51
|
Finding a place in the SUN: telomere maintenance in a diverse nuclear landscape. Curr Opin Cell Biol 2016; 40:145-152. [PMID: 27064212 DOI: 10.1016/j.ceb.2016.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/21/2022]
Abstract
Telomeres function in the context of a complex nuclear milieu in which telomeres tend to occupy distinct subnuclear regions. Indeed, regulation of the subnuclear positioning of telomeres is conserved from yeast to human, raising the age-old question: to what extent is location important for function? In mitotically dividing cells, the positioning of telomeres affects their epigenetic state and influences telomere processing and synthesis. In meiotic cells, telomere location is important for homologue pairing, centromere assembly and spindle formation. Here we focus on recent insights into the functions of telomere positioning in maintaining genome integrity.
Collapse
|
52
|
Matsumoto A, Sakamoto C, Matsumori H, Katahira J, Yasuda Y, Yoshidome K, Tsujimoto M, Goldberg IG, Matsuura N, Nakao M, Saitoh N, Hieda M. Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli. Nucleus 2016; 7:68-83. [PMID: 26962703 DOI: 10.1080/19491034.2016.1149664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A supervised machine learning algorithm, which is qualified for image classification and analyzing similarities, is based on multiple discriminative morphological features that are automatically assembled during the learning processes. The algorithm is suitable for population-based analysis of images of biological materials that are generally complex and heterogeneous. Here we used the algorithm wndchrm to quantify the effects on nucleolar morphology of the loss of the components of nuclear envelope in a human mammary epithelial cell line. The linker of nucleoskeleton and cytoskeleton (LINC) complex, an assembly of nuclear envelope proteins comprising mainly members of the SUN and nesprin families, connects the nuclear lamina and cytoskeletal filaments. The components of the LINC complex are markedly deficient in breast cancer tissues. We found that a reduction in the levels of SUN1, SUN2, and lamin A/C led to significant changes in morphologies that were computationally classified using wndchrm with approximately 100% accuracy. In particular, depletion of SUN1 caused nucleolar hypertrophy and reduced rRNA synthesis. Further, wndchrm revealed a consistent negative correlation between SUN1 expression and the size of nucleoli in human breast cancer tissues. Our unbiased morphological quantitation strategies using wndchrm revealed an unexpected link between the components of the LINC complex and the morphologies of nucleoli that serves as an indicator of the malignant phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Ayaka Matsumoto
- a Osaka University , Graduate School of Medicine and Health Science , Suita City , Osaka , Japan
| | - Chiyomi Sakamoto
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Haruka Matsumori
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Jun Katahira
- c Osaka University , Graduate School of Frontier Bioscience , Suita City , Osaka , Japan
| | - Yoko Yasuda
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Katsuhide Yoshidome
- d Department of Breast Surgery , Osaka Police Hospital , Tennoji-ku , Osaka , Japan
| | - Masahiko Tsujimoto
- e Department of Pathology , Osaka Police Hospital , Tennoji-ku , Osaka , Japan
| | - Ilya G Goldberg
- f Image Informatics and Computational Biology Unit, Laboratory of Genetics , National Institute on Aging, National Institutes of Health , Baltimore , MD USA
| | - Nariaki Matsuura
- a Osaka University , Graduate School of Medicine and Health Science , Suita City , Osaka , Japan
| | - Mitsuyoshi Nakao
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan.,g Core Research for Evolutional Science and Technology (CREST) , Japan Agency for Medical Research and Development , Tokyo , Japan
| | - Noriko Saitoh
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Miki Hieda
- a Osaka University , Graduate School of Medicine and Health Science , Suita City , Osaka , Japan
| |
Collapse
|
53
|
Khrameeva EE, Fudenberg G, Gelfand MS, Mirny LA. History of chromosome rearrangements reflects the spatial organization of yeast chromosomes. J Bioinform Comput Biol 2016; 14:1641002. [PMID: 27021249 DOI: 10.1142/s021972001641002x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three-dimensional (3D) organization of genomes affects critical cellular processes such as transcription, replication, and deoxyribo nucleic acid (DNA) repair. While previous studies have investigated the natural role, the 3D organization plays in limiting a possible set of genomic rearrangements following DNA repair, the influence of specific organizational principles on this process, particularly over longer evolutionary time scales, remains relatively unexplored. In budding yeast S.cerevisiae, chromosomes are organized into a Rabl-like configuration, with clustered centromeres and telomeres tethered to the nuclear periphery. Hi-C data for S.cerevisiae show that a consequence of this Rabl-like organization is that regions equally distant from centromeres are more frequently in contact with each other, between arms of both the same and different chromosomes. Here, we detect rearrangement events in Saccharomyces species using an automatic approach, and observe increased rearrangement frequency between regions with higher contact frequencies. Together, our results underscore how specific principles of 3D chromosomal organization can influence evolutionary events.
Collapse
Affiliation(s)
- Ekaterina E Khrameeva
- 1 Institute for Information Transmission, Problems (the Kharkevich Institute), Russian Academy of Sciences, Bolshoy Karetny per. 19, build. 1, Moscow 127051, Russian Federation.,2 Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, build. 3, Moscow 143026, Russian Federation
| | - Geoffrey Fudenberg
- 3 Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Mikhail S Gelfand
- 1 Institute for Information Transmission, Problems (the Kharkevich Institute), Russian Academy of Sciences, Bolshoy Karetny per. 19, build. 1, Moscow 127051, Russian Federation.,4 Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russian Federation
| | - Leonid A Mirny
- 3 Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
54
|
Spichal M, Brion A, Herbert S, Cournac A, Marbouty M, Zimmer C, Koszul R, Fabre E. Evidence for a dual role of actin in regulating chromosome organization and dynamics in yeast. J Cell Sci 2016; 129:681-92. [PMID: 26763908 DOI: 10.1242/jcs.175745] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/05/2016] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic chromosomes undergo movements that are involved in the regulation of functional processes such as DNA repair. To better understand the origin of these movements, we used fluorescence microscopy, image analysis and chromosome conformation capture to quantify the actin contribution to chromosome movements and interactions in budding yeast. We show that both the cytoskeletal and nuclear actin drive local chromosome movements, independently of Csm4, a putative LINC protein. Inhibition of actin polymerization reduces subtelomere dynamics, resulting in more confined territories and enrichment in subtelomeric contacts. Artificial tethering of actin to nuclear pores increased both nuclear pore complex (NPC) and subtelomere motion. Chromosome loci that were positioned away from telomeres exhibited reduced motion in the presence of an actin polymerization inhibitor but were unaffected by the lack of Csm4. We further show that actin was required for locus mobility that was induced by targeting the chromatin-remodeling protein Ino80. Correlated with this, DNA repair by homologous recombination was less efficient. Overall, interphase chromosome dynamics are modulated by the additive effects of cytoskeletal actin through forces mediated by the nuclear envelope and nuclear actin, probably through the function of actin in chromatin-remodeling complexes.
