51
|
Rybaltovskii AO, Buznik VM, Zavorotny YS, Minaev NV, Timashev PS, Churbanov SN, Bagratashvili BN. Synthesis of Film Nanocomposites under Laser Ablation and Drift Embedding of Nanoparticles into Polymer in Supercritical Carbon Dioxide. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2019. [DOI: 10.1134/s1990793118070114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
52
|
Two-dimensional scattering patterns of coarse-grained molecular dynamics model of filled polymer gels during uniaxial expansion. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
53
|
|
54
|
Effect of diameter distribution on two-dimensional scattering patterns of a rubber model filled with carbon black and silica NPs. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
55
|
Hagita K, Shudo Y, Shibayama M. Two-dimensional scattering patterns and stress-strain relation of elongated clay nano composite gels: Molecular dynamics simulation analysis. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
56
|
Karatrantos A, Koutsawa Y, Dubois P, Clarke N, Kröger M. Miscibility and Nanoparticle Diffusion in Ionic Nanocomposites. Polymers (Basel) 2018; 10:E1010. [PMID: 30960935 PMCID: PMC6403637 DOI: 10.3390/polym10091010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
We investigate the effect of various spherical nanoparticles in a polymer matrix on dispersion, chain dimensions and entanglements for ionic nanocomposites at dilute and high nanoparticle loading by means of molecular dynamics simulations. The nanoparticle dispersion can be achieved in oligomer matrices due to the presence of electrostatic interactions. We show that the overall configuration of ionic oligomer chains, as characterized by their radii of gyration, can be perturbed at dilute nanoparticle loading by the presence of charged nanoparticles. In addition, the nanoparticle's diffusivity is reduced due to the electrostatic interactions, in comparison to conventional nanocomposites where the electrostatic interaction is absent. The charged nanoparticles are found to move by a hopping mechanism.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Yao Koutsawa
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Philippe Dubois
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons & Materia Nova Research Centre, Place du Parc 20, B-7000 Mons, Belgium.
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| |
Collapse
|
57
|
Skountzos EN, Mermigkis PG, Mavrantzas VG. Molecular Dynamics Study of an Atactic Poly(methyl methacrylate)–Carbon Nanotube Nanocomposite. J Phys Chem B 2018; 122:9007-9021. [DOI: 10.1021/acs.jpcb.8b06631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emmanuel N. Skountzos
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras GR 26504, Greece
| | - Panagiotis G. Mermigkis
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras GR 26504, Greece
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras GR 26504, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
58
|
Sorichetti V, Hugouvieux V, Kob W. Structure and Dynamics of a Polymer–Nanoparticle Composite: Effect of Nanoparticle Size and Volume Fraction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00840] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Valerio Sorichetti
- Laboratoire Charles Coulomb (L2C), CNRS, Univ Montpellier, Montpellier, France
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Walter Kob
- Laboratoire Charles Coulomb (L2C), CNRS, Univ Montpellier, Montpellier, France
| |
Collapse
|
59
|
Theoretical Interpretation of Conformation Variations of Polydimethylsiloxane Induced by Nanoparticles. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
60
|
Munaò G, Correa A, Pizzirusso A, Milano G. On the calculation of the potential of mean force between atomistic nanoparticles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:38. [PMID: 29594806 DOI: 10.1140/epje/i2018-11646-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/07/2018] [Indexed: 05/24/2023]
Abstract
We study the potential of mean force (PMF) between atomistic silica and gold nanoparticles in the vacuum by using molecular dynamics simulations. Such an investigation is devised in order to fully characterize the effective interactions between atomistic nanoparticles, a crucial step to describe the PMF in high-density coarse-grained polymer nanocomposites. In our study, we first investigate the behavior of silica nanoparticles, considering cases corresponding to different particle sizes and assessing results against an analytic theory developed by Hamaker for a system of Lennard-Jones interacting particles (H.C. Hamaker, Physica A 4, 1058 (1937)). Once validated the procedure, we calculate effective interactions between gold nanoparticles, which are considered both bare and coated with polyethylene chains, in order to investigate the effects of the grafting density [Formula: see text] on the PMF. Upon performing atomistic molecular dynamics simulations, it turns out that silica nanoparticles experience similar interactions regardless of the particle size, the most remarkable difference being a peak in the PMF due to surface interactions, clearly apparent for the larger size. As for bare gold nanoparticles, they are slightly interacting, the strength of the effective force increasing for the coated cases. The profile of the resulting PMF resembles a Lennard-Jones potential for intermediate [Formula: see text], becoming progressively more repulsive for high [Formula: see text] and low interparticle separations.
