51
|
Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci Biobehav Rev 2016; 67:25-40. [DOI: 10.1016/j.neubiorev.2015.09.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/21/2023]
|
52
|
Zhao H, Han Z, Ji X, Luo Y. Epigenetic Regulation of Oxidative Stress in Ischemic Stroke. Aging Dis 2016; 7:295-306. [PMID: 27330844 PMCID: PMC4898926 DOI: 10.14336/ad.2015.1009] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022] Open
Abstract
The prevalence and incidence of stroke rises with life expectancy. However, except for the use of recombinant tissue-type plasminogen activator, the translation of new therapies for acute stroke from animal models into humans has been relatively unsuccessful. Oxidative DNA and protein damage following stroke is typically associated with cell death. Cause-effect relationships between reactive oxygen species and epigenetic modifications have been established in aging, cancer, acute pancreatitis, and fatty liver disease. In addition, epigenetic regulatory mechanisms during stroke recovery have been reviewed, with focuses mainly on neural apoptosis, necrosis, and neuroplasticity. However, oxidative stress-induced epigenetic regulation in vascular neural networks following stroke has not been sufficiently explored. Improved understanding of the epigenetic regulatory network upon oxidative stress may provide effective antioxidant approaches for treating stroke. In this review, we summarize the epigenetic events, including DNA methylation, histone modification, and microRNAs, that result from oxidative stress following experimental stroke in animal and cell models, and the ways in which epigenetic changes and their crosstalk influence the redox state in neurons, glia, and vascular endothelial cells, helping us to understand the foregone and vicious epigenetic regulation of oxidative stress in the vascular neural network following stroke.
Collapse
Affiliation(s)
- Haiping Zhao
- 1Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ziping Han
- 1Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- 22Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
| |
Collapse
|
53
|
Khoury N, Koronowski KB, Perez-Pinzon MA. Long-term window of ischemic tolerance: An evolutionarily conserved form of metabolic plasticity regulated by epigenetic modifications? ACTA ACUST UNITED AC 2016; 1:6-12. [PMID: 27796011 DOI: 10.29245/2572.942x/2016/2.1021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the absence of effective neuroprotective agents in the clinic, ischemic and pharmacological preconditioning are gaining increased interest in the field of cerebral ischemia. Our lab recently reported that resveratrol preconditioning affords tolerance against a focal cerebral ischemic insult in mice that can last for at least 14 days in vivo making it the longest window of ischemic tolerance discovered to date by a single administration of a pharmacological agent. The mechanism behind this novel extended window of ischemic tolerance remains elusive. In the below commentary we discuss potential mechanisms that could explain this novel extended window of ischemic tolerance in the context of previously identified windows and the known mechanisms behind them. We also draw parallels from the fields of hibernation and hypoxia-tolerance, which are chronic adaptations to severe conditions of hypoxia and ischemia known to be mediated by a form of metabolic depression. We also briefly discuss the importance of epigenetic modifications in maintaining this depressed state of metabolism.
Collapse
Affiliation(s)
- Nathalie Khoury
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kevin B Koronowski
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
54
|
Hu Z, Zhong B, Tan J, Chen C, Lei Q, Zeng L. The Emerging Role of Epigenetics in Cerebral Ischemia. Mol Neurobiol 2016; 54:1887-1905. [PMID: 26894397 DOI: 10.1007/s12035-016-9788-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
Abstract
Despite great progresses in the treatment and prevention of ischemic stroke, it is still among the leading causes of death and serious long-term disability all over the world, indicating that innovative neural regenerative and neuroprotective agents are urgently needed for the development of therapeutic approaches with greater efficacy for ischemic stroke. More and more evidence suggests that a spectrum of epigenetic processes play an important role in the pathophysiology of cerebral ischemia. In the present review, we first discuss recent developments in epigenetic mechanisms, especially their roles in the pathophysiology of cerebral ischemia. Specifically, we focus on DNA methylation, histone deacetylase, histone methylation, and microRNAs (miRNAs) in the regulation of vascular and neuronal regeneration after cerebral ischemia. Additionally, we highlight epigenetic strategies for ischemic stroke treatments, including the inhibition of histone deacetylase enzyme and DNA methyltransferase activities, and miRNAs. These therapeutic strategies are far from clinic use, but preliminary data indicate that neuroprotective agents targeting these pathways can modulate neural cell regeneration and promote brain repair and functional recovery after cerebral ischemia. A better understanding of how epigenetics influences the process and progress of cerebral ischemia will pave the way for discovering more sensitive and specific biomarkers and new targets and therapeutics for ischemic stroke.
Collapse
Affiliation(s)
- Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Bingwu Zhong
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Department of Traditional Chinese Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jieqiong Tan
- National Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, Hunan, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiang Lei
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
55
|
Chisholm NC, Sohrabji F. Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol Dis 2016; 85:245-253. [PMID: 25843666 PMCID: PMC5636213 DOI: 10.1016/j.nbd.2015.03.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke occurs more often among the elderly, and within this demographic, women are at an increased risk for stroke and have poorer functional recovery than men. This is also well replicated in animal studies where aging females are shown to have more extensive brain tissue loss as compared to adult females. Astrocytes provide nutrients for neurons, regulate glutamate levels, and release neurotrophins and thus play a key role in the events that occur following ischemia. In addition, astrocytes express receptors for gonadal hormones and synthesize several neurosteroids suggesting that the sex differences in stroke outcome may be mediated through astrocytes. This review discusses key astrocytic responses to ischemia including, reactive gliosis, excitotoxicity, and neuroinflammation. In light of the age and sex differences in stroke outcomes, this review highlights how aging and gonadal hormones influence these responses. Lastly, astrocyte specific changes in gene expression and epigenetic modifications during aging and following ischemia are discussed as possible molecular mechanisms for impaired astrocytic functioning.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
56
|
Schweizer S, Harms C, Lerch H, Flynn J, Hecht J, Yildirim F, Meisel A, Märschenz S. Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia. J Cereb Blood Flow Metab 2015; 35:1640-7. [PMID: 25966950 PMCID: PMC4640311 DOI: 10.1038/jcbfm.2015.99] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 01/04/2023]
Abstract
Cerebral ischemia induces a complex transcriptional response with global changes in gene expression. It is essentially regulated by transcription factors as well as epigenetic players. While it is well known that the inhibition of transcriptionally repressive histone deacetylases leads to neuroprotection, the role of histone methyltransferases in the postischemic transcriptional response remains elusive. We investigated the effects of inhibition of the repressive H3K9 histone methyltransferases SUV39H1 and G9a on neuronal survival, H3K9 promoter signatures and gene expression. Their inhibition either with the specific blocker chaetocin or by use of RNA interference promoted neuronal survival in oxygen glucose deprivation (OGD). Brain-derived neurotrophic factor (BDNF) was upregulated and BDNF promoter regions showed an increase in histone marks characteristic for active transcription. The BDNF blockade with K252a abrogated the protective effect of chaetocin treatment. In conclusion, inhibition of histone methyltransferases SUV39H1 and G9a confers neuroprotection in a model of hypoxic metabolic stress, which is at least in part mediated by BDNF.
Collapse
Affiliation(s)
- Sophie Schweizer
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Lerch
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer Flynn
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Hecht
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ferah Yildirim
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Märschenz
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|