51
|
Perry MD, Ng CA, Phan K, David E, Steer K, Hunter MJ, Mann SA, Imtiaz M, Hill AP, Ke Y, Vandenberg JI. Rescue of protein expression defects may not be enough to abolish the pro-arrhythmic phenotype of long QT type 2 mutations. J Physiol 2016; 594:4031-49. [PMID: 26958806 DOI: 10.1113/jp271805] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/25/2016] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Most missense long QT syndrome type 2 (LQTS2) mutations result in Kv11.1 channels that show reduced levels of membrane expression. Pharmacological chaperones that rescue mutant channel expression could have therapeutic potential to reduce the risk of LQTS2-associated arrhythmias and sudden cardiac death, but only if the mutant Kv11.1 channels function normally (i.e. like WT channels) after membrane expression is restored. Fewer than half of mutant channels exhibit relatively normal function after rescue by low temperature. The remaining rescued missense mutant Kv11.1 channels have perturbed gating and/or ion selectivity characteristics. Co-expression of WT subunits with gating defective missense mutations ameliorates but does not eliminate the functional abnormalities observed for most mutant channels. For patients with mutations that affect gating in addition to expression, it may be necessary to use a combination therapy to restore both normal function and normal expression of the channel protein. ABSTRACT In the heart, Kv11.1 channels pass the rapid delayed rectifier current (IKr ) which plays critical roles in repolarization of the cardiac action potential and in the suppression of arrhythmias caused by premature stimuli. Over 500 inherited mutations in Kv11.1 are known to cause long QT syndrome type 2 (LQTS2), a cardiac electrical disorder associated with an increased risk of life threatening arrhythmias. Most missense mutations in Kv11.1 reduce the amount of channel protein expressed at the membrane and, as a consequence, there has been considerable interest in developing pharmacological agents to rescue the expression of these channels. However, pharmacological chaperones will only have clinical utility if the mutant Kv11.1 channels function normally after membrane expression is restored. The aim of this study was to characterize the gating phenotype for a subset of LQTS2 mutations to assess what proportion of mutations may be suitable for rescue. As an initial screen we used reduced temperature to rescue expression defects of mutant channels expressed in Xenopus laevis oocytes. Over half (∼56%) of Kv11.1 mutants exhibited functional gating defects that either dramatically reduced the amount of current contributing to cardiac action potential repolarization and/or reduced the amount of protective current elicited in response to premature depolarizations. Our data demonstrate that if pharmacological rescue of protein expression defects is going to have clinical utility in the treatment of LQTS2 then it will be important to assess the gating phenotype of LQTS2 mutations before attempting rescue.
Collapse
Affiliation(s)
- Matthew D Perry
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, 2052, Australia
| | - Chai Ann Ng
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, 2052, Australia
| | - Kevin Phan
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, 2052, Australia
| | - Erikka David
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia
| | - Kieran Steer
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia.,Faculty of Science, McGill University, Montreal, Quebec, Canada
| | - Mark J Hunter
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia
| | - Stefan A Mann
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, 2052, Australia
| | - Mohammad Imtiaz
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, 2052, Australia
| | - Ying Ke
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Molecular Cardiology and Biophysics Division, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, 2052, Australia
| |
Collapse
|
52
|
Li Y, Ng HQ, Li Q, Kang C. Structure of the Cyclic Nucleotide-Binding Homology Domain of the hERG Channel and Its Insight into Type 2 Long QT Syndrome. Sci Rep 2016; 6:23712. [PMID: 27025590 PMCID: PMC4812329 DOI: 10.1038/srep23712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
The human ether-à-go-go related gene (hERG) channel is crucial for the cardiac action potential by contributing to the fast delayed-rectifier potassium current. Mutations in the hERG channel result in type 2 long QT syndrome (LQT2). The hERG channel contains a cyclic nucleotide-binding homology domain (CNBHD) and this domain is required for the channel gating though molecular interactions with the eag domain. Here we present solution structure of the CNBHD of the hERG channel. The structural study reveals that the CNBHD adopts a similar fold to other KCNH channels. It is self-liganded and it contains a short β-strand that blocks the nucleotide-binding pocket in the β-roll. Folding of LQT2-related mutations in this domain was shown to be affected by point mutation. Mutations in this domain can cause protein aggregation in E. coli cells or induce conformational changes. One mutant-R752W showed obvious chemical shift perturbation compared with the wild-type, but it still binds to the eag domain. The helix region from the N-terminal cap domain of the hERG channel showed unspecific interactions with the CNBHD.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hui Qi Ng
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Qingxin Li
- Institute of Chemical &Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
53
|
Wu W, Sanguinetti MC. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology. Card Electrophysiol Clin 2016; 8:275-84. [PMID: 27261821 DOI: 10.1016/j.ccep.2016.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA
| | - Michael C Sanguinetti
- Department of Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
54
|
Kv3.1 uses a timely resurgent K(+) current to secure action potential repolarization. Nat Commun 2015; 6:10173. [PMID: 26673941 PMCID: PMC4703866 DOI: 10.1038/ncomms10173] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023] Open
Abstract
High-frequency action potential (AP) transmission is essential for rapid information processing in the central nervous system. Voltage-dependent Kv3 channels play an important role in this process thanks to their high activation threshold and fast closure kinetics, which reduce the neuron's refractory period. However, premature Kv3 channel closure leads to incomplete membrane repolarization, preventing sustainable AP propagation. Here, we demonstrate that Kv3.1b channels solve this problem by producing resurgent K+ currents during repolarization, thus ensuring enough repolarizing power to terminate each AP. Unlike previously described resurgent Na+ and K+ currents, Kv3.1b's resurgent current does not originate from recovery of channel block or inactivation but results from a unique combination of steep voltage-dependent gating kinetics and ultra-fast voltage-sensor relaxation. These distinct properties are readily transferrable onto an orthologue Kv channel by transplanting the voltage-sensor's S3–S4 loop, providing molecular insights into the mechanism by which Kv3 channels contribute to high-frequency AP transmission. Kv3 potassium channels have an important role in the repolarization of action potentials in fast-spiking neurons. Here, the authors use electrophysiology and modelling to report on an interesting mechanism that might explain their gating behaviour.
Collapse
|
55
|
Alonso H, Fernández-Ruocco J, Gallego M, Malagueta-Vieira LL, Rodríguez-de-Yurre A, Medei E, Casis O. Thyroid stimulating hormone directly modulates cardiac electrical activity. J Mol Cell Cardiol 2015; 89:280-6. [PMID: 26497403 DOI: 10.1016/j.yjmcc.2015.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/02/2015] [Accepted: 10/19/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND The electrocardiogram of hypothyroid patients shows a series of abnormalities of cardiac repolarization due to a reduction of some repolarizing K(+) currents and an increase of the L-type calcium current. Experimental and clinical works call into question the unique role of T3 and T4 in these mechanisms and correlate increased serum TSH levels with the repolarization abnormalities in patients with both subclinical and overt hypothyroidism. In this context, the aim of the present study was to investigate the direct effects of TSH upon cardiac electrical properties. METHODS The action potential recording and the ion channel subunits mRNA expression were obtained from left ventricle of adult rats. Additionally, the repolarizing K(+) currents and the L-type Ca(2+) current (ICa-L) were recorded in isolated rat adult ventricular myocytes by the patch-clamp technique. RESULTS 24h exposure to TSH lengthened the action potential and slightly depolarized the resting membrane potential. TSH- receptor activation causes a reduction of the amplitude of Ito and IK1 currents caused by a reduction in channels expression. However, TSH had no effect on ICa-L, IK or IKur. CONCLUSION These results support the idea that some of the electrical disturbances seen in hypothyroid hearts, such as the Ito and IK1 current reduction, could be caused not by low T3 but by the elevation of circulating TSH.