Collapse
Affiliation(s)
- Gianmarco Munaò
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (SA), Italy.
| | - Andrea Correa
- Department of Chemical Science, Federico II University of Naples, via Cinthia, Complesso Monte S. Angelo, 80126, Napoli, Italy
| | - Antonio Pizzirusso
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (SA), Italy
| | - Giuseppe Milano
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (SA), Italy
- Department of Organic Materials Science, University of Yamagata, 4-3-16 Jonan Yonezawa, 992-8510, Yamagata-ken, Japan
| |
Collapse
|
61
|
Ramos J, Vega J, Martínez-Salazar J. Predicting experimental results for polyethylene by computer simulation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
62
|
Li SJ, Qian HJ, Lu ZY. Translational and rotational dynamics of an ultra-thin nanorod probe particle in linear polymer melts. Phys Chem Chem Phys 2018; 20:20996-21007. [DOI: 10.1039/c8cp03653e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Translational and rotational dynamics of a single rigid ultra-thin nanorod probe particle in linear polymer melts are investigated using coarse-grained molecular dynamics (CG-MD) simulations.
Collapse
Affiliation(s)
- Shu-Jia Li
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
| |
Collapse
|
63
|
Molinari N, Sutton AP, Mostofi AA. Mechanisms of reinforcement in polymer nanocomposites. Phys Chem Chem Phys 2018; 20:23085-23094. [DOI: 10.1039/c8cp03281e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Qualitatively different stress–strain responses of polymer nanocomposites are shown to result from the dynamical evolution of three principal molecular structural motifs in the polymer–filler network.
Collapse
Affiliation(s)
- N. Molinari
- Department of Physics and the Thomas Young Centre for Theory and Simulation of Materials
- Imperial College London
- London SW7 2AZ
- UK
| | - A. P. Sutton
- Department of Physics and the Thomas Young Centre for Theory and Simulation of Materials
- Imperial College London
- London SW7 2AZ
- UK
| | - A. A. Mostofi
- Department of Physics and the Thomas Young Centre for Theory and Simulation of Materials
- Imperial College London
- London SW7 2AZ
- UK
- Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials
| |
Collapse
|
64
|
Khabiri M, Jafari SH, Pourhossaini MR, Khonakdar HA. Investigations on matrix network characteristics in NBR/silica nanocomposites: Resolving matrix bulk density and network molecular weight and their alterations due to filler-curing agent interactions. J Appl Polym Sci 2017. [DOI: 10.1002/app.46170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Khabiri
- School of Chemical Engineering, College of Engineering; University of Tehran; PO Box 11155-4563, Tehran Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering; University of Tehran; PO Box 11155-4563, Tehran Iran
| | - Mohammad Reza Pourhossaini
- Faculty of Materials and Manufacturing Processes; Malek Ashtar University of Technology; PO Box 15875-1774, Tehran Iran
| | | |
Collapse
|
65
|
Shang X, Kröger M, Leimkuhler B. Assessing numerical methods for molecular and particle simulation. SOFT MATTER 2017; 13:8565-8578. [PMID: 29099134 DOI: 10.1039/c7sm01526g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We discuss the design of state-of-the-art numerical methods for molecular dynamics, focusing on the demands of soft matter simulation, where the purposes include sampling and dynamics calculations both in and out of equilibrium. We discuss the characteristics of different algorithms, including their essential conservation properties, the convergence of averages, and the accuracy of numerical discretizations. Formulations of the equations of motion which are suited to both equilibrium and nonequilibrium simulation include Langevin dynamics, dissipative particle dynamics (DPD), and the more recently proposed "pairwise adaptive Langevin" (PAdL) method, which, like DPD but unlike Langevin dynamics, conserves momentum and better matches the relaxation rate of orientational degrees of freedom. PAdL is easy to code and suitable for a variety of problems in nonequilibrium soft matter modeling; our simulations of polymer melts indicate that this method can also provide dramatic improvements in computational efficiency. Moreover we show that PAdL gives excellent control of the relaxation rate to equilibrium. In the nonequilibrium setting, we further demonstrate that while PAdL allows the recovery of accurate shear viscosities at higher shear rates than are possible using the DPD method at identical timestep, it also outperforms Langevin dynamics in terms of stability and accuracy at higher shear rates.
