51
|
Environmental prospecting of black yeast-like agents of human disease using culture-independent methodology. Sci Rep 2020; 10:14229. [PMID: 32848176 PMCID: PMC7450056 DOI: 10.1038/s41598-020-70915-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
Melanized fungi and black yeasts in the family Herpotrichiellaceae (order Chaetothyriales) are important agents of human and animal infectious diseases such as chromoblastomycosis and phaeohyphomycosis. The oligotrophic nature of these fungi enables them to survive in adverse environments where common saprobes are absent. Due to their slow growth, they lose competition with common saprobes, and therefore isolation studies yielded low frequencies of clinically relevant species in environmental habitats from which humans are thought to be infected. This problem can be solved with metagenomic techniques which allow recognition of microorganisms independent from culture. The present study aimed to identify species of the family Herpotrichiellaceae that are known to occur in Brazil by the use of molecular markers to screen public environmental metagenomic datasets from Brazil available in the Sequence Read Archive (SRA). Species characterization was performed with the BLAST comparison of previously described barcodes and padlock probe sequences. A total of 18,329 sequences was collected comprising the genera Cladophialophora, Exophiala, Fonsecaea, Rhinocladiella and Veronaea, with a focus on species related to the chromoblastomycosis. The data obtained in this study demonstrated presence of these opportunists in the investigated datasets. The used techniques contribute to our understanding of environmental occurrence and epidemiology of black fungi.
Collapse
|
52
|
Kirchhoff L, Dittmer S, Buer J, Rath PM, Steinmann J. In vitro activity of olorofim (F901318) against fungi of the genus, Scedosporium and Rasamsonia as well as against Lomentospora prolificans, Exophiala dermatitidis and azole-resistant Aspergillus fumigatus. Int J Antimicrob Agents 2020; 56:106105. [PMID: 32721601 DOI: 10.1016/j.ijantimicag.2020.106105] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/19/2020] [Indexed: 01/06/2023]
Abstract
In recent decades, invasive infections caused by fungal pathogens have been reported with increasing frequency. Concurrently, the rates of detected resistance mechanisms against commonly used antifungal agents in fungi are increasing. The need for novel antifungal drugs is thus imminent. In this study, the novel drug olorofim (F901318) was tested for its antifungal activity against the human fungal pathogens Lomentospora prolificans (n = 20), Scedosporium aurantiacum (n = 2), Scedosporium apiospermum (n = 6), Rasamsonia argillacea species complex (n = 23), Exophiala dermatitidis (n = 10) and azole-resistant Aspergillus fumigatus (ARAF) (n = 25) in an in vitro broth microdilution assay according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations. Whilst olorofim was ascertained to be effective against R. argillacea species complex [minimum inhibitory concentrations (MICs) of ≤0.008 mg/L], Scedosporium spp. (MICs of 0.032-0.5 mg/L), L. prolificans (MICs of 0.032-0.5 mg/L) and ARAF (MICs of ≤0.008-0.032 mg/L), the drug had an MIC of >4 mg/L against E. dermatitidis. These data demonstrate the antifungal activity of olorofim against a broad range of filamentous fungal pathogens.
Collapse
Affiliation(s)
- Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Silke Dittmer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; Institute for Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nuernberg, Paracelsus Medical University, Prof.-Ernst-Nathan-Str. 1, 90419 Nuremberg, Germany.
