51
|
Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein. J Virol 2014; 89:2777-91. [PMID: 25540360 DOI: 10.1128/jvi.03117-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Microtubule transport of circovirus from the periphery of the cell to the nucleus is essential for viral replication in early infection. How the microtubule is recruited to the viral cargo remains unclear. In this study, we observed that circovirus trafficking is dependent on microtubule polymerization and that incoming circovirus particles colocalize with cytoplasmic dynein and endosomes. However, circovirus binding to dynein was independent of the presence of microtubular α-tubulin and translocation of cytoplasmic dynein into the nucleus. The circovirus capsid (Cap) subunit enhanced microtubular acetylation and directly interacted with intermediate chain 1 (IC1) of dynein. N-terminal residues 42 to 100 of the Cap viral protein were required for efficient binding to the dynein IC1 subunit and for retrograde transport. Knockdown of IC1 decreased virus transport and replication. These results demonstrate that Cap is a direct ligand of the cytoplasmic dynein IC1 subunit and an inducer of microtubule α-tubulin acetylation. Furthermore, Cap recruits the host dynein/microtubule machinery to facilitate transport toward the nucleus by an endosomal mechanism distinct from that used for physiological dynein cargo. IMPORTANCE Incoming viral particles hijack the intracellular trafficking machinery of the host in order to migrate from the cell surface to the replication sites. Better knowledge of the interaction between viruses and virus proteins and the intracellular trafficking machinery may provide new targets for antiviral therapies. Currently, little is known about the molecular mechanisms of circovirus transport. Here, we report that circovirus particles enter early endosomes and utilize the microtubule-associated molecular motor dynein to travel along microtubules. The circovirus capsid subunit enhances microtubular acetylation, and N-terminal residues 42 to 100 directly interact with the dynein IC1 subunit during retrograde transport. These findings highlight a mechanism whereby circoviruses recruit dynein for transport to the nucleus via the dynein/microtubule machinery.
Collapse
|
52
|
Abstract
The motile cilium is a mechanical wonder, a cellular nanomachine that produces a high-speed beat based on a cycle of bends that move along an axoneme made of 9+2 microtubules. The molecular motors, dyneins, power the ciliary beat. The dyneins are compacted into inner and outer dynein arms, whose activity is highly regulated to produce microtubule sliding and axonemal bending. The switch point hypothesis was developed long ago to account for how sliding in the presence of axonemal radial spoke-central pair interactions causes the ciliary beat. Since then, a new genetic, biochemical, and structural complexity has been discovered, in part, with Chlamydomonas mutants, with high-speed, high-resolution analysis of movement and with cryoelectron tomography. We stand poised on the brink of new discoveries relating to the molecular control of motility that extend and refine our understanding of the basic events underlying the switching of arm activity and of bend formation and propagation.