Collapse
Affiliation(s)
- Maya Spichal
- INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France Sorbonne Universités, UPMC Université Paris 6, Paris 75005, France
| | - Alice Brion
- INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France
| | - Sébastien Herbert
- Institut Pasteur, Unité Imagerie et Modélisation, Paris 75015, France CNRS, URA 2582, Paris 75015, France
| | - Axel Cournac
- Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| | - Martial Marbouty
- Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| | - Christophe Zimmer
- Institut Pasteur, Unité Imagerie et Modélisation, Paris 75015, France CNRS, URA 2582, Paris 75015, France
| | - Romain Koszul
- Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| | - Emmanuelle Fabre
- INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| |
Collapse
|
55
|
Shuryak I. Mechanistic Modeling of Dose and Dose Rate Dependences of Radiation-Induced DNA Double Strand Break Rejoining Kinetics in Saccharomyces cerevisiae. PLoS One 2016; 11:e0146407. [PMID: 26741137 PMCID: PMC4711806 DOI: 10.1371/journal.pone.0146407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/16/2015] [Indexed: 11/19/2022] Open
Abstract
Mechanistic modeling of DNA double strand break (DSB) rejoining is important for quantifying and medically exploiting radiation-induced cytotoxicity (e.g. in cancer radiotherapy). Most radiation-induced DSBs are quickly-rejoinable and are rejoined within the first 1–2 hours after irradiation. Others are slowly-rejoinable (persist for several hours), and yet others are essentially unrejoinable (persist for >24 hours). The dependences of DSB rejoining kinetics on radiation dose and dose rate remain incompletely understood. We hypothesize that the fraction of slowly-rejoinable and/or unrejoinable DSBs increases with increasing dose/dose rate. This radiation-dependent (RD) model was implemented using differential equations for three DSB classes: quickly-rejoinable, slowly-rejoinable and unrejoinable. Radiation converts quickly-rejoinable to slowly-rejoinable, and slowly-rejoinable to unrejoinable DSBs. We used large published data sets on DSB rejoining in yeast exposed to sparsely-ionizing (electrons and γ-rays, single or split-doses, high or low dose rates) and densely-ionizing (α-particles) radiation to compare the performances of the proposed RD formalism and the established two-lesion kinetic (TLK) model. These yeast DSB rejoining data were measured within the radiation dose range relevant for clonogenic cell survival, whereas in mammalian cells DSB rejoining is usually measured only at supra-lethal doses for technical reasons. The RD model described both sparsely-ionizing and densely-ionizing radiation data much better than the TLK model: by 217 and 14 sample-size-adjusted Akaike information criterion units, respectively. This occurred because: the RD (but not the TLK) model reproduced the observed upwardly-curving dose responses for slowly-rejoinable/unrejoinable DSBs at long times after irradiation; the RD model adequately described DSB yields at both high and low dose rates using one parameter set, whereas the TLK model overestimated low dose rate data. These results support the hypothesis that DSB rejoining is progressively impeded at increasing radiation doses/dose rates.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
56
|
The Conformation of Yeast Chromosome III Is Mating Type Dependent and Controlled by the Recombination Enhancer. Cell Rep 2015; 13:1855-67. [PMID: 26655901 DOI: 10.1016/j.celrep.2015.10.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/27/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022] Open
Abstract
Mating-type switching in yeast occurs through gene conversion between the MAT locus and one of two silent loci (HML or HMR) on opposite ends of the chromosome. MATa cells choose HML as template, whereas MATα cells use HMR. The recombination enhancer (RE) located on the left arm regulates this process. One long-standing hypothesis is that switching is guided by mating-type-specific and possibly RE-dependent chromosome folding. Here, we use Hi-C, 5C, and live-cell imaging to characterize the conformation of chromosome III in both mating types. We discovered a mating-type-specific conformational difference in the left arm. Deletion of a 1-kb subregion within the RE, which is not necessary during switching, abolished mating-type-dependent chromosome folding. The RE is therefore a composite element with one subregion essential for donor selection during switching and a separate region involved in modulating chromosome conformation.
Collapse
|
57
|
Mizuguchi T, Barrowman J, Grewal SIS. Chromosome domain architecture and dynamic organization of the fission yeast genome. FEBS Lett 2015; 589:2975-86. [PMID: 26096785 PMCID: PMC4598268 DOI: 10.1016/j.febslet.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Advanced techniques including the chromosome conformation capture (3C) methodology and its derivatives are complementing microscopy approaches to study genome organization, and are revealing new details of three-dimensional (3D) genome architecture at increasing resolution. The fission yeast Schizosaccharomyces pombe (S. pombe) comprises a small genome featuring organizational elements of more complex eukaryotic systems, including conserved heterochromatin assembly machinery. Here we review key insights into genome organization revealed in this model system through a variety of techniques. We discuss the predominant role of Rabl-like configuration for interphase chromosome organization and the dynamic changes that occur during mitosis and meiosis. High resolution Hi-C studies have also revealed the presence of locally crumpled chromatin regions called "globules" along chromosome arms, and implicated a critical role for pericentromeric heterochromatin in imposing fundamental constraints on the genome to maintain chromosome territoriality and stability. These findings have shed new light on the connections between genome organization and function. It is likely that insights gained from the S. pombe system will also broadly apply to higher eukaryotes.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jemima Barrowman
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
58
|
Amitai A, Toulouze M, Dubrana K, Holcman D. Analysis of Single Locus Trajectories for Extracting In Vivo Chromatin Tethering Interactions. PLoS Comput Biol 2015; 11:e1004433. [PMID: 26317360 PMCID: PMC4552938 DOI: 10.1371/journal.pcbi.1004433] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/06/2015] [Indexed: 12/16/2022] Open
Abstract
Is it possible to extract tethering forces applied on chromatin from the statistics of a single locus trajectories imaged in vivo? Chromatin fragments interact with many partners such as the nuclear membrane, other chromosomes or nuclear bodies, but the resulting forces cannot be directly measured in vivo. However, they impact chromatin dynamics and should be reflected in particular in the motion of a single locus. We present here a method based on polymer models and statistics of single trajectories to extract the force characteristics and in particular when they are generated by the gradient of a quadratic potential well. Using numerical simulations of a Rouse polymer and live cell imaging of the MAT-locus located on the yeast Saccharomyces cerevisiae chromosome III, we recover the amplitude and the distance between the observed and the interacting monomer. To conclude, the confined trajectories we observed in vivo reflect local interaction on chromatin.
Collapse
Affiliation(s)
- Assaf Amitai
- Institute for Medical Engineering & Science, The Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Mathias Toulouze
- Laboratory of genetic instability and nuclear organization, CEA, Fontenay-aux-Roses, France
| | - Karine Dubrana
- Laboratory of genetic instability and nuclear organization, CEA, Fontenay-aux-Roses, France
| | - David Holcman
- IBENS, Ecole Normale Supérieure, Paris, France and Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
59
|
Varoquaux N, Liachko I, Ay F, Burton JN, Shendure J, Dunham MJ, Vert JP, Noble WS. Accurate identification of centromere locations in yeast genomes using Hi-C. Nucleic Acids Res 2015; 43:5331-9. [PMID: 25940625 PMCID: PMC4477656 DOI: 10.1093/nar/gkv424] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
Centromeres are essential for proper chromosome segregation. Despite extensive research, centromere locations in yeast genomes remain difficult to infer, and in most species they are still unknown. Recently, the chromatin conformation capture assay, Hi-C, has been re-purposed for diverse applications, including de novo genome assembly, deconvolution of metagenomic samples and inference of centromere locations. We describe a method, Centurion, that jointly infers the locations of all centromeres in a single genome from Hi-C data by exploiting the centromeres’ tendency to cluster in three-dimensional space. We first demonstrate the accuracy of Centurion in identifying known centromere locations from high coverage Hi-C data of budding yeast and a human malaria parasite. We then use Centurion to infer centromere locations in 14 yeast species. Across all microbes that we consider, Centurion predicts 89% of centromeres within 5 kb of their known locations. We also demonstrate the robustness of the approach in datasets with low sequencing depth. Finally, we predict centromere coordinates for six yeast species that currently lack centromere annotations. These results show that Centurion can be used for centromere identification for diverse species of yeast and possibly other microorganisms.
