51
|
Whelan A, Williams E, Nolan DR, Murphy B, Gunning PS, O'Reilly D, Lally C. Bovine Pericardium of High Fibre Dispersion Has High Fatigue Life and Increased Collagen Content; Potentially an Untapped Source of Heart Valve Leaflet Tissue. Ann Biomed Eng 2020; 49:1022-1032. [PMID: 33063231 DOI: 10.1007/s10439-020-02644-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Bioprosthetic heart valves (BHVs) are implanted in aortic valve stenosis patients to replace the native, dysfunctional valve. Yet, the long-term performance of the glutaraldehyde-fixed bovine pericardium (GLBP) leaflets is known to reduce device durability. The aim of this study was to investigate a type of commercial-grade GLBP which has been over-looked in the literature to date; that of high collagen fibre dispersion (HD). Under uniaxial cyclic loading conditions, it was observed that the fatigue behaviour of HD GLBP was substantially equivalent to GLBP in which the fibres are highly aligned along the loading direction. It was also found that HD GLBP had a statistically significant 9.5% higher collagen content when compared to GLBP with highly aligned collagen fibres. The variability in diseased BHV delivery sites results in unpredictable and complex loading patterns across leaflets in vivo. This study presents the possibility of a shift from the traditional choice of circumferentially aligned GLBP leaflets, to that of high fibre dispersion arrangements. Characterised by its high fatigue life and increased collagen content, in addition to multiple fibre orientations, GLBP of high fibre dispersion may provide better patient outcomes under the multi-directional loading to which BHV leaflets are subjected in vivo.
Collapse
Affiliation(s)
- Alix Whelan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Structural Heart Division, Boston Scientific Corporation, Galway, Ireland
| | - Elizabeth Williams
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - David R Nolan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Bruce Murphy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Paul S Gunning
- Structural Heart Division, Boston Scientific Corporation, Los Gatos, CA, 95032, USA
| | - David O'Reilly
- Structural Heart Division, Boston Scientific Corporation, Galway, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland. .,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland. .,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
52
|
Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol 2020; 18:92-116. [PMID: 32908285 DOI: 10.1038/s41569-020-0422-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Valvular heart disease is a major cause of morbidity and mortality worldwide. Surgical valve repair or replacement has been the standard of care for patients with valvular heart disease for many decades, but transcatheter heart valve therapy has revolutionized the field in the past 15 years. However, despite the tremendous technical evolution of transcatheter heart valves, to date, the clinically available heart valve prostheses for surgical and transcatheter replacement have considerable limitations. The design of next-generation tissue-engineered heart valves (TEHVs) with repair, remodelling and regenerative capacity can address these limitations, and TEHVs could become a promising therapeutic alternative for patients with valvular disease. In this Review, we present a comprehensive overview of current clinically adopted heart valve replacement options, with a focus on transcatheter prostheses. We discuss the various concepts of heart valve tissue engineering underlying the design of next-generation TEHVs, focusing on off-the-shelf technologies. We also summarize the latest preclinical and clinical evidence for the use of these TEHVs and describe the current scientific, regulatory and clinical challenges associated with the safe and broad clinical translation of this technology.
Collapse
|
53
|
Abstract
PURPOSE OF THE REVIEW Moderate or severe aortic regurgitation (AR) occurs in 0.5% of the population and typically peaks in the fourth to sixth decade of life. A significant proportion of patients have prohibitive surgical risk and are therefore treated medically with pharmacological management of heart failure and no definitive treatment of the underlying valvular pathology. RECENT FINDINGS Transcatheter aortic valve replacement (TAVR) has been used in an off-label setting to treat AR to attempt to reduce mortality and improve quality of life with varying levels of success. New-generation TAVR devices currently used in AS have demonstrated safety and feasibility when used in patients with AR. Novel TAVR devices dedicated for use in AR are being developed and early studies demonstrate promising results. Ongoing studies with larger clinical trials and novel methods of device anchoring are required, which if positive, will in turn lead to commercial approval and reimbursement, eventually making TAVR ready for use in AR.
Collapse
Affiliation(s)
- Ryan Markham
- Department of Cardiology, Stanford University, 300 Pasteur Drive, 3rd Floor, Room A31, Stanford, CA, 94305, USA
| | - M Ghodsian
- Department of Cardiology, Wollongong Hospital, Loftus St, Wollongong, NSW, 2500, Australia
| | - R Sharma
- Department of Cardiology, Stanford University, 300 Pasteur Drive, 3rd Floor, Room A31, Stanford, CA, 94305, USA.
| |
Collapse
|
54
|
Abstract
Heart valve diseases are common disorders with five million annual diagnoses being made in the United States alone. All heart valve disorders alter cardiac hemodynamic performance; therefore, treatments aim to restore normal flow. This paper reviews the state-of-the-art clinical and engineering advancements in heart valve treatments with a focus on hemodynamics. We review engineering studies and clinical literature on the experience with devices for aortic valve treatment, as well as the latest advancements in mitral valve treatments and the pulmonic and tricuspid valves on the right side of the heart. Upcoming innovations will potentially revolutionize treatment of heart valve disorders. These advancements, and more gradual enhancements in the procedural techniques and imaging modalities, could improve the quality of life of patients suffering from valvular disease who currently cannot be treated.