Collapse
Affiliation(s)
- Peter Satir
- Peter Satir ( ) is affiliated with the Department of Anatomy and Structural Biology at Albert Einstein College of Medicine, in New York, New York. Thomas Heuser is affiliated with the Electron Microscopy Facility, in the Campus Science Support Facilities of the Campus Vienna Biocenter, in Vienna, Austria. Winfield S. Sale is affiliated with the Department of Cell Biology at Emory University, in Atlanta, Georgia
| | - Thomas Heuser
- Peter Satir ( ) is affiliated with the Department of Anatomy and Structural Biology at Albert Einstein College of Medicine, in New York, New York. Thomas Heuser is affiliated with the Electron Microscopy Facility, in the Campus Science Support Facilities of the Campus Vienna Biocenter, in Vienna, Austria. Winfield S. Sale is affiliated with the Department of Cell Biology at Emory University, in Atlanta, Georgia
| | - Winfield S Sale
- Peter Satir ( ) is affiliated with the Department of Anatomy and Structural Biology at Albert Einstein College of Medicine, in New York, New York. Thomas Heuser is affiliated with the Electron Microscopy Facility, in the Campus Science Support Facilities of the Campus Vienna Biocenter, in Vienna, Austria. Winfield S. Sale is affiliated with the Department of Cell Biology at Emory University, in Atlanta, Georgia
| |
Collapse
|
53
|
Oda T, Yanagisawa H, Kikkawa M. Detailed structural and biochemical characterization of the nexin-dynein regulatory complex. Mol Biol Cell 2014; 26:294-304. [PMID: 25411337 PMCID: PMC4294676 DOI: 10.1091/mbc.e14-09-1367] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nexin-dynein regulatory complex (N-DRC) is a microtubule-cross-bridging structure in cilia/flagella. The precise 3D positions of N-DRC subunits are identified using cryo–electron tomography and structural labeling. The N-DRC is purified and its composition and microtubule-binding properties were characterized. The nexin-dynein regulatory complex (N-DRC) forms a cross-bridge between the outer doublet microtubules of the axoneme and regulates dynein motor activity in cilia/flagella. Although the molecular composition and the three-dimensional structure of N-DRC have been studied using mutant strains lacking N-DRC subunits, more accurate approaches are necessary to characterize the structure and function of N-DRC. In this study, we precisely localized DRC1, DRC2, and DRC4 using cryo–electron tomography and structural labeling. All three N-DRC subunits had elongated conformations and spanned the length of N-DRC. Furthermore, we purified N-DRC and characterized its microtubule-binding properties. Purified N-DRC bound to the microtubule and partially inhibited microtubule sliding driven by the outer dynein arms (ODAs). Of interest, microtubule sliding was observed even in the presence of fourfold molar excess of N-DRC relative to ODA. These results provide insights into the role of N-DRC in generating the beating motions of cilia/flagella.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
54
|
Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem Soc Trans 2014; 41:1605-12. [PMID: 24256262 DOI: 10.1042/bst20130188] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurons are highly specialized for the processing and transmission of electrical signals and use cytoskeleton-based motor proteins to transport different vesicles and cellular materials. Abnormalities in intracellular transport are thought to be a critical factor in the degeneration and death of neurons in both the central and peripheral nervous systems. Several recent studies describe disruptive mutations in the minus-end-directed microtubule motor cytoplasmic dynein that are directly linked to human motor neuropathies, such as SMA (spinal muscular atrophy) and axonal CMT (Charcot-Marie-Tooth) disease or malformations of cortical development, including lissencephaly, pachygyria and polymicrogyria. In addition, genetic defects associated with these and other neurological disorders have been found in multifunctional adaptors that regulate dynein function, including the dynactin subunit p150(Glued), BICD2 (Bicaudal D2), Lis-1 (lissencephaly 1) and NDE1 (nuclear distribution protein E). In the present paper we provide an overview of the disease-causing mutations in dynein motors and regulatory proteins that lead to a broad phenotypic spectrum extending from peripheral neuropathies to cerebral malformations.
Collapse
|
55
|
Roossien DH, Lamoureux P, Miller KE. Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J Cell Sci 2014; 127:3593-602. [PMID: 24951117 DOI: 10.1242/jcs.152611] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During development, neurons send out axonal processes that can reach lengths hundreds of times longer than the diameter of their cell bodies. Recent studies indicate that en masse microtubule translocation is a significant mechanism underlying axonal elongation, but how cellular forces drive this process is unknown. Cytoplasmic dynein generates forces on microtubules in axons to power their movement through 'stop-and-go' transport, but whether these forces influence the bulk translocation of long microtubules embedded in the cytoskeletal meshwork has not been tested. Here, we use both function-blocking antibodies targeted to the dynein intermediate chain and the pharmacological dynein inhibitor ciliobrevin D to ask whether dynein forces contribute to en bloc cytoskeleton translocation. By tracking docked mitochondria as fiducial markers for bulk cytoskeleton movements, we find that translocation is reduced after dynein disruption. We then directly measure net force generation after dynein disruption and find a dramatic increase in axonal tension. Taken together, these data indicate that dynein generates forces that push the cytoskeletal meshwork forward en masse during axonal elongation.