Collapse
Affiliation(s)
- Nelle Varoquaux
- Mines ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 35 rue St Honoré 77300 Fontainebleau, France Institut Curie, Paris, F-75248, France U900, INSERM, Paris, F-75248, France
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Ferhat Ay
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Joshua N Burton
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Jean-Philippe Vert
- Mines ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 35 rue St Honoré 77300 Fontainebleau, France Institut Curie, Paris, F-75248, France U900, INSERM, Paris, F-75248, France
| | - William S Noble
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA Department of Computer Science and Engineering, University of Washington, 185 Stevens Way, Seattle, WA 98195, USA
| |
Collapse
|
60
|
Gong K, Tjong H, Zhou XJ, Alber F. Comparative 3D genome structure analysis of the fission and the budding yeast. PLoS One 2015; 10:e0119672. [PMID: 25799503 PMCID: PMC4370715 DOI: 10.1371/journal.pone.0119672] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/15/2015] [Indexed: 11/18/2022] Open
Abstract
We studied the 3D structural organization of the fission yeast genome, which emerges from the tethering of heterochromatic regions in otherwise randomly configured chromosomes represented as flexible polymer chains in an nuclear environment. This model is sufficient to explain in a statistical manner many experimentally determined distinctive features of the fission yeast genome, including chromatin interaction patterns from Hi-C experiments and the co-locations of functionally related and co-expressed genes, such as genes expressed by Pol-III. Our findings demonstrate that some previously described structure-function correlations can be explained as a consequence of random chromatin collisions driven by a few geometric constraints (mainly due to centromere-SPB and telomere-NE tethering) combined with the specific gene locations in the chromosome sequence. We also performed a comparative analysis between the fission and budding yeast genome structures, for which we previously detected a similar organizing principle. However, due to the different chromosome sizes and numbers, substantial differences are observed in the 3D structural genome organization between the two species, most notably in the nuclear locations of orthologous genes, and the extent of nuclear territories for genes and chromosomes. However, despite those differences, remarkably, functional similarities are maintained, which is evident when comparing spatial clustering of functionally related genes in both yeasts. Functionally related genes show a similar spatial clustering behavior in both yeasts, even though their nuclear locations are largely different between the yeast species.
Collapse
Affiliation(s)
- Ke Gong
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States of America
| | - Harianto Tjong
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States of America
| | - Xianghong Jasmine Zhou
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States of America
- * E-mail: (FA); (XJZ)
| | - Frank Alber
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States of America
- * E-mail: (FA); (XJZ)
| |
Collapse
|
61
|
Morales L, Noel B, Porcel B, Marcet-Houben M, Hullo MF, Sacerdot C, Tekaia F, Leh-Louis V, Despons L, Khanna V, Aury JM, Barbe V, Couloux A, Labadie K, Pelletier E, Souciet JL, Boekhout T, Gabaldon T, Wincker P, Dujon B. Complete DNA sequence of Kuraishia capsulata illustrates novel genomic features among budding yeasts (Saccharomycotina). Genome Biol Evol 2014; 5:2524-39. [PMID: 24317973 PMCID: PMC3879985 DOI: 10.1093/gbe/evt201] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The numerous yeast genome sequences presently available provide a rich source of information for functional as well as evolutionary genomics but unequally cover the large phylogenetic diversity of extant yeasts. We present here the complete sequence of the nuclear genome of the haploid-type strain of Kuraishia capsulata (CBS1993T), a nitrate-assimilating Saccharomycetales of uncertain taxonomy, isolated from tunnels of insect larvae underneath coniferous barks and characterized by its copious production of extracellular polysaccharides. The sequence is composed of seven scaffolds, one per chromosome, totaling 11.4 Mb and containing 6,029 protein-coding genes, ∼13.5% of which being interrupted by introns. This GC-rich yeast genome (45.7%) appears phylogenetically related with the few other nitrate-assimilating yeasts sequenced so far, Ogataea polymorpha, O. parapolymorpha, and Dekkera bruxellensis, with which it shares a very reduced number of tRNA genes, a novel tRNA sparing strategy, and a common nitrate assimilation cluster, three specific features to this group of yeasts. Centromeres were recognized in GC-poor troughs of each scaffold. The strain bears MAT alpha genes at a single MAT locus and presents a significant degree of conservation with Saccharomyces cerevisiae genes, suggesting that it can perform sexual cycles in nature, although genes involved in meiosis were not all recognized. The complete absence of conservation of synteny between K. capsulata and any other yeast genome described so far, including the three other nitrate-assimilating species, validates the interest of this species for long-range evolutionary genomic studies among Saccharomycotina yeasts.
Collapse
Affiliation(s)
- Lucia Morales
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS UMR3525, Univ. P. M. Curie UFR927, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Effect of chromosome tethering on nuclear organization in yeast. PLoS One 2014; 9:e102474. [PMID: 25020108 PMCID: PMC4096926 DOI: 10.1371/journal.pone.0102474] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022] Open
Abstract
Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML) on chromosome III in wild-type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.
Collapse
|
63
|
Abstract
Chromosome translocations are catastrophic genomic events and often play key roles in tumorigenesis. Yet the biogenesis of chromosome translocations is remarkably poorly understood. Recent work has delineated several distinct mechanistic steps in the formation of translocations, and it has become apparent that non-random spatial genome organization, DNA repair pathways and chromatin features, including histone marks and the dynamic motion of broken chromatin, are critical for determining translocation frequency and partner selection.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
64
|
Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol 2014; 15:369-83. [PMID: 24824069 DOI: 10.1038/nrm3805] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination is crucial for genome stability and for genetic exchange. Although our knowledge of the principle steps in recombination and its machinery is well advanced, homology search, the critical step of exploring the genome for homologous sequences to enable recombination, has remained mostly enigmatic. However, recent methodological advances have provided considerable new insights into this fundamental step in recombination that can be integrated into a mechanistic model. These advances emphasize the importance of genomic proximity and nuclear organization for homology search and the critical role of homology search mediators in this process. They also aid our understanding of how homology search might lead to unwanted and potentially disease-promoting recombination events.
Collapse
Affiliation(s)
- Jörg Renkawitz
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria. [3]
| | - Claudio A Lademann
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2]
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
65
|
Grzanka D, Gagat M, Izdebska M. Involvement of the SATB1/F-actin complex in chromatin reorganization during active cell death. Int J Mol Med 2014; 33:1441-50. [PMID: 24676287 PMCID: PMC4055304 DOI: 10.3892/ijmm.2014.1710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022] Open
Abstract
Over the past years, confirmations on the presence of actin and/or its polymerized form, F-actin, in the cell nucleus are progressively accumulating. Nevertheless, the function and localization of F-actin in the nucleus is still not fully characterized. Thus, the aim of the present study was to evaluate the association between F-actin and sequence-binding protein 1 (SATB1) and their involvement in chromatin remodeling associated with active cell death. Both SATB1 and F-actin were colocalized in the transcriptional active regions of the cell nucleus and a functional interaction was observed between SATB1 and higher-organized nuclear F-actin structures at the border between condensed and decondensed chromatin. These results extend the knowledge on the role of SATB1 and nuclear F-actin in three-dimensional chromatin organization and their functions during active cell death. Additionally, this study opens the discussion on the involvement of the SATB1/F-actin functional complex in active cell death; further studies are required to fully elucidate these issues.
Collapse
Affiliation(s)
- Dariusz Grzanka
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| |
Collapse
|
66
|
Abstract
The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux; Institut de Biochimie et Génétique Cellulaires; Bordeaux, France; CNRS; UMR5095 Bordeaux France; Bordeaux, France
| | - Isabelle Sagot
- Université de Bordeaux; Institut de Biochimie et Génétique Cellulaires; Bordeaux, France; CNRS; UMR5095 Bordeaux France; Bordeaux, France
| |
Collapse
|
67
|
Unexpected function of the glucanosyltransferase Gas1 in the DNA damage response linked to histone H3 acetyltransferases in Saccharomyces cerevisiae. Genetics 2014; 196:1029-39. [PMID: 24532730 DOI: 10.1534/genetics.113.158824] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin organization and structure are crucial for transcriptional regulation, DNA replication, and damage repair. Although initially characterized in remodeling cell wall glucans, the β-1,3-glucanosyltransferase Gas1 was recently discovered to regulate transcriptional silencing in a manner separable from its activity at the cell wall. However, the function of Gas1 in modulating chromatin remains largely unexplored. Our genetic characterization revealed that GAS1 had critical interactions with genes encoding the histone H3 lysine acetyltransferases Gcn5 and Sas3. Specifically, whereas the gas1 gcn5 double mutant was synthetically lethal, deletion of both GAS1 and SAS3 restored silencing in Saccharomyces cerevisiae. The loss of GAS1 also led to broad DNA damage sensitivity with reduced Rad53 phosphorylation and defective cell cycle checkpoint activation following exposure to select genotoxins. Deletion of SAS3 in the gas1 background restored both Rad53 phosphorylation and checkpoint activation following exposure to genotoxins that trigger the DNA replication checkpoint. Our analysis thus uncovers previously unsuspected functions for both Gas1 and Sas3 in DNA damage response and cell cycle regulation.