Collapse
Affiliation(s)
- H Alonso
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - J Fernández-Ruocco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - M Gallego
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - L L Malagueta-Vieira
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Brazil
| | - A Rodríguez-de-Yurre
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - E Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - O Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain.
| |
Collapse
|
56
|
Harrell DT, Ashihara T, Ishikawa T, Tominaga I, Mazzanti A, Takahashi K, Oginosawa Y, Abe H, Maemura K, Sumitomo N, Uno K, Takano M, Priori SG, Makita N. Genotype-dependent differences in age of manifestation and arrhythmia complications in short QT syndrome. Int J Cardiol 2015; 190:393-402. [DOI: 10.1016/j.ijcard.2015.04.090] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
|
57
|
Gasparoli L, D'Amico M, Masselli M, Pillozzi S, Caves R, Khuwaileh R, Tiedke W, Mugridge K, Pratesi A, Mitcheson JS, Basso G, Becchetti A, Arcangeli A. New pyrimido-indole compound CD-160130 preferentially inhibits the KV11.1B isoform and produces antileukemic effects without cardiotoxicity. Mol Pharmacol 2015; 87:183-96. [PMID: 25411366 DOI: 10.1124/mol.114.094920] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
KV11.1 (hERG1) channels are often overexpressed in human cancers. In leukemias, KV11.1 regulates pro-survival signals that promote resistance to chemotherapy, raising the possibility that inhibitors of KV11.1 could be therapeutically beneficial. However, because of the role of KV11.1 in cardiac repolarization, blocking these channels may cause cardiac arrhythmias. We show that CD-160130, a novel pyrimido-indole compound, blocks KV11.1 channels with a higher efficacy for the KV11.1 isoform B, in which the IC50 (1.8 μM) was approximately 10-fold lower than observed in KV11.1 isoform A. At this concentration, CD-160130 also had minor effects on Kir2.1, KV 1.3, Kv1.5, and KCa3.1. In vitro, CD-160130 induced leukemia cell apoptosis, and could overcome bone marrow mesenchymal stromal cell (MSC)-induced chemoresistance. This effect was caused by interference with the survival signaling pathways triggered by MSCs. In vivo, CD-160130 produced an antileukemic activity, stronger than that caused by cytarabine. Consistent with its atypical target specificity, CD-160130 did not bind to the main binding site of the arrhythmogenic KV11.1 blockers (the Phe656 pore residue). Importantly, in guinea pigs CD-160130 produced neither alteration of the cardiac action potential shape in dissociated cardiomyocytes nor any lengthening of the QT interval in vivo. Moreover, CD-160130 had no myelotoxicity on human bone marrow-derived cells. Therefore, CD-160130 is a promising first-in-class compound to attempt oncologic therapy without cardiotoxicity, based on targeting KV11.1. Because leukemia and cardiac cells tend to express different ratios of the A and B KV11.1 isoforms, the pharmacological properties of CD-160130 may depend, at least in part, on isoform specificity.
Collapse
Affiliation(s)
- Luca Gasparoli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Massimo D'Amico
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Marika Masselli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Rachel Caves
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Rawan Khuwaileh
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Wolfgang Tiedke
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Kenneth Mugridge
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Alessandro Pratesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - John S Mitcheson
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Giuseppe Basso
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Andrea Becchetti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (L.G., S.P., A.A.); Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy (M.M., A.P.); DI.V.A.L. Toscana srl, Sesto Fiorentino, Italy (M.D.A., M.M.); Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (R.C., R.K., J.S.M.); BlackSwan Pharma GmbH, Leipzig, Germany (W.T., K.M.); Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy (G.B.); and Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy (A.B.)
| |
Collapse
|
58
|
Postnov DE, Neganova AY, Sosnovtseva OV, Holstein-Rathlou NH, Jacobsen JCB. Conducted vasoreactivity: the dynamical point of view. Bull Math Biol 2015; 77:230-49. [PMID: 25583354 PMCID: PMC4303742 DOI: 10.1007/s11538-014-0058-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023]
Abstract
Conducted vasodilation is part of the physiological response to increasing metabolic demand of the tissue. Similar responses can be elicited by focal electrical or chemical stimulation. Some evidence suggests an endothelial pathway for nondecremental transmission of hyperpolarizing pulses. However, the underlying mechanisms are debated. Here, we focus on dynamical aspects of the problem hypothesizing the existence of a bistability-powered mechanism for regenerative pulse transmission along the endothelium. Bistability implies that the cell can have two different stable resting potentials and can switch between those states following an appropriate stimulus. Bistability is possible if the current–voltage curve is N shaped instead of monotonically increasing. Specifically, the presence of an inwardly rectifying potassium current may provide the endothelial cell with such properties. We provide a theoretical analysis as well as numerical simulations of both single- and multiunit bistable systems mimicking endothelial cells to investigate the self-consistence and stability of the proposed mechanism. We find that the individual cell may switch readily between two stable potentials. An array of coupled cells, however, as found in the vascular wall, requires a certain adaptation of the membrane currents after a switch, in order to switch back. Although the formulation is generic, we suggest a combination of specific membrane currents that could underlie the phenomenon.
Collapse
Affiliation(s)
- D E Postnov
- Department of Physics, Saratov State University, Astrakhanskaya Str. 83, Saratov, 410026, Russia,
| | | | | | | | | |
Collapse
|
59
|
Lin TF, Jow GM, Fang HY, Fu SJ, Wu HH, Chiu MM, Jeng CJ. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels. PLoS One 2014; 9:e110423. [PMID: 25333352 PMCID: PMC4204861 DOI: 10.1371/journal.pone.0110423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/14/2014] [Indexed: 01/29/2023] Open
Abstract
Eag (Kv10) and Erg (Kv11) belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH). While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N)-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1) and human Erg (hERG1) channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4-S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.