| |
Collapse
|
53
|
First Report of Environmental Isolation of Exophiala spp. in Malaysia. Curr Microbiol 2020; 77:2915-2924. [PMID: 32661678 DOI: 10.1007/s00284-020-02109-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
The opportunistic pathogen Exophiala dermatitidis has been frequently isolated from tropical regions of the world. However, there is no report of environmental isolation of Exophiala spp. from Malaysia. The information regarding the ecology of this microbe is important for a better understanding of the opportunism. This study aims to conduct a survey of natural distribution of Exophiala spp. in Malaysia. Forty-seven strains of Exophiala-like was isolated by using selective media. These isolates from the fields were molecularly identified based on the ITS region. The biochemical activity of these microbes was tested by conducting various tests, i.e. DNase test, proteinase activity, and urea hydrolysis. Overall, 22 strains of E. dermatitidis were successfully obtained and identified from burnt tree bark, oil dripped soil sample, hot spring biofilm, railway track stones, tar road contaminated with petrol hydrocarbon, drain and deep mud of Sungai Pinang besides the new discovery from pigeon droppings. A single strain of E. heteromorpha was identified from tar road contaminated with petrol hydrocarbon. Genotypes of the isolated E. dermatitidis were identified by the neighbor-joining tree and grouped into Genotype A, A2 and B. The existence of new Genotype A4 was confirmed by a similar cladogram position in both neighbor-joining and maximum likelihood tree. The survival of E. dermatitidis in the hydrocarbon contaminated environment was studied by supplying engine oil and observing the growth pattern. The results of this study suggest that the opportunistic Exophiala spp. was isolated from nutrient limited and harsh conditions in the natural environment.
Collapse
|
54
|
Lavrin T, Konte T, Kostanjšek R, Sitar S, Sepčič K, Prpar Mihevc S, Žagar E, Župunski V, Lenassi M, Rogelj B, Gunde Cimerman N. The Neurotropic Black Yeast Exophiala dermatitidis Induces Neurocytotoxicity in Neuroblastoma Cells and Progressive Cell Death. Cells 2020; 9:cells9040963. [PMID: 32295162 PMCID: PMC7226985 DOI: 10.3390/cells9040963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022] Open
Abstract
The neurotropic and extremophilic black yeast Exophiala dermatitidis (Herpotrichellaceae) inhabits diverse indoor environments, in particular bathrooms, steam baths, and dishwashers. Here, we show that the selected strain, EXF-10123, is polymorphic, can grow at 37 °C, is able to assimilate aromatic hydrocarbons (toluene, mineral oil, n-hexadecane), and shows abundant growth with selected neurotransmitters (acetylcholine, gamma-aminobutyric acid, glycine, glutamate, and dopamine) as sole carbon sources. We have for the first time demonstrated the effect of E. dermatitidis on neuroblastoma cell model SH-SY5Y. Aqueous and organic extracts of E. dermatitidis biomass reduced SH-SY5Y viability by 51% and 37%, respectively. Melanized extracellular vesicles (EVs) prepared from this strain reduced viability of the SH-SY5Y to 21%, while non-melanized EVs were considerably less neurotoxic (79% viability). We also demonstrated direct interactions of E. dermatitidis with SH-SY5Y by scanning electron and confocal fluorescence microscopy. The observed invasion and penetration of neuroblastoma cells by E. dermatitidis hyphae presumably causes the degradation of most neuroblastoma cells in only three days. This may represent a so far unknown indirect or direct cause for the development of some neurodegenerative diseases such as Alzheimer’s.
Collapse
Affiliation(s)
- Teja Lavrin
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
- Correspondence: (T.L.); (N.G.C.); Tel.: +386-(0)1-543-7652 (T.L.); +386-(0)1-320-3400 (N.G.C.)
| | - Tilen Konte
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.K.); (M.L.)
| | - Rok Kostanjšek
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
| | - Simona Sitar
- Laboratory for Polymer Chemistry and Technology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (S.S.); (E.Ž.)
| | - Kristina Sepčič
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
| | | | - Ema Žagar
- Laboratory for Polymer Chemistry and Technology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (S.S.); (E.Ž.)
| | - Vera Župunski
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.Ž.); (B.R.)
| | - Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.K.); (M.L.)
| | - Boris Rogelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.Ž.); (B.R.)