Collapse
|
68
|
Computational Models of Large-Scale Genome Architecture. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:275-349. [DOI: 10.1016/b978-0-12-800046-5.00009-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
69
|
Centromere tethering confines chromosome domains. Mol Cell 2013; 52:819-31. [PMID: 24268574 DOI: 10.1016/j.molcel.2013.10.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/10/2013] [Accepted: 10/14/2013] [Indexed: 12/20/2022]
Abstract
The organization of chromosomes into territories plays an important role in a wide range of cellular processes, including gene expression, transcription, and DNA repair. Current understanding has largely excluded the spatiotemporal dynamic fluctuations of the chromatin polymer. We combine in vivo chromatin motion analysis with mathematical modeling to elucidate the physical properties that underlie the formation and fluctuations of territories. Chromosome motion varies in predicted ways along the length of the chromosome, dependent on tethering at the centromere. Detachment of a tether upon inactivation of the centromere results in increased spatial mobility. A confined bead-spring chain tethered at both ends provides a mechanism to generate observed variations in local mobility as a function of distance from the tether. These predictions are realized in experimentally determined higher effective spring constants closer to the centromere. The dynamic fluctuations and territorial organization of chromosomes are, in part, dictated by tethering at the centromere.
Collapse
|
70
|
Laporte D, Courtout F, Salin B, Ceschin J, Sagot I. An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence. ACTA ACUST UNITED AC 2013; 203:585-94. [PMID: 24247429 PMCID: PMC3840927 DOI: 10.1083/jcb.201306075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The microtubule cytoskeleton is a highly dynamic network. In dividing cells, its complex architecture not only influences cell shape and movement but is also crucial for chromosome segregation. Curiously, nothing is known about the behavior of this cellular machinery in quiescent cells. Here we show that, upon quiescence entry, the Saccharomyces cerevisiae microtubule cytoskeleton is drastically remodeled. Indeed, while cytoplasmic microtubules vanish, the spindle pole body (SPB) assembles a long and stable monopolar array of nuclear microtubules that spans the entire nucleus. Consequently, the nucleolus is displaced. Kinetochores remain attached to microtubule tips but lose SPB clustering and distribute along the microtubule array, leading to a large reorganization of the nucleus. When cells exit quiescence, the nuclear microtubule array slowly depolymerizes and, by pulling attached centromeres back to the SPB, allows the recovery of a typical Rabl-like configuration. Finally, mutants that do not assemble a nuclear array of microtubules are impaired for both quiescence survival and exit.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, F-33077 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
71
|
Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconacci J, Albert B, Carrivain P, Victor JM, Gadal O, Bystricky K, Bancaud A. High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res 2013; 23:1829-38. [PMID: 24077391 PMCID: PMC3814883 DOI: 10.1101/gr.157008.113] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromosome dynamics are recognized to be intimately linked to genomic transactions, yet the physical principles governing spatial fluctuations of chromatin are still a matter of debate. Using high-throughput single-particle tracking, we recorded the movements of nine fluorescently labeled chromosome loci located on chromosomes III, IV, XII, and XIV of Saccharomyces cerevisiae over an extended temporal range spanning more than four orders of magnitude (10(-2)-10(3) sec). Spatial fluctuations appear to be characterized by an anomalous diffusive behavior, which is homogeneous in the time domain, for all sites analyzed. We show that this response is consistent with the Rouse polymer model, and we confirm the relevance of the model with Brownian dynamics simulations and the analysis of the statistical properties of the trajectories. Moreover, the analysis of the amplitude of fluctuations by the Rouse model shows that yeast chromatin is highly flexible, its persistence length being qualitatively estimated to <30 nm. Finally, we show that the Rouse model is also relevant to analyze chromosome motion in mutant cells depleted of proteins that bind to or assemble chromatin, and suggest that it provides a consistent framework to study chromatin dynamics. We discuss the implications of our findings for yeast genome architecture and for target search mechanisms in the nucleus.
Collapse
|
72
|
Abstract
Biological functions including gene expression and DNA repair are affected by the 3D architecture of the genome, but the underlying mechanisms are still unknown. Notably, it remains unclear to what extent nuclear architecture is driven by generic physical properties of polymers or by specific factors such as proteins binding particular DNA sequences. The budding yeast nucleus has been intensely studied by imaging and biochemical techniques, resulting in a large quantitative data set on locus positions and DNA contact frequencies. We recently described a quantitative model of the interphase yeast nucleus in which chromosomes are represented as passively moving polymer chains. This model ignores the DNA sequence information except for specific constraints at the centromeres, telomeres, and the ribosomal DNA (rDNA). Despite its simplicity, the model accounts for a large majority of experimental data, including absolute and relative locus positions and contact frequency patterns at chromosomal and subchromosomal scales. Here, we also illustrate the model's ability to reproduce observed features of chromatin movements. Our results strongly suggest that the dynamic large-scale architecture of the yeast nucleus is dominated by statistical properties of randomly moving polymers with a few sequence-specific constraints, rather than by a large number of DNA-specific factors or epigenetic modifications. In addition, we show that our model accounts for recently measured variations in homologous recombination efficiency, illustrating its potential for quantitatively understanding functional consequences of nuclear architecture.
Collapse
Affiliation(s)
- Hua Wong
- Institut Pasteur; Unité Imagerie et Modélisation; CNRS URA 2582; Paris, France
| | | | | |
Collapse
|
73
|
Leufke C, Leykauf J, Krunic D, Jauch A, Holtgreve-Grez H, Böhm-Steuer B, Bröcker EB, Mauch C, Utikal J, Hartschuh W, Purdie KJ, Boukamp P. The telomere profile distinguishes two classes of genetically distinct cutaneous squamous cell carcinomas. Oncogene 2013; 33:3506-18. [DOI: 10.1038/onc.2013.323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 05/14/2013] [Accepted: 06/17/2013] [Indexed: 12/12/2022]
|
74
|
Ritland Politz JC, Scalzo D, Groudine M. Something silent this way forms: the functional organization of the repressive nuclear compartment. Annu Rev Cell Dev Biol 2013; 29:241-70. [PMID: 23834025 PMCID: PMC3999972 DOI: 10.1146/annurev-cellbio-101512-122317] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The repressive compartment of the nucleus is comprised primarily of telomeric and centromeric regions, the silent portion of ribosomal RNA genes, the majority of transposable element repeats, and facultatively repressed genes specific to different cell types. This compartment localizes into three main regions: the peripheral heterochromatin, perinucleolar heterochromatin, and pericentromeric heterochromatin. Both chromatin remodeling proteins and transcription of noncoding RNAs are involved in maintenance of repression in these compartments. Global reorganization of the repressive compartment occurs at each cell division, during early development, and during terminal differentiation. Differential action of chromatin remodeling complexes and boundary element looping activities are involved in mediating these organizational changes. We discuss the evidence that heterochromatin formation and compartmentalization may drive nuclear organization.