Collapse
Affiliation(s)
- Ting-Feng Lin
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Guey-Mei Jow
- School of Medicine, Fu-Jen Catholic University, Hsin-Chuang, New Taipei City, Taiwan
| | - Hsin-Yu Fang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Han Wu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Miao Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
60
|
Mitcheson J, Arcangeli A. The Therapeutic Potential of hERG1 K+ Channels for Treating Cancer and Cardiac Arrhythmias. ION CHANNEL DRUG DISCOVERY 2014. [DOI: 10.1039/9781849735087-00258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
hERG potassium channels present pharmacologists and medicinal chemists with a dilemma. On the one hand hERG is a major reason for drugs being withdrawn from the market because of drug induced long QT syndrome and the associated risk of inducing sudden cardiac death, and yet hERG blockers are still widely used in the clinic to treat cardiac arrhythmias. Moreover, in the last decade overwhelming evidence has been provided that hERG channels are aberrantly expressed in cancer cells and that they contribute to tumour cell proliferation, resistance to apoptosis, and neoangiogenesis. Here we provide an overview of the properties of hERG channels and their role in excitable cells of the heart and nervous system as well as in cancer. We consider the therapeutic potential of hERG, not only with regard to the negative impact due to drug induced long QT syndrome, but also its future potential as a treatment in the fight against cancer.
Collapse
Affiliation(s)
- John Mitcheson
- University of Leicester, Department of Cell Physiology and Pharmacology, Medical Sciences Building University Road Leicester LE1 9HN UK
| | - Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Florence Viale GB Morgagni, 50 50134 Firenze Italy
| |
Collapse
|
61
|
Morais-Cabral JH, Robertson GA. The enigmatic cytoplasmic regions of KCNH channels. J Mol Biol 2014; 427:67-76. [PMID: 25158096 DOI: 10.1016/j.jmb.2014.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 01/09/2023]
Abstract
KCNH channels are expressed across a vast phylogenetic and evolutionary spectrum. In humans, they function in a wide range of tissues and serve as biomarkers and targets for diseases such as cancer and cardiac arrhythmias. These channels share a general architecture with other voltage-gated ion channels but are distinguished by the presence of an N-terminal PAS (Per-Arnt-Sim) domain and a C-terminal domain with homology to cyclic nucleotide binding domains (referred to as the CNBh domain). Cytosolic regions outside these domains show little conservation between KCNH families but are strongly conserved across species within a family, likely reflecting variability that confers specificity to individual channel types. PAS and CNBh domains participate in channel gating, but at least twice in evolutionary history, the PAS domain has been lost and it is omitted by alternate transcription to create a distinct channel subunit in one family. In this focused review, we present current knowledge of the structure and function of these cytosolic regions, discuss their evolution as modular domains and provide our perspective on the important questions moving forward.
Collapse
Affiliation(s)
- João H Morais-Cabral
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.
| | - Gail A Robertson
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
62
|
Wu W, Gardner A, Sanguinetti MC. Cooperative subunit interactions mediate fast C-type inactivation of hERG1 K+ channels. J Physiol 2014; 592:4465-80. [PMID: 25063820 DOI: 10.1113/jphysiol.2014.277483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
At depolarized membrane potentials, the conductance of some voltage-gated K(+) channels is reduced by C-type inactivation. This gating process is voltage independent in Kv1 and involves a conformational change in the selectivity filter that is mediated by cooperative subunit interactions. C-type inactivation in hERG1 K(+) channels is voltage-dependent, much faster in onset and greatly attenuates currents at positive potentials. Here we investigate the potential role of subunit interactions in C-type inactivation of hERG1 channels. Point mutations in hERG1 known to eliminate (G628C/S631C), inhibit (S620T or S631A) or enhance (T618A or M645C) C-type inactivation were introduced into subunits that were combined with wild-type subunits to form concatenated tetrameric channels with defined subunit composition and stoichiometry. Channels were heterologously expressed in Xenopus oocytes and the two-microelectrode voltage clamp was used to measure the kinetics and steady-state properties of inactivation of whole cell currents. The effect of S631A or T618A mutations on inactivation was a graded function of the number of mutant subunits within a concatenated tetramer as predicted by a sequential model of cooperative subunit interactions, whereas M645C subunits increased the rate of inactivation of concatemers, as predicted for subunits that act independently of one another. For mutations located within the inactivation gate proper (S620T or G628C/S631C), the presence of a single subunit in a concatenated hERG1 tetramer disrupted gating to the same extent as that observed for mutant homotetramers. Together, our findings indicate that the final step of C-type inactivation of hERG1 channels involves a concerted, all-or-none cooperative interaction between all four subunits, and that probing the mechanisms of channel gating with concatenated heterotypic channels should be interpreted with care, as conclusions regarding the nature of subunit interactions may depend on the specific mutation used to probe the gating process.
Collapse
Affiliation(s)
- Wei Wu
- Nora Eccles Harrison Cardiovascular Research & Training Institute
| | - Alison Gardner
- Nora Eccles Harrison Cardiovascular Research & Training Institute
| | - Michael C Sanguinetti
- Nora Eccles Harrison Cardiovascular Research & Training Institute Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
63
|
Thomson SJ, Hansen A, Sanguinetti MC. Concerted all-or-none subunit interactions mediate slow deactivation of human ether-à-go-go-related gene K+ channels. J Biol Chem 2014; 289:23428-36. [PMID: 25008322 DOI: 10.1074/jbc.m114.582437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During the repolarization phase of a cardiac action potential, hERG1 K(+) channels rapidly recover from an inactivated state then slowly deactivate to a closed state. The resulting resurgence of outward current terminates the plateau phase and is thus a key regulator of action potential duration of cardiomyocytes. The intracellular N-terminal domain of the hERG1 subunit is required for slow deactivation of the channel as its removal accelerates deactivation 10-fold. Here we investigate the stoichiometry of hERG1 channel deactivation by characterizing the kinetic properties of concatenated tetramers containing a variable number of wild-type and mutant subunits. Three mutations known to accelerate deactivation were investigated, including R56Q and R4A/R5A in the N terminus and F656I in the S6 transmembrane segment. In all cases, a single mutant subunit induced the same rapid deactivation of a concatenated channel as that observed for homotetrameric mutant channels. We conclude that slow deactivation gating of hERG1 channels involves a concerted, fully cooperative interaction between all four wild-type channel subunits.
Collapse
Affiliation(s)
- Steven J Thomson
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute and
| | - Angela Hansen
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute and
| | - Michael C Sanguinetti
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute and Department of Internal Medicine and Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
64
|
Wang T, Hogan-Cann A, Kang Y, Cui Z, Guo J, Yang T, Lamothe SM, Li W, Ma A, Fisher JT, Zhang S. Muscarinic receptor activation increases hERG channel expression through phosphorylation of ubiquitin ligase Nedd4-2. Mol Pharmacol 2014; 85:877-86. [PMID: 24688054 DOI: 10.1124/mol.113.091553] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human ether-à-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel, which is important for cardiac repolarization. Reduction of hERG current due to genetic mutations or drug interferences causes long QT syndrome, leading to cardiac arrhythmias and sudden death. To date, there is no effective therapeutic method to restore or enhance hERG channel function. Using cell biology and electrophysiological methods, we found that the muscarinic receptor agonist carbachol increased the expression and function of hERG, but not ether-à-go-go or Kv1.5 channels stably expressed in human embryonic kidney cells. The carbachol-mediated increase in hERG expression was abolished by the selective M3 antagonist 4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide) but not by the M2 antagonist AF-DX 116 (11[[2-[(diethylamino)methyl]-1-piperidinyl]-acetyl]-5,11-dihydro-6H-pyrido[2,3-b] [1,4]benzodiazepine-6-one). Treatment of cells with carbachol reduced the hERG-ubiquitin interaction and slowed the rate of hERG degradation. We previously showed that the E3 ubiquitin ligase Nedd4-2 mediates degradation of hERG channels. Here, we found that disrupting the Nedd4-2 binding domain in hERG completely eliminated the effect of carbachol on hERG channels. Carbachol treatment enhanced the phosphorylation level, but not the total level, of Nedd4-2. Blockade of the protein kinase C (PKC) pathway abolished the carbachol-induced enhancement of hERG channels. Our data suggest that muscarinic activation increases hERG channel expression by phosphorylating Nedd4-2 via the PKC pathway.