Collapse
Affiliation(s)
- Douglas H Roossien
- Cell and Molecular Biology Program, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Phillip Lamoureux
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Kyle E Miller
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| |
Collapse
|
56
|
Raaijmakers JA, Medema RH. Function and regulation of dynein in mitotic chromosome segregation. Chromosoma 2014; 123:407-22. [PMID: 24871939 DOI: 10.1007/s00412-014-0468-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022]
Abstract
Cytoplasmic dynein is a large minus-end-directed microtubule motor complex, involved in many different cellular processes including intracellular trafficking, organelle positioning, and microtubule organization. Furthermore, dynein plays essential roles during cell division where it is implicated in multiple processes including centrosome separation, chromosome movements, spindle organization, spindle positioning, and mitotic checkpoint silencing. How is a single motor able to fulfill this large array of functions and how are these activities temporally and spatially regulated? The answer lies in the unique composition of the dynein motor and in the interactions it makes with multiple regulatory proteins that define the time and place where dynein becomes active. Here, we will focus on the different mitotic processes that dynein is involved in, and how its regulatory proteins act to support dynein. Although dynein is highly conserved amongst eukaryotes (with the exception of plants), there is significant variability in the cellular processes that depend on dynein in different species. In this review, we concentrate on the functions of cytoplasmic dynein in mammals but will also refer to data obtained in other model organisms that have contributed to our understanding of dynein function in higher eukaryotes.
Collapse
Affiliation(s)
- J A Raaijmakers
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | | |
Collapse
|
57
|
Garrett CA, Barri M, Kuta A, Soura V, Deng W, Fisher EMC, Schiavo G, Hafezparast M. DYNC1H1 mutation alters transport kinetics and ERK1/2-cFos signalling in a mouse model of distal spinal muscular atrophy. ACTA ACUST UNITED AC 2014; 137:1883-93. [PMID: 24755273 DOI: 10.1093/brain/awu097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations in the gene encoding the heavy chain subunit (DYNC1H1) of cytoplasmic dynein cause spinal muscular atrophy with lower extremity predominance, Charcot-Marie-Tooth disease and intellectual disability. We used the legs at odd angles (Loa) (DYNC1H1(F580Y)) mouse model for spinal muscular atrophy with lower extremity predominance and a combination of live-cell imaging and biochemical assays to show that the velocity of dynein-dependent microtubule minus-end (towards the nucleus) movement of EGF and BDNF induced signalling endosomes is significantly reduced in Loa embryonic fibroblasts and motor neurons. At the same time, the number of the plus-end (towards the cell periphery) moving endosomes is increased in the mutant cells. As a result, the extracellular signal-regulated kinases (ERK) 1/2 activation and c-Fos expression are altered in both mutant cell types, but the motor neurons exhibit a strikingly abnormal ERK1/2 and c-Fos response to serum-starvation induced stress. These data highlight the cell-type specific ERK1/2 response as a possible contributory factor in the neuropathological nature of Dync1h1 mutations, despite generic aberrant kinetics in both cell types, providing an explanation for how mutations in the ubiquitously expressed DYNC1H1 cause neuron-specific disease.