Collapse
Affiliation(s)
- Xiaocheng Shang
- Department of Materials, Polymer Physics, ETH Zürich, CH-8093 Zürich, Switzerland.
| | | | | |
Collapse
|
66
|
Rissanou AN, Papananou H, Petrakis VS, Doxastakis M, Andrikopoulos KS, Voyiatzis GA, Chrissopoulou K, Harmandaris V, Anastasiadis SH. Structural and Conformational Properties of Poly(ethylene oxide)/Silica Nanocomposites: Effect of Confinement. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00811] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Hellen Papananou
- Institute
of Electronic Structure and Laser, Foundation for Research and Technology - Hellas,
P.O. Box 1527, 711 10 Heraklion, Crete, Greece
| | | | - Manolis Doxastakis
- Department
of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Konstantinos S. Andrikopoulos
- Institute
of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas,
P.O. Box 1414, 265 04 Patras, Greece
| | - George A. Voyiatzis
- Institute
of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas,
P.O. Box 1414, 265 04 Patras, Greece
| | - Kiriaki Chrissopoulou
- Institute
of Electronic Structure and Laser, Foundation for Research and Technology - Hellas,
P.O. Box 1527, 711 10 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Institute
of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, P.O. Box 1385, 711 10 Heraklion, Crete, Greece
| | - Spiros H. Anastasiadis
- Institute
of Electronic Structure and Laser, Foundation for Research and Technology - Hellas,
P.O. Box 1527, 711 10 Heraklion, Crete, Greece
| |
Collapse
|
67
|
Modica KJ, Martin TB, Jayaraman A. Effect of Polymer Architecture on the Structure and Interactions of Polymer Grafted Particles: Theory and Simulations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00524] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kevin J. Modica
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| | - Tyler B. Martin
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| |
Collapse
|
68
|
Jiao GS, Qian HJ, Lu ZY. Temperature induced transition from acceleration to deceleration of the diffusion of polymers by soft nanoparticles in their composite. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
69
|
Karatrantos A, Composto RJ, Winey KI, Clarke N. Polymer and spherical nanoparticle diffusion in nanocomposites. J Chem Phys 2017; 146:203331. [DOI: 10.1063/1.4981258] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Argyrios Karatrantos
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
70
|
Gaspar H, Teixeira P, Santos R, Fernandes L, Hilliou L, Weir MP, Parnell AJ, Abrams KJ, Hill CJ, Bouwman WG, Parnell SR, King SM, Clarke N, Covas JA, Bernardo G. A Journey along the Extruder with Polystyrene:C60 Nanocomposites: Convergence of Feeding Formulations into a Similar Nanomorphology. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hugo Gaspar
- Institute
for Polymers and Composites/I3N, University of Minho, 4800-058 Guimarães, Portugal
| | - Paulo Teixeira
- Institute
for Polymers and Composites/I3N, University of Minho, 4800-058 Guimarães, Portugal
| | - Raquel Santos
- Institute
for Polymers and Composites/I3N, University of Minho, 4800-058 Guimarães, Portugal
| | - Liliana Fernandes
- Institute
for Polymers and Composites/I3N, University of Minho, 4800-058 Guimarães, Portugal
| | - Loic Hilliou
- Institute
for Polymers and Composites/I3N, University of Minho, 4800-058 Guimarães, Portugal
| | - Michael P. Weir
- Department
of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Andrew J. Parnell
- Department
of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Kerry J. Abrams
- Department
of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Christopher J. Hill
- Department
of Biomedical Science, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Wim G. Bouwman
- Faculty
of Applied Sciences, Delft University of Technology, Mekelweg
15, 2629 JB Delft, Netherlands
| | - Steven R. Parnell
- Faculty
of Applied Sciences, Delft University of Technology, Mekelweg
15, 2629 JB Delft, Netherlands
| | - Stephen M. King
- ISIS Pulsed
Neutron Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - Nigel Clarke
- Department
of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - José A. Covas
- Institute
for Polymers and Composites/I3N, University of Minho, 4800-058 Guimarães, Portugal
| | - Gabriel Bernardo
- Institute
for Polymers and Composites/I3N, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
71
|
Vogiatzis GG, Theodorou DN. Multiscale Molecular Simulations of Polymer-Matrix Nanocomposites: or What Molecular Simulations Have Taught us About the Fascinating Nanoworld. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2017; 25:591-645. [PMID: 29962833 PMCID: PMC6003436 DOI: 10.1007/s11831-016-9207-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 06/08/2023]
Abstract
Following the substantial progress in molecular simulations of polymer-matrix nanocomposites, now is the time to reconsider this topic from a critical point of view. A comprehensive survey is reported herein providing an overview of classical molecular simulations, reviewing their major achievements in modeling polymer matrix nanocomposites, and identifying several open challenges. Molecular simulations at multiple length and time scales, working hand-in-hand with sensitive experiments, have enhanced our understanding of how nanofillers alter the structure, dynamics, thermodynamics, rheology and mechanical properties of the surrounding polymer matrices.
