed 11 taxonomically related fungal species. Among the identified taxa, Penicillum and Aspergillus presented the highest diversity, while only one species of Cladosporium and Alternaria, respectively, were identified. All selected fungal spore taxa possessed phosphatase, esterase, leucine arylamidase and beta-glucosidase enzymatic activity, while none had lipase, cystine arylamidase, trypsin or beta-glucuronidase activity. The association between the spore cell wall morphology, DNA-based techniques and enzymatic activity approaches allowed a more reliable identification procedure of the airborne Ascomycota fungal spores.
Collapse
Affiliation(s)
- Manuela Oliveira
- Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
58
|
Hong J, Park J, Fomina M, Gadd G. Development and optimization of an 18S rRNA‐based oligonucleotide microarray for the fungal order Eurotiales. J Appl Microbiol 2010; 108:985-997. [DOI: 10.1111/j.1365-2672.2009.04504.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J.W. Hong
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| | - J.Y. Park
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| | - M. Fomina
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| | - G.M. Gadd
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
59
|
Lichen Systematics: The Role of Morphological and Molecular Data to Reconstruct Phylogenetic Relationships. PROGRESS IN BOTANY 2010. [DOI: 10.1007/978-3-642-02167-1_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
60
|
Stenroos S, Laukka T, Huhtinen S, Döbbeler P, Myllys L, Syrjänen K, Hyvönen J. Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogeny. Cladistics 2009; 26:281-300. [DOI: 10.1111/j.1096-0031.2009.00284.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
61
|
Schoch CL, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbsch HT, Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O'Donnell K, Sipman H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 2009; 58:224-39. [PMID: 20525580 DOI: 10.1093/sysbio/syp020] [Citation(s) in RCA: 419] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.
Collapse
Affiliation(s)
- Conrad L Schoch
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Defossez E, Selosse MA, Dubois MP, Mondolot L, Faccio A, Djieto-Lordon C, McKey D, Blatrix R. Ant-plants and fungi: a new threeway symbiosis. THE NEW PHYTOLOGIST 2009; 182:942-949. [PMID: 19383109 DOI: 10.1111/j.1469-8137.2009.02793.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Symbioses between plants and fungi, fungi and ants, and ants and plants all play important roles in ecosystems. Symbioses involving all three partners appear to be rare. Here, we describe a novel tripartite symbiosis in which ants and a fungus inhabit domatia of an ant-plant, and present evidence that such interactions are widespread. We investigated 139 individuals of the African ant-plant Leonardoxa africana for occurrence of fungus. Behaviour of mutualist ants toward the fungus within domatia was observed using a video camera fitted with an endoscope. Fungi were identified by sequencing a fragment of their ribosomal DNA. Fungi were always present in domatia occupied by mutualist ants but never in domatia occupied by opportunistic or parasitic ants. Ants appear to favour the propagation, removal and maintenance of the fungus. Similar fungi were associated with other ant-plants in Cameroon. All belong to the ascomycete order Chaetothyriales; those from L. africana formed a monophyletic clade. These new plant-ant-fungus associations seem to be specific, as demonstrated within Leonardoxa and as suggested by fungal phyletic identities. Such tripartite associations are widespread in African ant-plants but have long been overlooked. Taking fungal partners into account will greatly enhance our understanding of symbiotic ant-plant mutualisms.