Collapse
Affiliation(s)
- Caroline A Garrett
- 1 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Muruj Barri
- 1 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Anna Kuta
- 2 Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Violetta Soura
- 1 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Wenhan Deng
- 1 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Elizabeth M C Fisher
- 2 Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Giampietro Schiavo
- 3 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Majid Hafezparast
- 1 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| |
Collapse
|
58
|
Welz T, Wellbourne-Wood J, Kerkhoff E. Orchestration of cell surface proteins by Rab11. Trends Cell Biol 2014; 24:407-15. [PMID: 24675420 DOI: 10.1016/j.tcb.2014.02.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
The organization of cells into interconnected structures such as animal tissues requires a sophisticated system directing receptors and adhesion proteins to the cell surface. The Rab11 small G proteins (Rab11a, b, and Rab25) of the Ras superfamily are master regulators of the surface expression of receptors and adhesion proteins. Acting as a molecular switch, Rab11 builds distinct molecular machinery such as motor protein complexes and the exocyst to transport proteins to the cell surface. Recent evidence reveals Rab11 localization at the trans-Golgi network (TGN), post-Golgi vesicles, and the recycling endosome, placing it at the intersection between the endocytic and exocytic trafficking pathways. We review Rab11 in various cellular contexts, and discuss its regulation and mechanisms by which Rab11 couples with effector proteins.
Collapse
Affiliation(s)
- Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Germany
| | - Joel Wellbourne-Wood
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Germany.
| |
Collapse
|
59
|
Tame MA, Raaijmakers JA, van den Broek B, Lindqvist A, Jalink K, Medema RH. Astral microtubules control redistribution of dynein at the cell cortex to facilitate spindle positioning. Cell Cycle 2014; 13:1162-70. [PMID: 24553118 PMCID: PMC4013166 DOI: 10.4161/cc.28031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic dynein is recruited to the cell cortex in early mitosis, where it can generate pulling forces on astral microtubules to position the mitotic spindle. Recent work has shown that dynein displays a dynamic asymmetric cortical localization, and that dynein recruitment is negatively regulated by spindle pole-proximity. This results in oscillating dynein recruitment to opposite sides of the cortex to center the mitotic spindle. However, although the centrosome-derived signal that promotes displacement of dynein has been identified, it is currently unknown how dynein is re-recruited to the cortex once it has been displaced. Here we show that re-recruitment of cortical dynein requires astral microtubules. We find that microtubules are necessary for the sustained localized enrichment of dynein at the cortex. Furthermore, we show that stabilization of astral microtubules causes spindle misorientation, followed by mispositioning of dynein at the cortex. Thus, our results demonstrate the importance of astral microtubules in the dynamic regulation of cortical dynein recruitment in mitosis.
Collapse
Affiliation(s)
- Mihoko A Tame
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam, The Netherlands
| | - Arne Lindqvist
- Department of Cell and Molecular Biology; Karolinska Institutet; Stockholm, Sweden
| | - Kees Jalink
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam, The Netherlands
| |
Collapse
|
60
|
Schiavo G, Greensmith L, Hafezparast M, Fisher EMC. Cytoplasmic dynein heavy chain: the servant of many masters. Trends Neurosci 2013; 36:641-51. [PMID: 24035135 PMCID: PMC3824068 DOI: 10.1016/j.tins.2013.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Abstract
The cytoplasmic dynein complex is the main retrograde motor in all eukaryotic cells. This complex is built around a dimer of cytoplasmic dynein heavy chains (DYNC1H1). Mouse DYNC1H1 mutants have sensory defects, but motor defects have been controversial. Now human DYNC1H1 mutations with sensory, motor, and cognitive deficits are being found. The study of these mutations will give us new insight into DYNC1H1 function in the nervous system.
Cytoplasmic dynein is the main retrograde motor in all eukaryotic cells. This complex comprises different subunits assembled on a cytoplasmic dynein heavy chain 1 (DYNC1H1) dimer. Cytoplasmic dynein is particularly important for neurons because it carries essential signals and organelles from distal sites to the cell body. In the past decade, several mouse models have helped to dissect the numerous functions of DYNC1H1. Additionally, several DYNC1H1 mutations have recently been found in human patients that give rise to a broad spectrum of developmental and midlife-onset disorders. Here, we discuss the effects of mutations of mouse and human DYNC1H1 and how these studies are giving us new insight into the many critical roles DYNC1H1 plays in the nervous system.
Collapse
Affiliation(s)
- Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London, Queen Square, London WC1N 3BG, UK; Molecular NeuroPathobiology, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| | | | | | | |
Collapse
|