Collapse
Affiliation(s)
- Georgios G. Vogiatzis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, Greece
- Present Address: Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| | - Doros N. Theodorou
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
72
|
Guo Y, Liu J, Wu Y, Zhang L, Wang Z, Li Y. Molecular insights into the effect of graphene packing on mechanical behaviors of graphene reinforced cis-1,4-polybutadiene polymer nanocomposites. Phys Chem Chem Phys 2017; 19:22417-22433. [DOI: 10.1039/c7cp02945d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We adopt molecular dynamics simulation to study the graphene packing patterns on chain structure, dynamics, uniaxial tension and visco-elastic behaviors.
Collapse
Affiliation(s)
- Yishuo Guo
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources of Ministry of Education
- Beijing University of Chemical Technology
| | - Youping Wu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources of Ministry of Education
- Beijing University of Chemical Technology
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources of Ministry of Education
- Beijing University of Chemical Technology
| | - Zhao Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources of Ministry of Education
- Beijing University of Chemical Technology
| | - Ying Li
- Department of Mechanical Engineering and Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| |
Collapse
|
73
|
Hou G, Tao W, Liu J, Gao Y, Zhang L, Li Y. Tailoring the dispersion of nanoparticles and the mechanical behavior of polymer nanocomposites by designing the chain architecture. Phys Chem Chem Phys 2017; 19:32024-32037. [DOI: 10.1039/c7cp06199d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The dispersion of nanoparticles with different polymer–nanoparticle interaction strengths and chain architectures.
Collapse
Affiliation(s)
- Guanyi Hou
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Wei Tao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources of Ministry of Education
- Beijing University of Chemical Technology
| | - Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources of Ministry of Education
- Beijing University of Chemical Technology
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources of Ministry of Education
- Beijing University of Chemical Technology
| | - Ying Li
- Department of Mechanical Engineering and Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| |
Collapse
|
74
|
Martin TB, Jayaraman A. Using Theory and Simulations To Calculate Effective Interactions in Polymer Nanocomposites with Polymer-Grafted Nanoparticles. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01920] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tyler B. Martin
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
75
|
Fraaije JGEM, van Male J, Becherer P, Serral Gracià R. Coarse-Grained Models for Automated Fragmentation and Parametrization of Molecular Databases. J Chem Inf Model 2016; 56:2361-2377. [DOI: 10.1021/acs.jcim.6b00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes G. E. M. Fraaije
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
- Culgi BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Jan van Male
- Culgi BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Paul Becherer
- Culgi BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | | |
Collapse
|
76
|
Mathioudakis IG, Vogiatzis GG, Tzoumanekas C, Theodorou DN. Multiscale simulations of PS-SiO2 nanocomposites: from melt to glassy state. SOFT MATTER 2016; 12:7585-7605. [PMID: 27532769 DOI: 10.1039/c6sm01536k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interaction energetics, molecular packing, entanglement network properties, segmental dynamics, and elastic constants of atactic polystyrene-amorphous silica nanocomposites in the molten and the glassy state are studied via molecular simulations using two interconnected levels of representation: (a) a coarse-grained one, wherein each polystyrene repeat unit is mapped onto a single "superatom" and the silica nanoparticle is viewed as a solid sphere. Equilibration at all length scales at this level is achieved via connectivity-altering Monte Carlo simulations. (b) A united-atom (UA) level, wherein the polymer chains are represented in terms of a united-atom forcefield and the silica nanoparticle is represented in terms of a simplified, fully atomistic model. Initial configurations for UA molecular dynamics (MD) simulations are obtained by reverse mapping well-equilibrated coarse-grained configurations. By analysing microcanonical UA MD trajectories, the polymer density profile is studied and the polymer is found to exhibit layering in the vicinity of the nanoparticle surface. An estimate of the enthalpy of mixing between polymer and nanoparticles, derived from the UA simulations, compares favourably against available experimental values. The dynamical behaviour of polystyrene (in neat and filled melt systems) is characterized in terms of bond orientation and dihedral angle time autocorrelation functions. At low concentration in the molten polymer matrix, silica nanoparticles are found to cause a slight deceleration of the segmental dynamics close to their surface compared to the bulk polymer. Well-equilibrated coarse-grained long-chain configurations are reduced to entanglement networks via topological analysis with the CReTA algorithm, yielding a slightly lower density of entanglements in the filled than in the neat systems. UA melt configurations are glassified by MD cooling. The elastic moduli of the resulting glassy nanocomposites are computed through an analysis of strain fluctuations in the undeformed state and through explicit mechanical deformation by MD, showing a stiffening of the polymer in the presence of nanoparticles. UA simulation results for the elastic constants are compared to continuum micromechanical calculations invoked in homogenization models of the overall mechanical behaviour of heterogeneous materials. They can be interpreted in terms of the presence of an "interphase" of approximate thickness 2 nm around the nanoparticles, with elastic constants intermediate between those of the filler and the matrix.