Collapse
Affiliation(s)
- Emmanuel Defossez
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS 1919 route de Mende, F-34093 Montpellier cedex 5, France
| | - Marc-André Selosse
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS 1919 route de Mende, F-34093 Montpellier cedex 5, France
| | - Marie-Pierre Dubois
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS 1919 route de Mende, F-34093 Montpellier cedex 5, France
| | - Laurence Mondolot
- Laboratoire de Botanique, Phytochimie et Mycologie, UMR 5175 CEFE, Université Montpellier 1, 15 Avenue Charles Flahault, BP14491, F-34093 Montpellier Cedex 5, France
| | - Antonella Faccio
- Dipartimento Biologia Vegetale, Università di Torino, Viale Mattioli 25, I-10125 Torino, Italy
| | | | - Doyle McKey
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS 1919 route de Mende, F-34093 Montpellier cedex 5, France
| | - Rumsaïs Blatrix
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS 1919 route de Mende, F-34093 Montpellier cedex 5, France
| |
Collapse
|
63
|
Peterson SW, Horn BW. Penicillium parvulum and Penicillium georgiense, sp. nov., isolated from the conidial heads of Aspergillus species. Mycologia 2009; 101:71-83. [PMID: 19274850 DOI: 10.3852/08-036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Two new Penicillium species were isolated from peanut-field soils in Georgia. The species were noted particularly because they sporulated on the conidial heads of Aspergillus species. Phenotypic descriptions were prepared with standard media. LSU-rDNA sequences were determined for the new species and compared to existing homologous sequences from Penicillium species with parsimony analysis. The monoverticillate species, P. parvulum, was related most closely to E. cinnamopurpureum, while the furcate species, P. georgiense, appeared in the tree near P. thiersii. Because P. parvulum was closely related to E. cinnamopurpureum additional loci were sequenced (beta-tubulin and calmodulin) for these and some other closely related species to establish the status of the species through genealogical concordance. Some proposed synonymies from prior studies were examined and resolved.
Collapse
Affiliation(s)
- Stephen W Peterson
- Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604, USA.
| | | |
Collapse
|
64
|
Abstract
Epitypification can solve many taxonomic problems and stabilize the understanding of species, genera, families or orders. The aim of this paper is to illustrate how to epitypify. A few examples where taxa have been epitypified are considered and the benefits and disadvantages of epitypification are discussed. We also outline some examples of taxa which need to be epitypified with reasons.
Collapse
Affiliation(s)
- Kevin D Hyde
- International Fungal Research and Development Centre, the Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China.
| | | |
Collapse
|
65
|
Copy number suppressors of the Aspergillus nidulans nimA1 mitotic kinase display distinctive and highly dynamic cell cycle-regulated locations. EUKARYOTIC CELL 2008; 7:2087-99. [PMID: 18931041 DOI: 10.1128/ec.00278-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Aspergillus nidulans NIMA kinase is essential for mitosis and is the founding member of the conserved NIMA-related kinase (Nek) family of protein kinases. To gain insight into NIMA function, a copy number suppression screen has been completed that defines three proteins termed MCNA, MCNB, and MCNC (multi-copy-number suppressor of nimA1 A, B, and C). All display a distinctive and dynamic cell cycle-specific distribution. MCNC has weak similarity to Saccharomyces cerevisiae Def1 within a shared CUE-like domain. MCNC, like Def1, is a cytoplasmic protein with slow mobility during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its deletion causes polarization defects and a small colony phenotype. MCNC enters nuclei during mitosis. In contrast, MCNB is a nuclear protein displaying increased nuclear levels as cells progress through interphase but is lost from nuclei at mitosis. MCNB is highly related to the Schizosaccharomyces pombe forkhead transcription factor Sep1 and is likely a transcriptional activator of nimA. Most surprisingly, MCNA, a protein restricted to the aspergilli and pathogenic systemic dimorphic fungi (the Eurotiomycetes), defines a nuclear body located near nucleoli at the nuclear periphery of G(2) nuclei. During progression through mitosis, the MCNA body is excluded from nuclei. Cytoplasmic MCNA bodies then diminish during early stages of interphase, and single MCNA bodies are formed within nuclei as interphase progresses. Three sites of MCNA phosphorylation were mapped and mutated to implicate proline-directed phosphorylation in the equal segregation of MCNA during the cell cycle. The data indicate all three MCN proteins likely have cell cycle functions.
Collapse
|