Collapse
Affiliation(s)
- Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China (T.W., A.M.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (T.W., A.H.-C., Y.K., Z.C., J.G., T.Y., S.M.L., W.L., J.T.F., S.Z.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Perry MD, Wong S, Ng CA, Vandenberg JI. Hydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels. ACTA ACUST UNITED AC 2014; 142:275-88. [PMID: 23980196 PMCID: PMC3753607 DOI: 10.1085/jgp.201310975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kv11.1 channels are critical for the maintenance of a normal heart rhythm. The flow of potassium ions through these channels is controlled by two voltage-regulated gates, termed "activation" and "inactivation," located at opposite ends of the pore. Crucially in Kv11.1 channels, inactivation gating occurs much more rapidly, and over a distinct range of voltages, compared with activation gating. Although it is clear that the fourth transmembrane segments (S4), within each subunit of the tetrameric channel, are important for controlling the opening and closing of the activation gate, their role during inactivation gating is much less clear. Here, we use rate equilibrium free energy relationship (REFER) analysis to probe the contribution of the S4 "voltage-sensor" helix during inactivation of Kv11.1 channels. Contrary to the important role that charged residues play during activation gating, it is the hydrophobic residues (Leu529, Leu530, Leu532, and Val535) that are the key molecular determinants of inactivation gating. Within the context of an interconnected multi-domain model of Kv11.1 inactivation gating, our REFER analysis indicates that the S4 helix and the S4-S5 linker undergo a conformational rearrangement shortly after that of the S5 helix and S5P linker, but before the S6 helix. Combining REFER analysis with double mutant cycle analysis, we provide evidence for a hydrophobic interaction between residues on the S4 and S5 helices. Based on a Kv11.1 channel homology model, we propose that this hydrophobic interaction forms the basis of an intersubunit coupling between the voltage sensor and pore domain that is an important mediator of inactivation gating.
Collapse
Affiliation(s)
- Matthew D Perry
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | | | | | | |
Collapse
|
66
|
Wu W, Sachse FB, Gardner A, Sanguinetti MC. Stoichiometry of altered hERG1 channel gating by small molecule activators. ACTA ACUST UNITED AC 2014; 143:499-512. [PMID: 24638994 PMCID: PMC3971662 DOI: 10.1085/jgp.201311038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Agonists bind to sites on all four subunits to activate human ether-a-go-go–related gene 1 (hERG1) K+ channels. Voltage-gated K+ channels are tetramers formed by coassembly of four identical or highly related subunits. All four subunits contribute to formation of the selectivity filter, the narrowest region of the channel pore which determines K+ selective conductance. In some K+ channels, the selectivity filter can undergo a conformational change to reduce K+ flux by a mechanism called C-type inactivation. In human ether-a-go-go–related gene 1 (hERG1) K+ channels, C-type inactivation is allosterically inhibited by ICA-105574, a substituted benzamide. PD-118057, a 2-(phenylamino) benzoic acid, alters selectivity filter gating to enhance open probability of channels. Both compounds bind to a hydrophobic pocket located between adjacent hERG1 subunits. Accordingly, a homotetrameric channel contains four identical activator binding sites. Here we determine the number of binding sites required for maximal drug effect and determine the role of subunit interactions in the modulation of hERG1 gating by these compounds. Concatenated tetramers were constructed to contain a variable number (zero to four) of wild-type and mutant hERG1 subunits, either L646E to inhibit PD-118057 binding or F557L to inhibit ICA-105574 binding. Enhancement of hERG1 channel current magnitude by PD-118057 and attenuated inactivation by ICA-105574 were mediated by cooperative subunit interactions. Maximal effects of the both compounds required the presence of all four binding sites. Understanding how hERG1 agonists allosterically modify channel gating may facilitate mechanism-based drug design of novel agents for treatment of long QT syndrome.
Collapse
Affiliation(s)
- Wei Wu
- Division of Cardiovascular Medicine, Department of Internal Medicine, 2 Nora Eccles Harrison Cardiovascular Research and Training Institute, and 3 Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| | | | | | | |
Collapse
|
67
|
Dhillon MS, Cockcroft CJ, Munsey T, Smith KJ, Powell AJ, Carter P, Wrighton DC, Rong HL, Yusaf SP, Sivaprasadarao A. A functional Kv1.2-hERG chimaeric channel expressed in Pichia pastoris. Sci Rep 2014; 4:4201. [PMID: 24569544 PMCID: PMC3935203 DOI: 10.1038/srep04201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/07/2014] [Indexed: 12/29/2022] Open
Abstract
Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1-S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family.
Collapse
Affiliation(s)
| | | | - Tim Munsey
- School of Biomedical Sciences, Faculty of Biological Sciences
| | - Kathrine J Smith
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Andrew J Powell
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Paul Carter
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | | | - Hong-lin Rong
- School of Biomedical Sciences, Faculty of Biological Sciences
| | - Shahnaz P Yusaf
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Asipu Sivaprasadarao
- 1] School of Biomedical Sciences, Faculty of Biological Sciences [2] Multidisciplinary Cardiovascular Research Centre, University of Leeds, LS2 9JT, Leeds, U.K
| |
Collapse
|
68
|
Shin DS, Park MJ, Lee HA, Lee JY, Chung HC, Yoo DS, Chae CH, Park SJ, Kim KS, Bae MA. A novel assessment of nefazodone-induced hERG inhibition by electrophysiological and stereochemical method. Toxicol Appl Pharmacol 2014; 274:361-71. [DOI: 10.1016/j.taap.2013.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022]
|
69
|
Radresa O, Guia A, Baroudi G. Roles of PKC Isoforms in PMA-Induced Modulation of the hERG Channel (Kv11.1). ACTA ACUST UNITED AC 2014; 19:890-9. [PMID: 24464434 DOI: 10.1177/1087057113520227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/20/2013] [Indexed: 11/17/2022]
Abstract
Protein kinases C (PKC) modulate the activity of the Kv11.1 ion channel current (hERG). However, the differential effects of specific PKC subtypes on the biophysics of the channel are unknown. The pharmaceutical tools to selectively modulate PKC subtypes are not membrane permeable and must be added directly to the intracellular solution in electrophysiology studies. Here, the PatchXpress electrophysiology robot was used to voltage clamp up to 16 cells simultaneously yet asynchronously across individual Sealchip chambers. The precision afforded by repeats of automation procedures minimized the experimental errors typical of these assays. Eight well-known PKC selective peptidomimmetics and general synthetic modulators were used to modulate the protein-protein interactions between hERG and the major PKC subtypes. We identified a specific role for the PKCε inhibitory peptidomimmetics in decreasing PKC-induced hERG τ activation (80%) and half-maximum activation voltage (90%) at steady state; a specific PKCε activator exhibited the opposite effect. Disruption of PKCβ, PKCα, and PKCη interactions also showed significant effects albeit of lower magnitudes. The effect of PKCδ inhibitor was only marginal. A significant correlation was observed between the shifts in τ activation and half-maximum voltage at steady state (R(2)= 0.85). Peak current amplitudes and time constant of deactivation remained unaffected in all conditions.