Collapse
Affiliation(s)
| | - David Scalzo
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark Groudine
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
75
|
Kirkland JG, Kamakaka RT. Long-range heterochromatin association is mediated by silencing and double-strand DNA break repair proteins. ACTA ACUST UNITED AC 2013; 201:809-26. [PMID: 23733345 PMCID: PMC3678155 DOI: 10.1083/jcb.201211105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In yeast, the localization of homologous recombination–associated proteins to heterochromatic regions of the genome is necessary for proper nuclear organization. The eukaryotic genome is highly organized in the nucleus, and this organization affects various nuclear processes. However, the molecular details of higher-order organization of chromatin remain obscure. In the present study, we show that the Saccharomyces cerevisiae silenced loci HML and HMR cluster in three-dimensional space throughout the cell cycle and independently of the telomeres. Long-range HML–HMR interactions require the homologous recombination (HR) repair pathway and phosphorylated H2A (γ-H2A). γ-H2A is constitutively present at silenced loci in unperturbed cells, its localization requires heterochromatin, and it is restricted to the silenced domain by the transfer DNA boundary element. SMC proteins and Scc2 localize to the silenced domain, and Scc2 binding requires the presence of γ-H2A. These findings illustrate a novel pathway for heterochromatin organization and suggest a role for HR repair proteins in genomic organization.
Collapse
Affiliation(s)
- Jacob G Kirkland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
76
|
Freire-Picos MA, Landeira-Ameijeiras V, Mayán MD. Stalled RNAP-II molecules bound to non-coding rDNA spacers are required for normal nucleolus architecture. Yeast 2013; 30:267-77. [PMID: 23703787 DOI: 10.1002/yea.2961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 11/10/2022] Open
Abstract
The correct distribution of nuclear domains is critical for the maintenance of normal cellular processes such as transcription and replication, which are regulated depending on their location and surroundings. The most well-characterized nuclear domain, the nucleolus, is essential for cell survival and metabolism. Alterations in nucleolar structure affect nuclear dynamics; however, how the nucleolus and the rest of the nuclear domains are interconnected is largely unknown. In this report, we demonstrate that RNAP-II is vital for the maintenance of the typical crescent-shaped structure of the nucleolar rDNA repeats and rRNA transcription. When stalled RNAP-II molecules are not bound to the chromatin, the nucleolus loses its typical crescent-shaped structure. However, the RNAP-II interaction with Seh1p, or cryptic transcription by RNAP-II, is not critical for morphological changes.
Collapse
Affiliation(s)
- M A Freire-Picos
- MRC Clinical Sciences Centre, Imperial College, London, W12 0NN, UK
| | | | | |
Collapse
|
77
|
Agmon N, Liefshitz B, Zimmer C, Fabre E, Kupiec M. Effect of nuclear architecture on the efficiency of double-strand break repair. Nat Cell Biol 2013; 15:694-9. [PMID: 23644470 DOI: 10.1038/ncb2745] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/02/2013] [Indexed: 12/15/2022]
Abstract
The most dangerous insults to the genome's integrity are those that break both strands of the DNA. Double-strand breaks can be repaired by homologous recombination; in this conserved mechanism, a global genomic homology search finds sequences similar to those near the break, and uses them as a template for DNA synthesis and ligation. Chromosomes occupy restricted territories within the nucleus. We show that yeast genomic regions whose nuclear territories overlap recombine more efficiently than sequences located in spatially distant territories. Tethering of telomeres and centromeres reduces the efficiency of recombination between distant genomic loci, lowering the chances of non-allelic recombination. Our results challenge present models that posit an active scanning of the whole nuclear volume by the broken chromosomal end; they demonstrate that the search for homology is a limiting step in homologous recombination, and emphasize the importance of nuclear organization in genome maintenance.
Collapse
Affiliation(s)
- Neta Agmon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
78
|
Abstract
The nuclear envelope not only compartmentalizes the genome but is also home to the SUN-KASH domain proteins, which play essential roles both in genome organization and in linking the nucleus to the cytoskeleton. In interphase fission yeast cells, centromeres are clustered near the nuclear periphery. A recent report demonstrates that the inner nuclear membrane SUN domain protein Sad1 and a novel protein Csi1 connect centromeres to the nuclear envelope and that centromere clustering during interphase is critical for the efficient capture of kinetochores by microtubules during mitosis.
Collapse
Affiliation(s)
- Haitong Hou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
79
|
Dion V, Gasser SM. Chromatin movement in the maintenance of genome stability. Cell 2013; 152:1355-64. [PMID: 23498942 DOI: 10.1016/j.cell.2013.02.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Indexed: 11/24/2022]
Abstract
Mechanistic analyses based on improved imaging techniques have begun to explore the biological implications of chromatin movement within the nucleus. Studies in both prokaryotes and eukaryotes have shed light on what regulates the mobility of DNA over long distances. Interestingly, in eukaryotes, genomic loci increase their movement in response to double-strand break induction. Break mobility, in turn, correlates with the efficiency of repair by homologous recombination. We review here the source and regulation of DNA mobility and discuss how it can both contribute to and jeopardize genome stability.
Collapse
Affiliation(s)
- Vincent Dion
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | |
Collapse
|
80
|
Hozé N, Ruault M, Amoruso C, Taddei A, Holcman D. Spatial telomere organization and clustering in yeast Saccharomyces cerevisiae nucleus is generated by a random dynamics of aggregation-dissociation. Mol Biol Cell 2013; 24:1791-800, S1-10. [PMID: 23576549 PMCID: PMC3667730 DOI: 10.1091/mbc.e13-01-0031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 32 telomeres of budding yeast form clusters, yet whether clusters are due to random localization or telomeric interactions is unclear. Data from live-cell imaging are compared with a biophysical model of telomere dynamics. Direct molecular interaction between telomeres is the key parameter that regulates telomere clustering. Spatial and temporal behavior of chromosomes and their regulatory proteins is a key control mechanism in genomic function. This is exemplified by the clustering of the 32 budding yeast telomeres that form foci in which silencing factors concentrate. To uncover the determinants of telomere distribution, we compare live-cell imaging with a stochastic model of telomere dynamics that we developed. We show that random encounters alone are inadequate to produce the clustering observed in vivo. In contrast, telomere dynamics observed in vivo in both haploid and diploid cells follows a process of dissociation–aggregation. We determine the time that two telomeres spend in the same cluster for the telomere distribution observed in cells expressing different levels of the silencing factor Sir3 protein, limiting for telomere clustering. We conclude that telomere clusters, their dynamics, and their nuclear distribution result from random motion, aggregation, and dissociation of telomeric regions, specifically determined by the amount of Sir3.
Collapse
Affiliation(s)
- Nathanaël Hozé
- Institute of Biology, Group of Computational Biology and Applied Mathematics, Ecole Normale Supérieure, 75005 Paris, France
| | | | | | | | | |
Collapse
|
81
|
Cavalli G, Misteli T. Functional implications of genome topology. Nat Struct Mol Biol 2013; 20:290-9. [PMID: 23463314 PMCID: PMC6320674 DOI: 10.1038/nsmb.2474] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/20/2012] [Indexed: 01/21/2023]
Abstract
Although genomes are defined by their sequence, the linear arrangement of nucleotides is only their most basic feature. A fundamental property of genomes is their topological organization in three-dimensional space in the intact cell nucleus. The application of imaging methods and genome-wide biochemical approaches, combined with functional data, is revealing the precise nature of genome topology and its regulatory functions in gene expression and genome maintenance. The emerging picture is one of extensive self-enforcing feedback between activity and spatial organization of the genome, suggestive of a self-organizing and self-perpetuating system that uses epigenetic dynamics to regulate genome function in response to regulatory cues and to propagate cell-fate memory.
