51
|
Yang A, Sun Y, Gao Y, Yang S, Mao C, Ding N, Deng M, Wang Y, Yang X, Jia Y, Zhang H, Jiang Y. Reciprocal Regulation Between miR-148a/152 and DNA Methyltransferase 1 Is Associated with Hyperhomocysteinemia-Accelerated Atherosclerosis. DNA Cell Biol 2017; 36:462-474. [PMID: 28472596 DOI: 10.1089/dna.2017.3651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) and miRNAs are both important regulators of gene expression that have been implicated in the pathogenesis of atherosclerosis. This study was designed to elucidate the potential interaction between DNMT1 and miRNAs in the context of hyperhomocysteinemia (HHcy)-related atherosclerosis. In the aorta of ApoE-/- mice fed a high methionine diet, increased expression of miR-148a/152, with decreased DNMT1 mRNA and protein levels, was detected. Similar changes were observed in cultured foam cells stimulated with homocysteine. When miR-148a/152 was overexpressed using viral vectors, DNMT1 expression was suppressed, whereas the expression of adipose differentiation-related protein (ADRP) was enhanced, and the contents of total cholesterol (TC) and cholesteryl ester (CE) were increased in cultured foam cells. Conversely, downregulation of miR-148a/152 led to elevated DNMT1 expression, reduced ADRP expression, and lowered contents of TC and CE. The luciferase reporter assay verified that DNMT1 is a target gene for miR-148a/152 and overexpression of DNMT1 can partially reverse the miR-148a/152-induced lipid accumulation in foam cells. Meanwhile, we observed that DNMT1 overexpression enhanced DNA methylation and reduced miR-148a/152 expression. Our data showed reciprocal regulation between miR-148a/152 and DNMT1 in foam cells, which likely plays a critical role in HHcy-related atherosclerosis.
Collapse
Affiliation(s)
- Anning Yang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| | - Yue Sun
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| | - Yuan Gao
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| | - Songhao Yang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| | - Caiyan Mao
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| | - Ning Ding
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| | - Mei Deng
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| | - Yanhua Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| | - Xiaoling Yang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| | - Yuexia Jia
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| | - Huiping Zhang
- 2 Prenatal Diagnosis Center of Ningxia Medical University General Hospital , Yinchuan, China
| | - Yideng Jiang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, China
| |
Collapse
|
52
|
The CpG Dinucleotide Adjacent to a κB Site Affects NF-κB Function through Its Methylation. Int J Mol Sci 2017; 18:ijms18030528. [PMID: 28257066 PMCID: PMC5372544 DOI: 10.3390/ijms18030528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/21/2017] [Indexed: 01/04/2023] Open
Abstract
NF-κB is an important transcription factor that plays critical roles in cell survival, proliferation, inflammation, and cancers. Although the majority of experimentally identified functional NF-κB binding sites (κB sites) match the consensus sequence, there are plenty of non-functional NF-κB consensus sequences in the genome. We analyzed the surrounding sequences of the known κB sites that perfectly match the GGGRNNYYCC consensus sequence and identified the nucleotide at the -1 position of κB sites as a key contributor to the binding of the κB sites by NF-κB. We demonstrated that a cytosine at the -1 position of a κB site (-1C) could be methylated, which thereafter impaired NF-κB binding and/or function. In addition, all -1C κB sites are located in CpG islands and are conserved during evolution only when they are within CpG islands. Interestingly, when there are multiple NF-κB binding possibilities, methylation of -1C might increase NF-κB binding. Our finding suggests that a single nucleotide at the -1 position of a κB site could be a critical factor in NF-κB functioning and could be exploited as an additional manner to regulate the expression of NF-κB target genes.
Collapse
|
53
|
Basu B, Chakraborty J, Chandra A, Katarkar A, Baldevbhai JRK, Dhar Chowdhury D, Ray JG, Chaudhuri K, Chatterjee R. Genome-wide DNA methylation profile identified a unique set of differentially methylated immune genes in oral squamous cell carcinoma patients in India. Clin Epigenetics 2017; 9:13. [PMID: 28174608 PMCID: PMC5292006 DOI: 10.1186/s13148-017-0314-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/19/2017] [Indexed: 01/06/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the common malignancies in Southeast Asia. Epigenetic changes, mainly the altered DNA methylation, have been implicated in many cancers. Considering the varied environmental and genotoxic exposures among the Indian population, we conducted a genome-wide DNA methylation study on paired tumor and adjacent normal tissues of ten well-differentiated OSCC patients and validated in an additional 53 well-differentiated OSCC and adjacent normal samples. Results Genome-wide DNA methylation analysis identified several novel differentially methylated regions associated with OSCC. Hypermethylation is primarily enriched in the CpG-rich regions, while hypomethylation is mainly in the open sea. Distinct epigenetic drifts for hypo- and hypermethylation across CpG islands suggested independent mechanisms of hypo- and hypermethylation in OSCC development. Aberrant DNA methylation in the promoter regions are concomitant with gene expression. Hypomethylation of immune genes reflect the lymphocyte infiltration into the tumor microenvironment. Comparison of methylome data with 312 TCGA HNSCC samples identified a unique set of hypomethylated promoters among the OSCC patients in India. Pathway analysis of unique hypomethylated promoters indicated that the OSCC patients in India induce an anti-tumor T cell response, with mobilization of T lymphocytes in the neoplastic environment. Survival analysis of these epigenetically regulated immune genes suggested their prominent role in OSCC progression. Conclusions Our study identified a unique set of hypomethylated regions, enriched in the promoters of immune response genes, and indicated the presence of a strong immune component in the tumor microenvironment. These methylation changes may serve as potential molecular markers to define risk and to monitor the prognosis of OSCC patients in India. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0314-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baidehi Basu
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India
| | - Joyeeta Chakraborty
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India
| | - Aditi Chandra
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India
| | - Atul Katarkar
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India.,Molecular Genetics Division, CSIR-Indian Institute of Chemical biology, 4 Raja S C Mullick Road, Kolkata, 700 032 India
| | | | | | - Jay Gopal Ray
- Dr. R Ahmed Dental College & Hospital, 114, A J C Bose Road, Kolkata, India
| | - Keya Chaudhuri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical biology, 4 Raja S C Mullick Road, Kolkata, 700 032 India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India
| |
Collapse
|
54
|
Arnason T, Harkness T. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1. Cancers (Basel) 2015; 7:2063-82. [PMID: 26501324 PMCID: PMC4695877 DOI: 10.3390/cancers7040877] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer.
Collapse
Affiliation(s)
- Terra Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Correspondence: ; Tel.:+1-306-844-1119; Fax: +1-306-844-1512
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|