Collapse
Affiliation(s)
- Olivier Radresa
- O.R.B.I.T. Bioassays Integration & Technologies, Montréal, Québec, Canada Laboratoire d'Electrophysiologie Cellulaire et de Canalopathies, Centre de Biomédecine, Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| | - António Guia
- AVIVA Biosciences Corporation, San Diego, CA, USA
| | - Ghayath Baroudi
- Laboratoire d'Electrophysiologie Cellulaire et de Canalopathies, Centre de Biomédecine, Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada Département de Médecine & Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Quebec, Canada
| |
Collapse
|
70
|
Pless SA, Galpin JD, Niciforovic AP, Kurata HT, Ahern CA. Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels. eLife 2013; 2:e01289. [PMID: 24327560 PMCID: PMC3852034 DOI: 10.7554/elife.01289] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated potassium (Kv) channels enable potassium efflux and membrane repolarization in excitable tissues. Many Kv channels undergo a progressive loss of ion conductance in the presence of a prolonged voltage stimulus, termed slow inactivation, but the atomic determinants that regulate the kinetics of this process remain obscure. Using a combination of synthetic amino acid analogs and concatenated channel subunits we establish two H-bonds near the extracellular surface of the channel that endow Kv channels with a mechanism to time the entry into slow inactivation: an intra-subunit H-bond between Asp447 and Trp434 and an inter-subunit H-bond connecting Tyr445 to Thr439. Breaking of either interaction triggers slow inactivation by means of a local disruption in the selectivity filter, while severing the Tyr445–Thr439 H-bond is likely to communicate this conformational change to the adjacent subunit(s). DOI:http://dx.doi.org/10.7554/eLife.01289.001 Proteins are made from long chains of smaller molecules, called amino acids. These chains twist and bend into complex three-dimensional shapes, and sometimes two or more chains, or ‘subunits’, are packed into a protein. These shapes are often held together by hydrogen bonds between some of the amino acids. Moreover, since the shape of a protein defines its function, some proteins must be able to switch between different shapes to function properly. Ion channels are proteins that form pores through cell membranes, allowing ions to flow in and out of the cell. Potassium ion channels, which are found in neurons and heart muscle cells, have four subunits that move to open or close the central pore in response to various signals. The closing of the channels can be ‘fast’ or ‘slow’. When the channels are closed quickly (called fast inactivation), a small part of the protein ‘plugs’ the pore from the inside of the cell. However, the mechanism behind slow inactivation remained obscure. It was thought to involve hydrogen bonds between some of the bulky amino acids that are found at the edge the pore. However, testing this hypothesis—by replacing these amino acids with alternatives that cannot form hydrogen bonds—was tricky because none of the 20 naturally occurring amino acids were alike enough to be suitable replacements. Now, Pless et al. have overcome this limitation by using synthetic amino acids that form hydrogen bonds that are stronger or weaker than those formed by the amino acids they are replacing. The results suggest that two types of hydrogen bond keep the pore open: one is a bond between two amino acids in the same subunit, and the other is an inter-subunit bond between amino acids in neighbouring subunits. Pless et al. suggest that opening the channel causes small movements that gradually weaken, and eventually break, these bonds in one of the four subunits. Specific amino acids within the pore are then free to twist and—via a cascade of similar movements in the other three subunits—block the pore and halt the flow of ions. As such, these networks of hydrogen bonds act as pre-set breaking points allowing channels to close, even in response to continued stimulation. Since regulated potassium channel activity underpins healthy neurons and heart muscles; understanding what controls their inactivation rate may lead to new approaches to tune their activity and treatments for important diseases. DOI:http://dx.doi.org/10.7554/eLife.01289.002
Collapse
Affiliation(s)
- Stephan A Pless
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
71
|
Zeng H, Balasubramanian B, Penniman JR, Kinose F, Salata JJ, Lagrutta A. Halide ion effects on human Ether-à-go-go related gene potassium channel properties. Assay Drug Dev Technol 2013; 11:544-50. [PMID: 24147984 DOI: 10.1089/adt.2013.531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The human Ether-à-go-go related gene (hERG) potassium channel has been widely used to counter screen potential pharmaceuticals as a biomarker to predict clinical QT prolongation. Thus, higher throughput assays of hERG are valuable for early in vitro screening of drug candidates to minimize failure in later-stage drug development due to this potentially adverse cardiac risk. We have developed a novel method utilizing potassium fluoride to improve throughput of hERG counter screening with an automated patch clamp system, PatchXpress 7000A. In that method, ∼50% substitution of internal Cl(-) with F(-) greatly increases success rate without substantially altering the biophysical properties of the hERG channel or compromising data quality. However, effect of F(-) or other halide ions on hERG channel properties has not been studied in detail. In this study, we examined effects of complete replacement of Cl(-) in internal solution with halide ions, F(-), or Br(-). We found that (1) F(-) slightly shifts the voltage dependence of hERG channel activation to more positive voltages, while Br(-) shifts it to more negative voltages; (2) Br(-) shifts to more positive voltages both the inactivation-voltage relationship and the peak position of channel full activation of hERG; (3) F(-) slows hERG activation, while both F(-) and Br(-) make the channel close faster; (4) neither F(-) nor Br(-) have any effect on hERG inactivation kinetics. In conclusion, compared to Cl(-), F(-) has subtle effect on hERG activation, while Br(-) has distinct effects on certain, but not all biophysical properties of hERG channel.