Collapse
Affiliation(s)
- Giacomo Cavalli
- Institut de Génétique Humaine, UPR 1142, Centre National de la Recherche Scientifique, Montpellier, France.
| | | |
Collapse
|
82
|
The 3D organization of the yeast genome correlates with co-expression and reflects functional relations between genes. PLoS One 2013; 8:e54699. [PMID: 23382942 PMCID: PMC3561378 DOI: 10.1371/journal.pone.0054699] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/17/2012] [Indexed: 01/15/2023] Open
Abstract
The spatial organization of eukaryotic genomes is thought to play an important role in regulating gene expression. The recent advances in experimental methods including chromatin capture techniques, as well as the large amounts of accumulated gene expression data allow studying the relationship between spatial organization of the genome and co-expression of protein-coding genes. To analyse this genome-wide relationship at a single gene resolution, we combined the interchromosomal DNA contacts in the yeast genome measured by Duan et al. with a comprehensive collection of 1,496 gene expression datasets. We find significant enhancement of co-expression among genes with contact links. The co-expression is most prominent when two gene loci fall within 1,000 base pairs from the observed contact. We also demonstrate an enrichment of inter-chromosomal links between functionally related genes, which suggests that the non random nature of the genome organization serves to facilitate coordinated transcription in groups of genes.
Collapse
|
83
|
Hernández-Rivas R, Herrera-Solorio AM, Sierra-Miranda M, Delgadillo DM, Vargas M. Impact of chromosome ends on the biology and virulence of Plasmodium falciparum. Mol Biochem Parasitol 2013; 187:121-8. [PMID: 23354131 DOI: 10.1016/j.molbiopara.2013.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 11/15/2022]
Abstract
In recent years, many studies have focused on heterochromatin located at chromosome ends, which plays an important role in regulating gene expression in many organisms ranging from yeast to humans. Similarly, in the protozoan Plasmodium falciparum, which is the most virulent human malaria parasite, the heterochromatin present in telomeres and subtelomeric regions exerts a silencing effect on the virulence gene families located therein. Studies addressing P. falciparum chromosome ends have demonstrated that these regions participate in other functions, such as the formation of the T-loop structure, the replication of telomeric regions, the regulation of telomere length and the formation of telomeric heterochromatin. In addition, telomeres are involved in anchoring chromosome ends to the nuclear periphery, thereby playing an important role in nuclear architecture and gene expression regulation. Here, we review the current understanding of chromosome ends, the proteins that bind to these regions and their impact on the biology and virulence of P. falciparum.
Collapse
Affiliation(s)
- Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del, Instituto Politécnico Nacional (IPN), Apartado postal 14-740, 07360 México, D.F., Mexico.
| | | | | | | | | |
Collapse
|
84
|
Abstract
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.
Collapse
|
85
|
El Kaderi B, Medler S, Ansari A. Analysis of interactions between genomic loci through Chromosome Conformation Capture (3C). CURRENT PROTOCOLS IN CELL BIOLOGY 2013; Chapter 22:Unit22.15. [PMID: 22968842 DOI: 10.1002/0471143030.cb2215s56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genome architecture plays a significant role in the regulation of DNA-based cellular processes such as transcription and recombination. The successful accomplishment of these processes involves coordinated interaction of DNA elements located at a distance from each other. The 'Chromosome Conformation Capture' (3C) assay is a convenient tool for identification of physical association between spatially separated DNA elements in a cell under physiological conditions. The principle of 3C is to convert physical chromosomal interactions into specific DNA ligation products, which are then detected by PCR. The 3C protocol was originally used to identify long-range, stable chromosomal interactions in yeast. Here we describe a modified 3C procedure that can detect transient, short-range interactions of DNA elements separated by a distance of less than 700 bp. This method has been successfully used to detect dynamic interaction of transcription regulatory elements in yeast and can be used for detecting similar interactions of other genomic regions.
Collapse
Affiliation(s)
- Belal El Kaderi
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | | |
Collapse
|
86
|
Ben-Elazar S, Yakhini Z, Yanai I. Spatial localization of co-regulated genes exceeds genomic gene clustering in the Saccharomyces cerevisiae genome. Nucleic Acids Res 2013; 41:2191-201. [PMID: 23303780 PMCID: PMC3575811 DOI: 10.1093/nar/gks1360] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While it has been long recognized that genes are not randomly positioned along the genome, the degree to which its 3D structure influences the arrangement of genes has remained elusive. In particular, several lines of evidence suggest that actively transcribed genes are spatially co-localized, forming transcription factories; however, a generalized systematic test has hitherto not been described. Here we reveal transcription factories using a rigorous definition of genomic structure based on Saccharomyces cerevisiae chromosome conformation capture data, coupled with an experimental design controlling for the primary gene order. We develop a data-driven method for the interpolation and the embedding of such datasets and introduce statistics that enable the comparison of the spatial and genomic densities of genes. Combining these, we report evidence that co-regulated genes are clustered in space, beyond their observed clustering in the context of gene order along the genome and show this phenomenon is significant for 64 out of 117 transcription factors. Furthermore, we show that those transcription factors with high spatially co-localized targets are expressed higher than those whose targets are not spatially clustered. Collectively, our results support the notion that, at a given time, the physical density of genes is intimately related to regulatory activity.
Collapse
Affiliation(s)
- Shay Ben-Elazar
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
87
|
Zhang F, Gao B, Xu L, Li C, Hao D, Zhang S, Zhou M, Su F, Chen X, Zhi H, Li X. Allele-specific behavior of molecular networks: understanding small-molecule drug response in yeast. PLoS One 2013; 8:e53581. [PMID: 23308257 PMCID: PMC3537669 DOI: 10.1371/journal.pone.0053581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022] Open
Abstract
The study of systems genetics is changing the way the genetic and molecular basis of phenotypic variation, such as disease susceptibility and drug response, is being analyzed. Moreover, systems genetics aids in the translation of insights from systems biology into genetics. The use of systems genetics enables greater attention to be focused on the potential impact of genetic perturbations on the molecular states of networks that in turn affects complex traits. In this study, we developed models to detect allele-specific perturbations on interactions, in which a genetic locus with alternative alleles exerted a differing influence on an interaction. We utilized the models to investigate the dynamic behavior of an integrated molecular network undergoing genetic perturbations in yeast. Our results revealed the complexity of regulatory relationships between genetic loci and networks, in which different genetic loci perturb specific network modules. In addition, significant within-module functional coherence was found. We then used the network perturbation model to elucidate the underlying molecular mechanisms of individual differences in response to 100 diverse small molecule drugs. As a result, we identified sub-networks in the integrated network that responded to variations in DNA associated with response to diverse compounds and were significantly enriched for known drug targets. Literature mining results provided strong independent evidence for the effectiveness of these genetic perturbing networks in the elucidation of small-molecule responses in yeast.
Collapse
Affiliation(s)
- Fan Zhang
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Bo Gao
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Liangde Xu
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Chunquan Li
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Dapeng Hao
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Shaojun Zhang
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Meng Zhou
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Fei Su
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Xi Chen
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Hui Zhi
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Xia Li
- College of Bioinformatics Science and Technology and The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
- * E-mail:
| |
Collapse
|
88
|
Abstract
Nuclear architecture and the relative position of a gene can play roles in the regulation of its expression. In this issue of Developmental Cell, Brickner et al. (2012) analyze nuclear global positioning of genes and reveal that the Put3 transcription factor functions with cis-encoded DNA elements and nuclear pore complexes to regulate interchromosomal gene clustering.
