51
|
Santalices I, Gonella A, Torres D, Alonso MJ. Advances on the formulation of proteins using nanotechnologies. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
52
|
Diller KI, Bayden AS, Audie J, Diller DJ. PeptideNavigator: An interactive tool for exploring large and complex data sets generated during peptide-based drug design projects. Comput Biol Med 2017; 92:176-187. [PMID: 29207334 DOI: 10.1016/j.compbiomed.2017.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 01/01/2023]
Abstract
There is growing interest in peptide-based drug design and discovery. Due to their relatively large size, polymeric nature, and chemical complexity, the design of peptide-based drugs presents an interesting "big data" challenge. Here, we describe an interactive computational environment, PeptideNavigator, for naturally exploring the tremendous amount of information generated during a peptide drug design project. The purpose of PeptideNavigator is the presentation of large and complex experimental and computational data sets, particularly 3D data, so as to enable multidisciplinary scientists to make optimal decisions during a peptide drug discovery project. PeptideNavigator provides users with numerous viewing options, such as scatter plots, sequence views, and sequence frequency diagrams. These views allow for the collective visualization and exploration of many peptides and their properties, ultimately enabling the user to focus on a small number of peptides of interest. To drill down into the details of individual peptides, PeptideNavigator provides users with a Ramachandran plot viewer and a fully featured 3D visualization tool. Each view is linked, allowing the user to seamlessly navigate from collective views of large peptide data sets to the details of individual peptides with promising property profiles. Two case studies, based on MHC-1A activating peptides and MDM2 scaffold design, are presented to demonstrate the utility of PeptideNavigator in the context of disparate peptide-design projects.
Collapse
Affiliation(s)
- Kyle I Diller
- CMDBioscience Inc., 5 Science Park, New Haven, CT 06511, United States
| | - Alexander S Bayden
- CMDBioscience Inc., 5 Science Park, New Haven, CT 06511, United States; IDEAYA Biosciences Inc., 7000 Shoreline Court, Suite 350, South San Francisco, CA 94080, United States
| | - Joseph Audie
- CMDBioscience Inc., 5 Science Park, New Haven, CT 06511, United States; Chemistry Department, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, United States
| | - David J Diller
- CMDBioscience Inc., 5 Science Park, New Haven, CT 06511, United States.
| |
Collapse
|
53
|
Dkhar LK, Bartley J, White D, Seyfoddin A. Intranasal drug delivery devices and interventions associated with post-operative endoscopic sinus surgery. Pharm Dev Technol 2017; 23:282-294. [DOI: 10.1080/10837450.2017.1389956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lari K. Dkhar
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jim Bartley
- Bio Design Lab, School of Engineering, Auckland University of Technology, Auckland, New Zealand
- Counties Manukau District Health Board, Auckland, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - David White
- Counties Manukau District Health Board, Auckland, New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Bio Design Lab, School of Engineering, Auckland University of Technology, Auckland, New Zealand
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
54
|
Zhao K, Li S, Li W, Yu L, Duan X, Han J, Wang X, Jin Z. Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Deliv 2017; 24:1574-1586. [PMID: 29029568 PMCID: PMC8241129 DOI: 10.1080/10717544.2017.1388450] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022] Open
Abstract
Newcastle disease (ND) and infectious bronchitis (IB) are important diseases, which cause respiratory diseases in chickens, resulting in severely economic losses in the poultry industry. In this study, N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) and N,O-carboxymethyl chitosan (CMC) were synthesized as adjuvant and delivery carrier for vaccine antigens. N-2-HACC-CMC/NDV/IBV nanoparticles (NPs) (NDV/La Sota and IBV/H120 encapsulated in N-2-HACC-CMC NPs) and N-2-HACC-CMC/NDV-IBV NPs (the mixing of N-2-HACC-CMC/NDV NPs and N-2-HACC-CMC/IBV NPs in a ratio of 1:1) were prepared by the polyelectrolyte composite method, respectively. Both nanoparticles exhibited lower cytotoxicity and higher stability. Their bioactivities were maintained when they were stored at 37 °C for three weeks. Release assay in vitro showed that both NDV and IBV could be sustainably released from the nanoparticles after an initial burst release. In vivo immunization of chickens showed that N-2-HACC-CMC/NDV/IBV NPs or N-2-HACC-CMC/NDV-IBV NPs intranasally induced higher titers of IgG and IgA antibodies, significantly promoted proliferation of lymphocytes and induced higher levels of interleukine-2 (IL-2), IL-4 and interferon-γ (IFN-γ) than the commercially combined attenuated live vaccine did. This is the first study in the field of animal vaccines demonstrating that intranasal administration of chickens with antigens (NDV and IBV) encapsulated with chitosan derivative could induce humoral, cellular, and mucosal immune responses, which protected chickens from the infection of highly virulent NDV and IBV. This study indicated that N-2-HACC-CMC could be used as an efficient adjuvant and delivery carrier for further development of mucosal vaccines and drugs and could have an immense application potential in medicine.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
- School of Biological Science and Technology, University of Jinan, Jinan, People’s Republic of China
| | - Shanshan Li
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Wei Li
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
| | - Lu Yu
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Xutong Duan
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Jinyu Han
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin, People’s Republic of China
| | - Xiaohua Wang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin, People’s Republic of China
| |
Collapse
|
55
|
Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2017; 61:1382-1414. [PMID: 28737935 DOI: 10.1021/acs.jmedchem.7b00318] [Citation(s) in RCA: 689] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Collapse
Affiliation(s)
- Antoine Henninot
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - James C Collins
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - John M Nuss
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
56
|
Ma S, We L, Yang H, Deng S, M. Jevnikar A. Emerging technologies to achieve oral delivery of GLP-1 and GLP-1 analogs for treatment of type 2 diabetes mellitus (T2DM). CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-000107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
57
|
|
58
|
LaFountaine JS, Prasad LK, Miller DA, McGinity JW, Williams RO. Mucoadhesive amorphous solid dispersions for sustained release of poorly water soluble drugs. Eur J Pharm Biopharm 2017; 113:157-167. [DOI: 10.1016/j.ejpb.2016.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|