Collapse
Affiliation(s)
- Haoyu Zeng
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories , West Point, Pennsylvania
| | | | | | | | | | | |
Collapse
|
72
|
Gianulis EC, Liu Q, Trudeau MC. Direct interaction of eag domains and cyclic nucleotide-binding homology domains regulate deactivation gating in hERG channels. ACTA ACUST UNITED AC 2013; 142:351-66. [PMID: 24043860 PMCID: PMC3787778 DOI: 10.1085/jgp.201310995] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human ether-á-go-go (eag)-related gene (hERG) potassium channels play a critical role in cardiac repolarization and are characterized by unusually slow closing (deactivation) kinetics. The N-terminal “eag” domain and a C-terminal C-linker/cyclic nucleotide–binding homology domain (CNBHD) are required for regulation of slow deactivation. The region between the S4 and S5 transmembrane domains (S4–S5 linker) is also implicated in this process, but the mechanism for regulation of slow deactivation is unclear. Here, using an eag domain–deleted channel (hERG Δeag) fused to Citrine fluorescent protein, we found that most channels bearing individual alanine mutations in the S4–S5 linker were directly regulated by recombinant eag domains fused to a cyan fluorescent protein (N-eag-CFP) and had robust Förster resonance energy transfer (FRET). Additionally, a channel bearing a group of eight alanine residues in the S4–S5 linker was not measurably regulated by N-eag-CFP domains, but robust FRET was measured. These findings demonstrate that the eag domain associated with all of the S4–S5 linker mutant channels. In contrast, channels that also lacked the CNBHD (hERG Δeag ΔCNBHD-Citrine) were not measurably regulated by N-eag-CFP nor was FRET detected, suggesting that the C-linker/CNBHD was required for eag domains to directly associate with the channel. In a FRET hybridization assay, N-eag-CFP had robust FRET with a C-linker/CNBHD-Citrine, suggesting a direct and specific interaction between the eag domain and the C-linker/CNBHD. Lastly, coexpression of a hERG subunit lacking the CNBHD and the distal C-terminal region (hERG ΔpCT-Citrine) with hERG Δeag-CFP subunits had FRET and partial restoration of slow deactivation. Collectively, these findings reveal that the C-linker/CNBHD, but not the S4–S5 linker, was necessary for the eag domain to associate with the channel, that the eag domain and the C-linker/CNBHD were sufficient for a direct interaction, and that an intersubunit interaction between the eag domain and the C-linker/CNBHD regulated slow deactivation in hERG channels at the plasma membrane.
Collapse
Affiliation(s)
- Elena C Gianulis
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | | |
Collapse
|
73
|
Cordeiro JM, Panama BK, Goodrow R, Zygmunt AC, White C, Treat JA, Zeina T, Nesterenko VV, Di Diego JM, Burashnikov A, Antzelevitch C. Developmental changes in expression and biophysics of ion channels in the canine ventricle. J Mol Cell Cardiol 2013; 64:79-89. [PMID: 24035801 DOI: 10.1016/j.yjmcc.2013.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/12/2013] [Accepted: 09/02/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Developmental changes in the electrical characteristics of the ventricular myocardium are not well defined. This study examines the contribution of inwardly rectifying K(+) current (IK1), transient outward K(+) current (Ito), delayed rectifier K(+) currents (IKr and IKs) and sodium channel current (INa) to repolarization in the canine neonate myocardium. METHODS Single myocytes isolated from the left ventricle of 2-3week old canine neonate hearts were studied using patch-clamp techniques. RESULTS Neonate cells were ~6-fold smaller than those of adults (28.8±8.8 vs. 176±6.7pF). IK1 was larger in neonate myocytes and displayed a substantial inward component and an outward component with negative slope conductance, peaking at -60mV (4.13 pA/pF). IKr tail currents (at -40mV), were small (<20pA). IKs could not be detected, even after exposure to isoproterenol (100nM). Ito was also absent in the neonate, consistent with the absence of a phase 1 in the action potential. Peak INa, late INa and ICa were smaller in the neonate compared with adults. KCND3, KCNIP2 and KCNQ1 mRNA expression was half, while KCNH2 was equal and KCNJ2 was greater in the neonate when compared with adults. CONCLUSIONS Two major repolarizing K(+) currents (IKs and Ito) present in adult ventricular cells are absent in the 2week old neonate. Peak and late INa are significantly smaller in the neonate. Our results suggest that the absence of these two currents in the neonate heart may increase the susceptibility to arrhythmias under certain long QT conditions.
Collapse
Affiliation(s)
- Jonathan M Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, 2150 Bleecker St., Utica, NY 13501, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Wang N, Ma JH, Zhang PH. Procaine, a state-dependent blocker, inhibits HERG channels by helix residue Y652 and F656 in the S6 transmembrane domain. J Pharmacol Sci 2013; 123:25-35. [PMID: 24005047 DOI: 10.1254/jphs.13007fp] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The article evaluated the inhibitory action of procaine on wild-type and mutated HERG potassium channel current (I(HERG)) to determine whether mutations in the S6 region are important for the inhibition of I(HERG) by procaine. HERG channels (WT, Y652A, and F656A) were expressed in Xenopus laevis oocytes and studied using the standard two-microelectrode voltage-clamp technique. The results revealed that WT HERG is blocked in a concentration-, voltage-, and state-dependent manner by procaine ([IC₅₀] = 34.79 μM). The steady state activation curves slightly move to the negative, while inactivation parameters move to the positive in the presence of procaine. Time-dependent test reveals that voltage-dependent I(HERG) blockade occurs extremely rapidly. Furthermore, the mutation to Ala of Y652 and F656 produce about 11-fold and 18-fold increases in IC₅₀ for I(HERG) blockade, respectively. Simultaneously, for Y652A, the steady state activation and inactivation parameters are shifted to more positive values after perfusion of procaine. Conclusively, procaine state-dependently inhibits HERG channels (WT, Y652A, and F656A). The helix residues Y652 and F656 in the S6 transmembrane domain might play a role in interaction of the drug with the channel.
Collapse
Affiliation(s)
- Na Wang
- Cardio-Electrophysiology Research Laboratory, Medical College, Wuhan University of Science and Technology, China
| | | | | |
Collapse
|
75
|
Stump MR, Gong Q, Zhou Z. LQT2 nonsense mutations generate trafficking defective NH2-terminally truncated channels by the reinitiation of translation. Am J Physiol Heart Circ Physiol 2013; 305:H1397-404. [PMID: 23997099 DOI: 10.1152/ajpheart.00304.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human ether-a-go-go-related gene (hERG) encodes a voltage-activated K(+) channel that contributes to the repolarization of the cardiac action potential. Long QT syndrome type 2 (LQT2) is an autosomal dominant disorder caused by mutations in hERG, and patients with LQT2 are susceptible to severe ventricular arrhythmias. We have previously shown that nonsense and frameshift LQT2 mutations caused a decrease in mutant mRNA by the nonsense-mediated mRNA decay (NMD) pathway. The Q81X nonsense mutation was recently found to be resistant to NMD. Translation of Q81X is reinitiated at Met(124), resulting in the generation of NH2-terminally truncated hERG channels with altered gating properties. In the present study, we identified two additional NMD-resistant LQT2 nonsense mutations, C39X and C44X, in which translation is reinitiated at Met(60). Deletion of the first 59 residues of the channel truncated nearly one-third of the highly structured Per-Arnt-Sim domain and resulted in the generation of trafficking-defective proteins and a complete loss of hERG current. Partial deletion of the Per-Arnt-Sim domain also resulted in the accelerated degradation of the mutant channel proteins. The coexpression of mutant and wild-type channels did not significantly disrupt the function and trafficking properties of wild-type hERG. Our present findings indicate that translation reinitiation may generate trafficking-defective as well as dysfunctional channels in patients with LQT2 premature termination codon mutations that occur early in the coding sequence.
Collapse
Affiliation(s)
- Matthew R Stump
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | | | | |
Collapse
|
76
|
Chun YS, Oh HG, Park MK, Cho H, Chung S. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression. Channels (Austin) 2013; 7:275-87. [PMID: 23793622 DOI: 10.4161/chan.25122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.