Collapse
Affiliation(s)
- Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv Israel
- To whom correspondence should be addressed. E-mail:
| | - Shmuel Einav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
55
|
Ghosh RP, Marom G, Bianchi M, D'souza K, Zietak W, Bluestein D. Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid-structure interaction analysis. Biomech Model Mechanobiol 2020; 19:1725-1740. [PMID: 32095912 DOI: 10.1007/s10237-020-01304-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/02/2020] [Indexed: 01/11/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure that provides an effective alternative to open-heart surgical valve replacement for treating advanced calcific aortic valve disease patients. However, complications, such as valve durability, device migration, paravalvular leakage (PVL), and thrombogenicity may lead to increased overall post-TAVR morbidity and mortality. A series of numerical studies involving a self-expandable TAVR valve were performed to evaluate these complications. Structural studies were performed with finite element (FE) analysis, followed by computational fluid dynamics (CFD) simulations, and fluid-structure interaction (FSI) analysis. The FE analysis was utilized to study the effect of TAVR valve implantation depth on valve anchorage in the Living Heart Human Model, which is capable of simulating beating heart during repeated cardiac cycles. The TAVR deployment cases where no valve migration was observed were then used to calculate the post-deployment thrombogenic potential via CFD simulations. FSI analysis followed to further assess the post-deployment TAVR hemodynamic performance for different implantation depths. The deployed valves PVL, geometric and effective orifice areas, and the leaflets structural and flow stress magnitudes were compared to determine the device optimal landing zone. The combined structural and hemodynamic analysis indicated that with the TAVR valve deployed at an aft ventricle position an optimal performance was achieved in the specific anatomy studied. Given the TAVR's rapid expansion to younger lower-risk patients, the comprehensive numerical methodology proposed here can potentially be used as a predictive tool for both procedural planning and valve design optimization to minimize the reported complications.
Collapse
Affiliation(s)
- Ram P Ghosh
- Department of Biomedical Engineering, Health Sciences Center T08-050, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Matteo Bianchi
- Department of Biomedical Engineering, Health Sciences Center T08-050, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Karl D'souza
- Dassault Systèmes SIMULIA Corp, Johnston, RI, 02919, USA
| | - Wojtek Zietak
- Capvidia NV, Research Park Haasrode, Technologielaan 3, 3001, Leuven, Belgium
| | - Danny Bluestein
- Department of Biomedical Engineering, Health Sciences Center T08-050, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
56
|
Li RL, Russ J, Paschalides C, Ferrari G, Waisman H, Kysar JW, Kalfa D. Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing. Biomaterials 2019; 225:119493. [PMID: 31569017 PMCID: PMC6948849 DOI: 10.1016/j.biomaterials.2019.119493] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/21/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023]
Abstract
The native human heart valve leaflet contains a layered microstructure comprising a hierarchical arrangement of collagen, elastin, proteoglycans and various cell types. Here, we review the various experimental methods that have been employed to probe this intricate microstructure and which attempt to elucidate the mechanisms that govern the leaflet's mechanical properties. These methods include uniaxial, biaxial, and flexural tests, coupled with microstructural characterization techniques such as small angle X-ray scattering (SAXS), small angle light scattering (SALS), and polarized light microscopy. These experiments have revealed complex elastic and viscoelastic mechanisms that are highly directional and dependent upon loading conditions and biochemistry. Of all engineering materials, polymers and polymer-based composites are best able to mimic the tissue-level mechanical behavior of the native leaflet. This similarity to native tissue permits the fabrication of polymeric valves with physiological flow patterns, reducing the risk of thrombosis compared to mechanical valves and in some cases surpassing the in vivo durability of bioprosthetic valves. Earlier work on polymeric valves simply assumed the mechanical properties of the polymer material to be linear elastic, while more recent studies have considered the full hyperelastic stress-strain response. These material models have been incorporated into computational models for the optimization of valve geometry, with the goal of minimizing internal stresses and improving durability. The latter portion of this review recounts these developments in polymeric heart valves, with a focus on mechanical testing of polymers, valve geometry, and manufacturing methods.
Collapse
Affiliation(s)
- Richard L Li
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA; Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA
| | - Jonathan Russ
- Department of Civil Engineering and Engineering Mechanics, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Costas Paschalides
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Giovanni Ferrari
- Department of Surgery and Biomedical Engineering, Columbia University Medical Center, New York, NY, USA
| | - Haim Waisman
- Department of Civil Engineering and Engineering Mechanics, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA; Department of Otolaryngology - Head and Neck Surgery, Columbia University Medical Center, New York, NY, USA.
| | - David Kalfa
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|