Collapse
Affiliation(s)
- Laura T Burns
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
89
|
Wong H, Marie-Nelly H, Herbert S, Carrivain P, Blanc H, Koszul R, Fabre E, Zimmer C. A predictive computational model of the dynamic 3D interphase yeast nucleus. Curr Biol 2012; 22:1881-90. [PMID: 22940469 DOI: 10.1016/j.cub.2012.07.069] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 07/09/2012] [Accepted: 07/31/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Despite the absence of internal membranes, the nucleus of eukaryotic cells is spatially organized, with chromosomes and individual loci occupying dynamic, but nonrandom, spatial positions relative to nuclear landmarks and to each other. These positional preferences correlate with gene expression and DNA repair, recombination, and replication. Yet the principles that govern nuclear organization remain poorly understood and detailed predictive models are lacking. RESULTS We present a computational model of dynamic chromosome configurations in the interphase yeast nucleus that is based on first principles and is able to statistically predict the positioning of any locus in nuclear space. Despite its simplicity, the model agrees with extensive previous and new measurements on locus positioning and with genome-wide DNA contact frequencies. Notably, our model recapitulates the position and morphology of the nucleolus, the observed variations in locus positions, and variations in contact frequencies within and across chromosomes, as well as subchromosomal contact features. The model is also able to correctly predict nuclear reorganization accompanying a reduction in ribosomal DNA transcription, and sites of chromosomal rearrangements tend to occur where the model predicted high contact frequencies. CONCLUSIONS Our results suggest that large-scale yeast nuclear architecture can be largely understood as a consequence of generic properties of crowded polymers rather than of specific DNA-binding factors and that configurations of chromosomes and DNA contacts are dictated mainly by genomic location and chromosome lengths. Our model provides a quantitative framework to understand and predict large-scale spatial genome organization and its interplay with functional processes.
Collapse
Affiliation(s)
- Hua Wong
- Institut Pasteur, Groupe Imagerie et Modélisation, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Duan Z, Blau CA. The genome in space and time: does form always follow function? How does the spatial and temporal organization of a eukaryotic genome reflect and influence its functions? Bioessays 2012; 34:800-10. [PMID: 22777837 DOI: 10.1002/bies.201200034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent systematic studies using newly developed genomic approaches have revealed common mechanisms and principles that underpin the spatial organization of eukaryotic genomes and allow them to respond and adapt to diverse functional demands. Genomes harbor, interpret, and propagate genetic and epigenetic information, and the three-dimensional (3D) organization of genomes in the nucleus should be intrinsically linked to their biological functions. However, our understanding of the mechanisms underlying both the topological organization of genomes and the various nuclear processes is still largely incomplete. In this essay, we focus on the functional relevance as well as the biophysical properties of common organizational themes in genomes (e.g. looping, clustering, compartmentalization, and dynamics), and examine the interconnection between genome structure and function from this angle. Present evidence supports the idea that, in general, genome architecture reflects and influences genome function, and is relatively stable. However, the answer as to whether genome architecture is a hallmark of cell identity remains elusive.
Collapse
Affiliation(s)
- Zhijun Duan
- Division of Hematology, Department of Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
91
|
Londoño-Vallejo JA, Wellinger RJ. Telomeres and telomerase dance to the rhythm of the cell cycle. Trends Biochem Sci 2012; 37:391-9. [PMID: 22727244 DOI: 10.1016/j.tibs.2012.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/27/2022]
Abstract
The stability of the ends of linear eukaryotic chromosomes is ensured by functional telomeres, which are composed of short, species-specific direct repeat sequences. The maintenance of telomeres depends on a specialized ribonucleoprotein (RNP) called telomerase. Both telomeres and telomerase are dynamic entities with different physical behaviors and, given their substrate-enzyme relation, they must establish a productive interaction. Regulatory mechanisms controlling this interaction are key missing elements in our understanding of telomere functions. Here, we review the dynamic properties of telomeres and the maturing telomerase RNPs, and summarize how tracking the timing of their dance during the cell cycle will yield insights into chromosome stability mechanisms. Cancer cells often display loss of genome integrity; therefore, these issues are of particular interest for our understanding of cancer initiation or progression.
Collapse
Affiliation(s)
- J Arturo Londoño-Vallejo
- Laboratoire Télomères et Cancer, UMR3244, Institut Curie, 26 rue d'Ulm, 75248 Paris, France; UPMC Université Paris 06, F-75005 Paris, France
| | | |
Collapse
|
92
|
Gehlen LR, Gruenert G, Jones MB, Rodley CD, Langowski J, O'Sullivan JM. Chromosome positioning and the clustering of functionally related loci in yeast is driven by chromosomal interactions. Nucleus 2012; 3:370-83. [PMID: 22688649 DOI: 10.4161/nucl.20971] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In recent years there has been considerable and growing interest in the 3-dimensional organization of genomes. In this manuscript we present an integrated computational-molecular study that produces an ensemble of high-resolution 3-dimensional conformations of the budding yeast genome. The compaction, folding and spatial organization of the chromosomes was based on empirical data determined using proximity-based ligation. Our models incorporate external constraints that allow the separation of gross organizational effects from those due to local interactions. Our models show that yeast chromosomes have preferred yet non-exclusive positions. They also identify interaction dependent clustering of tRNAs, early firing origins of replication, and Gal4 protein binding sites, yet the cluster composition is dynamic. Our results support a link between structure and transcription that occurs within the context of a flexible genome organization.
Collapse
Affiliation(s)
- Lutz R Gehlen
- Institute of Natural Sciences, Massey University, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
93
|
Tokuda N, Terada TP, Sasai M. Dynamical modeling of three-dimensional genome organization in interphase budding yeast. Biophys J 2012; 102:296-304. [PMID: 22339866 DOI: 10.1016/j.bpj.2011.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/04/2011] [Accepted: 12/06/2011] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic genome is organized in a set of chromosomes each of which consists of a chain of DNA and associated proteins. Processes involving DNA such as transcription, duplication, and repair, therefore, should be intrinsically related to the three-dimensional organization of the genome. In this article, we develop a computational model of the three-dimensional organization of the haploid genome of interphase budding yeast by regarding chromosomes as chains moving under the constraints of nuclear structure and chromatin-chromatin interactions. The simulated genome structure largely fluctuates with the diffusive movement of chromosomes. This fluctuation, however, is not completely random, as parts of chromosomes distribute in characteristic ways to form "territories" in the nucleus. By suitably taking account of constraints arising from the data of the chromosome-conformation-capture measurement, the model explains the observed fluorescence data of chromosome distributions and motions.
Collapse
Affiliation(s)
- Naoko Tokuda
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | | | | |
Collapse
|
94
|
Tjong H, Gong K, Chen L, Alber F. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res 2012; 22:1295-305. [PMID: 22619363 PMCID: PMC3396370 DOI: 10.1101/gr.129437.111] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this paper we show that tethering of heterochromatic regions to nuclear landmarks and random encounters of chromosomes in the confined nuclear volume are sufficient to explain the higher-order organization of the budding yeast genome. We have quantitatively characterized the contact patterns and nuclear territories that emerge when chromosomes are allowed to behave as constrained but otherwise randomly configured flexible polymer chains in the nucleus. Remarkably, this constrained random encounter model explains in a statistical manner the experimental hallmarks of the S. cerevisiae genome organization, including (1) the folding patterns of individual chromosomes; (2) the highly enriched interactions between specific chromatin regions and chromosomes; (3) the emergence, shape, and position of gene territories; (4) the mean distances between pairs of telomeres; and (5) even the co-location of functionally related gene loci, including early replication start sites and tRNA genes. Therefore, most aspects of the yeast genome organization can be explained without calling on biochemically mediated chromatin interactions. Such interactions may modulate the pre-existing propensity for co-localization but seem not to be the cause for the observed higher-order organization. The fact that geometrical constraints alone yield a highly organized genome structure, on which different functional elements are specifically distributed, has strong implications for the folding principles of the genome and the evolution of its function.