Collapse
Affiliation(s)
- Yoon Sun Chun
- Department of Physiology; Samsung Biomedical Research Institute; Sungkyunkwan University School of Medicine; Suwon, South Korea
| | | | | | | | | |
Collapse
|
77
|
Allocryptopine and benzyltetrahydropalmatine block hERG potassium channels expressed in HEK293 cells. Acta Pharmacol Sin 2013; 34:847-58. [PMID: 23524574 DOI: 10.1038/aps.2012.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM Allocryptopine (ALL) is an alkaloid extracted from Corydalis decumbens (Thunb) Pers. Papaveraceae, whereas benzyltetrahydropalmatine (BTHP) is a derivative of tetrahydropalmatine extracted from Corydalis ambigua (Pall) Cham et Schlecht. The aim of this study was to investigate the effects of ALL and BTHP on the human ether-a-go-go related gene (hERG) current expressed in HEK293 cells. METHODS Cultured HEK293 cells were transiently transfected with hERG channel cDNA plasmid pcDNA3.1 using Lipofectamine. The whole-cell current IHERG was evoked and recorded using Axon MultiClamp 700B amplifier. The drugs were applied via supserfusion. RESULTS Both ALL and BTHP reversibly suppressed the amplitude and density of IHERG in concentration- and voltage-dependent manners (the respective IC50 value was 49.65 and 22.38 μmol/L). BTHP (30 μmol/L) caused a significant negative shift of the steady-state inactivation curve of IHERG, while ALL (30 μmol/L) did not affect the steady-state inactivation of IHERG. Furthermore, BTHP, but not ALL, shortened the time constants of fast inactivation and slow time constants of deactivation of IHERG. But both the drugs markedly lengthened the time constants for recovery of IHERG from inactivation. Using action potential waveform pulses, it was found that both the drugs at 30 μmol/L significantly suppressed the current densities in the late phase of action potential, but did not significantly affect the current densities in the early phase of action potential. CONCLUSION Both ALL and BTHP derived from Chinese herbs potently block hERG current.
Collapse
|
78
|
Navarro-Polanco RA, Aréchiga-Figueroa IA, Salazar-Fajardo PD, Benavides-Haro DE, Rodríguez-Elías JC, Sachse FB, Tristani-Firouzi M, Sánchez-Chapula JA, Moreno-Galindo EG. Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K(+) current by choline in feline atrial myocytes. J Physiol 2013; 591:4273-86. [PMID: 23652593 DOI: 10.1113/jphysiol.2013.255166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.
Collapse
Affiliation(s)
- Ricardo A Navarro-Polanco
- E. G. Moreno-Galindo: C.U.I.B., Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P. 28045 Colima, Col., México.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Qu Z, Xie LH, Olcese R, Karagueuzian HS, Chen PS, Garfinkel A, Weiss JN. Early afterdepolarizations in cardiac myocytes: beyond reduced repolarization reserve. Cardiovasc Res 2013; 99:6-15. [PMID: 23619423 DOI: 10.1093/cvr/cvt104] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Early afterdepolarizations (EADs) are secondary voltage depolarizations during the repolarizing phase of the action potential, which can cause lethal cardiac arrhythmias. The occurrence of EADs requires a reduction in outward current and/or an increase in inward current, a condition called reduced repolarization reserve. However, this generalized condition is not sufficient for EAD genesis and does not explain the voltage oscillations manifesting as EADs. Here, we summarize recent progress that uses dynamical theory to build on and advance our understanding of EADs beyond the concept of repolarization reserve, towards the goal of developing a holistic and integrative view of EADs and their role in arrhythmogenesis. We first introduce concepts from nonlinear dynamics that are relevant to EADs, namely, Hopf bifurcation leading to oscillations and basin of attraction of an equilibrium or oscillatory state. We then present a theory of phase-2 EADs in nonlinear dynamics, which includes the formation of quasi-equilibrium states at the plateau voltage, their stabilities, and the bifurcations leading to and terminating the oscillations. This theory shows that the L-type calcium channel plays a unique role in causing the nonlinear dynamical behaviours necessary for EADs. We also summarize different mechanisms of phase-3 EADs. Based on the dynamical theory, we discuss the roles of each of the major ionic currents in the genesis of EADs, and potential therapeutic targets.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine , David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
80
|
Garg V, Stary-Weinzinger A, Sanguinetti MC. ICA-105574 interacts with a common binding site to elicit opposite effects on inactivation gating of EAG and ERG potassium channels. Mol Pharmacol 2013; 83:805-13. [PMID: 23319419 PMCID: PMC3608434 DOI: 10.1124/mol.112.084384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/14/2013] [Indexed: 12/27/2022] Open
Abstract
Rapid and voltage-dependent inactivation greatly attenuates outward currents in ether-a-go-go-related gene (ERG) K(+) channels. In contrast, inactivation of related ether-a-go-go (EAG) K(+) channels is very slow and minimally reduces outward currents. ICA-105574 (ICA, or 3-nitro-N-[4-phenoxyphenyl]-benzamide) has opposite effects on inactivation of these two channel types. Although ICA greatly attenuates ERG inactivation by shifting its voltage dependence to more positive potentials, it enhances the rate and extent of EAG inactivation without altering its voltage dependence. Here, we investigate whether the inverse functional response to ICA in EAG and ERG channels is related to differences in ICA binding site or to intrinsic mechanisms of inactivation. Molecular modeling coupled with site-directed mutagenesis suggests that ICA binds in a channel-specific orientation to a hydrophobic pocket bounded by the S5/pore helix/S6 of one subunit and S6 of an adjacent subunit. ICA is a mixed agonist of mutant EAG and EAG/ERG chimera channels that inactivate by a combination of slow and fast mechanisms. With the exception of three residues, the specific amino acids that form the putative binding pocket for ICA in ERG are conserved in EAG. Mutations introduced into EAG to replicate the ICA binding site in ERG did not alter the functional response to ICA. Together these findings suggest that ICA binds to the same site in EAG and ERG channels to elicit opposite functional effects. The resultant agonist or antagonist activity is determined solely by channel-specific differences in the mechanisms of inactivation gating.
Collapse
Affiliation(s)
- Vivek Garg
- Nora Eccles Harrison Cardiovascular Research & Training Institute, Department of Physiology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
81
|
Perry MD, Ng CA, Vandenberg JI. Pore helices play a dynamic role as integrators of domain motion during Kv11.1 channel inactivation gating. J Biol Chem 2013; 288:11482-91. [PMID: 23471968 DOI: 10.1074/jbc.m113.461442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins that form ion-selective pores in the membrane of cells are integral to many rapid signaling processes, including regulating the rhythm of the heartbeat. In potassium channels, the selectivity filter is critical for both endowing an exquisite selectivity for potassium ions, as well as for controlling the flow of ions through the pore. Subtle rearrangements in the complex hydrogen-bond network that link the selectivity filter to the surrounding pore helices differentiate conducting (open) from nonconducting (inactivated) conformations of the channel. Recent studies suggest that beyond the selectivity filter, inactivation involves widespread rearrangements of the channel protein. Here, we use rate equilibrium free energy relationship analysis to probe the structural changes that occur during selectivity filter gating in Kv11.1 channels, at near atomic resolution. We show that the pore helix plays a crucial dynamic role as a bidirectional interface during selectivity filter gating. We also define the molecular bases of the energetic coupling between the pore helix and outer helix of the pore domain that occurs early in the transition from open to inactivated states, as well as the coupling between the pore helix and inner helix late in the transition. Our data demonstrate that the pore helices are more than just static structural elements supporting the integrity of the selectivity filter; instead they play a crucial dynamic role during selectivity filter gating.