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Biomedical Research Institute, 1000 Ljubljana, Slovenia
| | - Nina Gunde Cimerman
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
- Correspondence: (T.L.); (N.G.C.); Tel.: +386-(0)1-543-7652 (T.L.); +386-(0)1-320-3400 (N.G.C.)
| |
Collapse
|
55
|
Kirchhoff L, Weisner AK, Schrepffer M, Hain A, Scharmann U, Buer J, Rath PM, Steinmann J. Phenotypical Characteristics of the Black Yeast Exophiala dermatitidis Are Affected by Pseudomonas aeruginosa in an Artificial Sputum Medium Mimicking Cystic Fibrosis-Like Conditions. Front Microbiol 2020; 11:471. [PMID: 32265891 PMCID: PMC7100538 DOI: 10.3389/fmicb.2020.00471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
Research into the cooperative pathogenicity of microbes in cystic fibrosis (CF) lungs is crucial for an understanding of the pathophysiology of infections and the development of novel treatment strategies. This study investigated the impact of the common CF-associated bacterial pathogen Pseudomonas aeruginosa on the black yeast Exophiala dermatitidis. It evaluated the planktonic growth, biofilm formation, morphology, and virulence of the fungus in the presence or absence of P. aeruginosa. It also determined the role of P. aeruginosa quorum-sensing (QS) molecules within these interactions, e.g., by using sterile culture filtrate and QS-deficient mutants. P. aeruginosa is known to inhibit the planktonic growth of E. dermatitidis. We found that fungal biofilm formation increased in the presence of P. aeruginosa after 24 h but is decreased significantly after 48 h. This effect was reversed when, instead of QS wild-type strains, ΔlasR, and ΔrhlR mutants were added to E. dermatitidis biofilm formation. The number and length of hyphae were substantially reduced when E. dermatitidis was co-cultivated with P. aeruginosa, but not when it was co-cultivated with the mutants. Experiments testing the virulence of E. dermatitidis in the greater wax moth Galleria mellonella showed a synergetic effect on larval killing when E. dermatitidis was injected together with P. aeruginosa culture filtrate. Survival rates were decreased when biofilm culture filtrate was added but not when planktonic culture filtrate was added. In summary, P. aeruginosa affects the growth, morphology, biofilm formation, and virulence of E. dermatitidis. N-acyl-L-homoserine lactone (AHL) QS molecules regulated factors that have been shown to contribute to the inhibition of the ability of E. dermatitidis to form filaments and biofilm.
Collapse
Affiliation(s)
- Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Weisner
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mona Schrepffer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrea Hain
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrike Scharmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
56
|
Affiliation(s)
- Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
57
|
A Yersinia ruckeri TIR Domain-Containing Protein (STIR-2) Mediates Immune Evasion by Targeting the MyD88 Adaptor. Int J Mol Sci 2019; 20:ijms20184409. [PMID: 31500298 PMCID: PMC6769684 DOI: 10.3390/ijms20184409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
TIR domain-containing proteins are essential for bacterial pathogens to subvert host defenses. This study describes a fish pathogen, Yersinia ruckeri SC09 strain, with a novel TIR domain-containing protein (STIR-2) that affects Toll-like receptor (TLR) function. STIR-2 was identified in Y. ruckeri by bioinformatics analysis. The toxic effects of this gene on fish were determined by in vivo challenge experiments in knockout mutants and complement mutants of the stir-2 gene. In vitro, STIR-2 downregulated the expression and secretion of IL-6, IL-1β, and TNF-α. Furthermore, the results of NF-κB-dependent luciferase reporter system, co-immunoprecipitation, GST pull-down assays, and yeast two-hybrid assay indicated that STIR-2 inhibited the TLR signaling pathway by interacting with myeloid differentiation factor 88 (MyD88). In addition, STIR-2 promoted the intracellular survival of pathogenic Yersinia ruckeri SC09 strain by binding to the TIR adaptor protein MyD88 and inhibiting the pre-inflammatory signal of immune cells. These results showed that STIR-2 increased virulence in Y. ruckeri and suppressed the innate immune response by inhibiting TLR and MyD88-mediated signaling, serving as a novel strategy for innate immune evasion.
Collapse
|