Collapse
Affiliation(s)
- Harianto Tjong
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
95
|
Penfold CA, Brown PE, Lawrence ND, Goldman ASH. Modeling meiotic chromosomes indicates a size dependent contribution of telomere clustering and chromosome rigidity to homologue juxtaposition. PLoS Comput Biol 2012; 8:e1002496. [PMID: 22570605 PMCID: PMC3342934 DOI: 10.1371/journal.pcbi.1002496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 03/12/2012] [Indexed: 01/17/2023] Open
Abstract
Meiosis is the cell division that halves the genetic component of diploid cells to form gametes or spores. To achieve this, meiotic cells undergo a radical spatial reorganisation of chromosomes. This reorganisation is a prerequisite for the pairing of parental homologous chromosomes and the reductional division, which halves the number of chromosomes in daughter cells. Of particular note is the change from a centromere clustered layout (Rabl configuration) to a telomere clustered conformation (bouquet stage). The contribution of the bouquet structure to homologous chromosome pairing is uncertain. We have developed a new in silico model to represent the chromosomes of Saccharomyces cerevisiae in space, based on a worm-like chain model constrained by attachment to the nuclear envelope and clustering forces. We have asked how these constraints could influence chromosome layout, with particular regard to the juxtaposition of homologous chromosomes and potential nonallelic, ectopic, interactions. The data support the view that the bouquet may be sufficient to bring short chromosomes together, but the contribution to long chromosomes is less. We also find that persistence length is critical to how much influence the bouquet structure could have, both on pairing of homologues and avoiding contacts with heterologues. This work represents an important development in computer modeling of chromosomes, and suggests new explanations for why elucidating the functional significance of the bouquet by genetics has been so difficult. Organisms store their genetic material in the form of chromosomes that must be replicated and shared out during cell division. In sexual reproduction the cell division, called meiosis, halves the number of chromosomes to form gametes. This halving requires a complex reorganisation of chromosomes. Each gamete receives one maternal or one paternal copy of every chromosome. This requires a pairing process between the maternal and paternal chromosomes of each type. Once paired the two chromosomes are organised in space to bias subsequent movement in opposite directions when the nucleus divides. How chromosomes pair is of great importance to understanding fertility, and manipulating chromosomes in crops species, for which it is desirable to breed in new genes to improve hardiness or yield. We have modelled chromosomes in 3-dimensions based on the experimental organism Saccharomyces cerevisiae. We used our model to ask if various physical features of chromosomes might influence their ability to pair. We found that binding chromosome ends to the nuclear wall and pushing those ends together helps to encourage pairing along the length of chromosomes. It has long been known this special chromosome organisation occurs in live cells, but the significance of it has been difficult to determine.
Collapse
Affiliation(s)
- Christopher A. Penfold
- Department of Molecular Biology and Biotechnology, Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Institute of Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| | - Paul E. Brown
- Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Neil D. Lawrence
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Institute of Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| | - Alastair S. H. Goldman
- Department of Molecular Biology and Biotechnology, Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
96
|
Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol 2012; 14:510-7. [PMID: 22484485 DOI: 10.1038/ncb2472] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 02/29/2012] [Indexed: 12/14/2022]
Abstract
Homologous recombination, an essential process for preserving genomic integrity, uses intact homologous sequences to repair broken chromosomes. To explore the mechanism of homologous pairing in vivo, we tagged two homologous loci in diploid yeast Saccharomyces cerevisiae cells and investigated their dynamic organization in the absence and presence of DNA damage. When neither locus is damaged, homologous loci occupy largely separate regions, exploring only 2.7% of the nuclear volume. Following the induction of a double-strand break, homologous loci co-localize ten times more often. The mobility of the cut chromosome markedly increases, allowing it to explore a nuclear volume that is more than ten times larger. Interestingly, the mobility of uncut chromosomes also increases, allowing them to explore a four times larger volume. We propose a model for homology search in which increased chromosome mobility facilitates homologous pairing. Finally, we find that the increase in DNA dynamics is dependent on early steps of homologous recombination.
Collapse
|
97
|
Fudenberg G, Mirny LA. Higher-order chromatin structure: bridging physics and biology. Curr Opin Genet Dev 2012; 22:115-24. [PMID: 22360992 DOI: 10.1016/j.gde.2012.01.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 12/11/2022]
Abstract
Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization.
Collapse
Affiliation(s)
- Geoffrey Fudenberg
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, United States
| | | |
Collapse
|
98
|
Albert B, Léger-Silvestre I, Normand C, Gadal O. Nuclear organization and chromatin dynamics in yeast: biophysical models or biologically driven interactions? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:468-81. [PMID: 22245105 DOI: 10.1016/j.bbagrm.2011.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/26/2022]
Abstract
Over the past decade, tremendous progress has been made in understanding the spatial organization of genes and chromosomes. Nuclear organization can be thought of as information that is not encoded in DNA, but which nevertheless impacts gene expression. Nuclear organizational influences can be cell-specific and are potentially heritable. Thus, nuclear organization fulfills all the criteria necessary for it to be considered an authentic level of epigenetic information. Chromosomal nuclear organization is primarily dictated by the biophysical properties of chromatin. Diffusion models of polymers confined in the crowded nuclear space accurately recapitulate experimental observation. Diffusion is a Brownian process, which implies that the positions of chromosomes and genes are not defined deterministically but are likely to be dictated by the laws of probability. Despite the small size of their nuclei, budding yeast have been instrumental in discovering how epigenetic information is encoded in the spatial organization of the genome. The relatively simple organization of the yeast nucleus and the very high number of genetically identical cells that can be observed under fluorescent microscopy allow statistically robust definitions of the gene and chromosome positions in the nuclear space to be constructed. In this review, we will focus on how the spatial organization of the chromatin in the yeast nucleus might impact transcription. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
|
99
|
Abstract
Over the past 10 years, the development of chromosome conformation capture (3C) technology and the subsequent genomic variants thereof have enabled the analysis of nuclear organization at an unprecedented resolution and throughput. The technology relies on the original and, in hindsight, remarkably simple idea that digestion and religation of fixed chromatin in cells, followed by the quantification of ligation junctions, allows for the determination of DNA contact frequencies and insight into chromosome topology. Here we evaluate and compare the current 3C-based methods (including 4C [chromosome conformation capture-on-chip], 5C [chromosome conformation capture carbon copy], HiC, and ChIA-PET), summarize their contribution to our current understanding of genome structure, and discuss how shape influences genome function.
Collapse
Affiliation(s)
- Elzo de Wit
- Hubrecht Institute-KNAW, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Wouter de Laat
- Hubrecht Institute-KNAW, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
100
|
De S, Varsally W, Falciani F, Brogna S. Ribosomal proteins' association with transcription sites peaks at tRNA genes in Schizosaccharomyces pombe. RNA (NEW YORK, N.Y.) 2011; 17:1713-26. [PMID: 21757508 PMCID: PMC3162336 DOI: 10.1261/rna.2808411] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 06/13/2011] [Indexed: 05/05/2023]
Abstract
Ribosomal proteins (RPs) are essential components of ribosomes, but several RPs are also present at transcription sites of eukaryotic chromosomes. Here, we report a genome-wide ChIP-on-chip analysis of the association of three representative 60S RPs with sites in the Schizosaccharomyces pombe chromosomes. All three proteins tend to bind at the same subset of coding and noncoding loci. The data demonstrate selective RNA-dependent interactions between RPs and many transcription sites and suggest that the RPs bind as components of a preassembled multiprotein complex, perhaps 60S or pre-60S subunits. These findings further indicate that the presence of RPs complexes at transcription sites might be a general feature of eukaryotic cells and functionally important. Unexpectedly, the RPs' chromosomal association is highest at centromeres and tRNA genes-the RPs were found at 167 of the 171 tRNA genes assayed. These findings raise the intriguing possibility that RP complexes are involved in tRNA biogenesis and possibly centromere functions.
Collapse
Affiliation(s)
- Sandip De
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Wazeer Varsally
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Francesco Falciani
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Saverio Brogna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|