Collapse
Affiliation(s)
- I G Mathioudakis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| | | | | | | |
Collapse
|
77
|
Zheng Z, Li F, Liu H, Shen J, Liu J, Wu Y, Zhang L, Wang W. Tuning the structure and mechanical property of polymer nanocomposites by employing anisotropic nanoparticles as netpoints. Phys Chem Chem Phys 2016; 18:25090-25099. [PMID: 27711653 DOI: 10.1039/c6cp04460c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introducing carbon nanotubes or graphene sheets into polymer matrices has received lots of scientific and technological attention. For the first time, we report a new kind of polymer nanocomposite (PNC) by means of employing anisotropic nanoparticles (NPs) as netpoints (referred to as an end-linked system), namely with NPs acting as netpoints to chemically connect the dual end-groups of each polymer chain to form a network. By taking advantage of this strategy, the anisotropic NPs can be uniformly distributed in the polymer matrix, with the NPs being separated via the connected polymer chains. And the separation distance between NPs, the stress-strain behavior and the dynamic hysteresis loss (HL) can be manipulated by varying the temperature and the polymer chain flexibility. Meanwhile, the physically mixed system is investigated by changing the interaction strength between polymer and NPs, and the temperature. It is emphasized that compared to the physically mixed system, the end-linked system which employs carbon nanotubes or graphene as netpoints possesses good thermal stability because of its thermodynamically stable morphology, exhibiting both excellent static and dynamic mechanical properties. These results help us to design and fabricate high performance and multi-functional PNCs filled with carbon nanotubes or graphene, facilitating the potentially large industrial application of these nanomaterials.
Collapse
Affiliation(s)
- Zijian Zheng
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China. . and Beijing Engineering Research Center of Advanced Elastomers, People's Republic of China
| | - Fanzhu Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China. . and Beijing Engineering Research Center of Advanced Elastomers, People's Republic of China
| | - Hongji Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China. . and Beijing Engineering Research Center of Advanced Elastomers, People's Republic of China
| | - Jianxiang Shen
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China. . and Beijing Engineering Research Center of Advanced Elastomers, People's Republic of China and Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, People's Republic of China
| | - Youping Wu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China. . and Beijing Engineering Research Center of Advanced Elastomers, People's Republic of China and Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China. . and Beijing Engineering Research Center of Advanced Elastomers, People's Republic of China and Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, People's Republic of China and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| | - Wenchuan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| |
Collapse
|
78
|
Zierenberg J, Marenz M, Janke W. Dilute Semiflexible Polymers with Attraction: Collapse, Folding and Aggregation. Polymers (Basel) 2016; 8:E333. [PMID: 30974608 PMCID: PMC6432187 DOI: 10.3390/polym8090333] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
We review the current state on the thermodynamic behavior and structural phases of self- and mutually-attractive dilute semiflexible polymers that undergo temperature-driven transitions. In extreme dilution, polymers may be considered isolated, and this single polymer undergoes a collapse or folding transition depending on the internal structure. This may go as far as to stable knot phases. Adding polymers results in aggregation, where structural motifs again depend on the internal structure. We discuss in detail the effect of semiflexibility on the collapse and aggregation transition and provide perspectives for interesting future investigations.
