52
|
Affiliation(s)
- Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
53
|
Lee DJ, O'Donnell H, Routier FH, Tiralongo J, Haselhorst T. Glycobiology of Human Fungal Pathogens: New Avenues for Drug Development. Cells 2019; 8:cells8111348. [PMID: 31671548 PMCID: PMC6912366 DOI: 10.3390/cells8111348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal infections (IFI) are an increasing threat to the developing world, with fungal spores being ubiquitous and inhaled every day. Some fungal species are commensal organisms that are part of the normal human microbiota, and, as such, do not pose a threat to the immune system. However, when the natural balance of this association is disturbed or the host's immune system is compromised, these fungal pathogens overtake the organism, and cause IFI. To understand the invasiveness of these pathogens and to address the growing problem of IFI, it is essential to identify the cellular processes of the invading organism and their virulence. In this review, we will discuss the prevalence and current options available to treat IFI, including recent reports of drug resistance. Nevertheless, the main focus of this review is to describe the glycobiology of human fungal pathogens and how various components of the fungal cell wall, particularly cell wall polysaccharides and glycoconjugates, are involved in fungal pathogenicity, their biosynthesis and how they can be potentially exploited to develop novel antifungal treatment options. We will specifically describe the nucleotide sugar transporters (NSTs) that are important in fungal survival and suggest that the inhibition of fungal NSTs may potentially be useful to prevent the establishment of fungal infections.
Collapse
Affiliation(s)
- Danielle J Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| | - Holly O'Donnell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| | - Françoise H Routier
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| | - Joe Tiralongo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
54
|
Miyazawa K, Yoshimi A, Sano M, Tabata F, Sugahara A, Kasahara S, Koizumi A, Yano S, Nakajima T, Abe K. Both Galactosaminogalactan and α-1,3-Glucan Contribute to Aggregation of Aspergillus oryzae Hyphae in Liquid Culture. Front Microbiol 2019; 10:2090. [PMID: 31572319 PMCID: PMC6753227 DOI: 10.3389/fmicb.2019.02090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023] Open
Abstract
Filamentous fungi generally form aggregated hyphal pellets in liquid culture. We previously reported that α-1,3-glucan-deficient mutants of Aspergillus nidulans did not form hyphal pellets and their hyphae were fully dispersed, and we suggested that α-1,3-glucan functions in hyphal aggregation. However, Aspergillus oryzae α-1,3-glucan-deficient (AGΔ) mutants still form small pellets; therefore, we hypothesized that another factor responsible for forming hyphal pellets remains in these mutants. Here, we identified an extracellular matrix polysaccharide galactosaminogalactan (GAG) as such a factor. To produce a double mutant of A. oryzae (AG-GAGΔ), we disrupted the genes required for GAG biosynthesis in an AGΔ mutant. Hyphae of the double mutant were fully dispersed in liquid culture, suggesting that GAG is involved in hyphal aggregation in A. oryzae. Addition of partially purified GAG fraction to the hyphae of the AG-GAGΔ strain resulted in formation of mycelial pellets. Acetylation of the amino group in galactosamine of GAG weakened GAG aggregation, suggesting that hydrogen bond formation by this group is important for aggregation. Genome sequences suggest that α-1,3-glucan, GAG, or both are present in many filamentous fungi and thus may function in hyphal aggregation in these fungi. We also demonstrated that production of a recombinant polyesterase, CutL1, was higher in the AG-GAGΔ strain than in the wild-type and AGΔ strains. Thus, controlling hyphal aggregation factors of filamentous fungi may increase productivity in the fermentation industry.
Collapse
Affiliation(s)
- Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Motoaki Sano
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Japan
| | - Fuka Tabata
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Asumi Sugahara
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shin Kasahara
- Department of Environmental Sciences, School of Food, Agricultural and Environmental Sciences, Miyagi University, Taiwa, Japan
| | - Ami Koizumi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Engineering, Yamagata University, Yonezawa, Japan
| | - Tasuku Nakajima
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.,Laboratory of Microbial Resources, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|