Collapse
Affiliation(s)
- Johannes Zierenberg
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| | - Martin Marenz
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| |
Collapse
|
79
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1142] [Impact Index Per Article: 126.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
80
|
Pavlov AS, Khalatur PG. Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation. SOFT MATTER 2016; 12:5402-5419. [PMID: 27225453 DOI: 10.1039/c6sm00543h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using a fully atomistic model, we perform large-scale molecular dynamics simulations of sulfur-cured polybutadiene (PB) and nanosilica-filled PB composites. A well-integrated network without sol fraction is built dynamically by cross-linking the coarse-grained precursor chains in the presence of embedded silica nanoparticles. Initial configurations for subsequent atomistic simulations are obtained by reverse mapping of the well-equilibrated coarse-grained systems. Based on the concept of "maximally inflated knot" introduced by Grosberg et al., we show that the networks simulated in this study behave as mechanically isotropic systems. Analysis of the network topology in terms of graph theory reveals that mechanically inactive tree-like structures are the dominant structural components of the weakly cross-linked elastomer, while cycles are mainly responsible for the transmission of mechanical forces through the network. We demonstrate that quantities such as the system density, thermal expansion coefficient, glass transition temperature and initial Young's modulus can be predicted in qualitative and sometimes even in quantitative agreement with experiments. The nano-filled system demonstrates a notable increase in the glass transition temperature and an approximately two-fold increase in the nearly equilibrium value of elastic modulus relative to the unfilled elastomer even at relatively small amounts of filler particles. We also examine the structural rearrangement of the nanocomposite subjected to tensile deformation. Under high strain-rate loading, the formation of structural defects (microcavities) within the polymer bulk is observed. The nucleation and growth of cavities in the post-yielding strain hardening regime mainly take place at the elastomer/nanoparticle interfaces. As a result, the cavities are concentrated just near the embedded nanoparticles. Therefore, while the silica nanofiller increases the elastic modulus of the elastomer, it also creates a more defective structure of higher energy in comparison with the unfilled network.
Collapse
Affiliation(s)
- Alexander S Pavlov
- Department of Physical Chemistry, Tver State University, Tver, 170100, Russia.
| | | |
Collapse
|
81
|
Karatrantos A, Clarke N, Composto RJ, Winey KI. Entanglements in polymer nanocomposites containing spherical nanoparticles. SOFT MATTER 2016; 12:2567-2574. [PMID: 26853774 DOI: 10.1039/c5sm02010g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigate the polymer packing around nanoparticles and polymer/nanoparticle topological constraints (entanglements) in nanocomposites containing spherical nanoparticles in comparison to pure polymer melts using molecular dynamics (MD) simulations. The polymer-nanoparticle attraction leads to good dispersion of nanoparticles. We observe an increase in the number of topological constraints (decrease of total entanglement length Ne with nanoparticle loading in the polymer matrix) in nanocomposites due to nanoparticles, as evidenced by larger contour lengths of the primitive paths. An increase of the nanoparticle radius reduces the polymer-particle entanglements. These studies demonstrate that the interaction between polymers and nanoparticles does not affect the total entanglement length because in nanocomposites with small nanoparticles, the polymer-nanoparticles topological constraints dominate.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
82
|
Hagita K, Morita H, Doi M, Takano H. Coarse-Grained Molecular Dynamics Simulation of Filled Polymer Nanocomposites under Uniaxial Elongation. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02799] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katsumi Hagita
- Department
of Applied Physics, National Defense Academy, Kanagawa 239-8686, Japan
| | - Hiroshi Morita
- National Institute
of Advanced Institute of Science and Technology, Tsukuba 305-8568, Japan
| | - Masao Doi
- Center
of Soft Matter Physics and Its Applications, Beihang University, Beijing 112-0001, China
| | - Hiroshi Takano
- Faculty
of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
83
|
Karatrantos A, Cai Q. Effects of pore size and surface charge on Na ion storage in carbon nanopores. Phys Chem Chem Phys 2016; 18:30761-30769. [DOI: 10.1039/c6cp04611h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Na ion batteries (NIBs) are considered as a promising low cost and sustainable energy storage technology.
Collapse
Affiliation(s)
| | - Qiong Cai
- Department of Chemical Engineering
- University of Surrey
- Guildford S3 7RH
- UK
| |
Collapse
|