Collapse
Affiliation(s)
- Matthew D Perry
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | | | | |
Collapse
|
82
|
Torres-Jacome J, Gallego M, Rodríguez-Robledo JM, Sanchez-Chapula JA, Casis O. Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes. Acta Physiol (Oxf) 2013. [PMID: 23181465 DOI: 10.1111/apha.12043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The fast transient outward current, I(to,fast) , is the most extensively studied cardiac K(+) current in diabetic animals. Two hypotheses have been proposed to explain how type-1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in the trophic effect of insulin. The second one proposes flawed glucose metabolism as the cause of the reduced I(to,fast) . Moreover, little information exists about the effects and possible mechanisms of diabetes on the other repolarizing currents of the human heart: I(to,slow) , I(Kr) , I(Ks) , I(Kur) , I(Kslow) and I(K1) . METHODS We recorded cardiac action potentials and K(+) currents in ventricular cells isolated from control and streptozotocin- or alloxan-induced diabetic mice and rabbits. Channel protein expression was determined by immunofluorescence. RESULTS Diabetes reduces the amplitude of I(to,fast) , I(to,slow) and I(Kslow) , in ventricular myocytes from mouse and rabbit, with no effect on I(ss) , I(Kr) or I(K1) . The absence of changes in the biophysical properties of the currents and the immunofluorescence experiments confirmed the reduction in channel protein synthesis. Six-hour incubation of myocytes with insulin or pyruvate recovered current amplitudes and fluorescent staining. The activation of AMP-K reduced the same K(+) currents in healthy myocytes and prevented the pyruvate-induced current recovery. CONCLUSION Diabetes reduces K(+) current densities in ventricular myocytes due to a defect in channel protein synthesis. Activation of AMP-K secondary to deterioration in the metabolic status of the cells is responsible for K(+) channel reductions.
Collapse
Affiliation(s)
- J. Torres-Jacome
- Unidad de Investigación ‘Carlos Médez’ del Centro Universitario de Investigaciones Biomédicas; Universidad de Colima; Colima; México
| | | | - J. M. Rodríguez-Robledo
- Department of Physiology; School of Pharmacy; University of the Basque Country UPV/EHU; Vitoria; Spain
| | - J. A. Sanchez-Chapula
- Unidad de Investigación ‘Carlos Médez’ del Centro Universitario de Investigaciones Biomédicas; Universidad de Colima; Colima; México
| | | |
Collapse
|
83
|
Hoshi T, Armstrong CM. C-type inactivation of voltage-gated K+ channels: pore constriction or dilation? ACTA ACUST UNITED AC 2013; 141:151-60. [PMID: 23319730 PMCID: PMC3557304 DOI: 10.1085/jgp.201210888] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
84
|
Gustina AS, Trudeau MC. The eag domain regulates hERG channel inactivation gating via a direct interaction. ACTA ACUST UNITED AC 2013; 141:229-41. [PMID: 23319729 PMCID: PMC3557309 DOI: 10.1085/jgp.201210870] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human ether-á-go-go (eag)-related gene (hERG) potassium channel kinetics are characterized by rapid inactivation upon depolarization, along with rapid recovery from inactivation and very slow closing (deactivation) upon repolarization. These factors combine to create a resurgent hERG current, where the current amplitude is paradoxically larger with repolarization than with depolarization. Previous data showed that the hERG N-terminal eag domain regulated deactivation kinetics by making a direct interaction with the C-terminal region of the channel. A primary mechanism for fast inactivation depends on residues in the channel pore; however, inactivation was also shown to be slower after deletion of a large N-terminal region. The mechanism for N-terminal region regulation of inactivation is unclear. Here, we investigated the contributions of the large N-terminal domains (amino acids 1-354), including the eag domain (amino acids 1-135), to hERG channel inactivation kinetics and steady-state inactivation properties. We found that N-deleted channels lacking just the eag domain (Δ2-135) or both the eag domain and the adjacent proximal domain (Δ2-354) had less rectifying current-voltage (I-V) relationships, slower inactivation, faster recovery from inactivation, and lessened steady-state inactivation. We coexpressed genetically encoded N-terminal fragments for the eag domain (N1-135) or the eag domain plus the proximal domain (N1-354) with N-deleted hERG Δ2-135 or hERG Δ2-354 channels and found that the resulting channels had more rectifying I-V relationships, faster inactivation, slower recovery from inactivation, and increased steady-state inactivation, similar to those properties measured for wild-type (WT) hERG. We also found that the eag domain-containing fragments regulated the time to peak and the voltage at the peak of a resurgent current elicited with a ramp voltage protocol. The eag domain-containing fragments effectively converted N-deleted channels into WT-like channels. Neither the addition of the proximal domain to the eag domain in N1-354 fragments nor the presence of the proximal domain in hERG Δ2-135 channels measurably affected inactivation properties; in contrast, the proximal region regulated steady-state activation in hERG Δ2-135 channels. The results show that N-terminal region-dependent regulation of channel inactivation and resurgent current properties are caused by a direct interaction of the eag domain with the rest of the hERG channel.
Collapse
Affiliation(s)
- Ahleah S Gustina
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
85
|
Norring SA, Ednie AR, Schwetz TA, Du D, Yang H, Bennett ES. Channel sialic acids limit hERG channel activity during the ventricular action potential. FASEB J 2012; 27:622-31. [DOI: 10.1096/fj.12-214387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sarah A. Norring
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | - Andrew R. Ednie
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | - Tara A. Schwetz
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | - Dongping Du
- Department of Industrial and Management Systems EngineeringUniversity of South FloridaTampaFloridaUSA
| | - Hui Yang
- Department of Industrial and Management Systems EngineeringUniversity of South FloridaTampaFloridaUSA
| | - Eric S. Bennett
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Programs in Neuroscience and Cardiovascular SciencesMorsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
86
|
Balijepalli SY, Lim E, Concannon SP, Chew CL, Holzem KE, Tester DJ, Ackerman MJ, Delisle BP, Balijepalli RC, January CT. Mechanism of loss of Kv11.1 K+ current in mutant T421M-Kv11.1-expressing rat ventricular myocytes: interaction of trafficking and gating. Circulation 2012; 126:2809-18. [PMID: 23136156 DOI: 10.1161/circulationaha.112.118018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Type 2 long QT syndrome involves mutations in the human ether a-go-go-related gene (hERG or KCNH2). T421M, an S1 domain mutation in the Kv11.1 channel protein, was identified in a resuscitated patient. We assessed its biophysical, protein trafficking, and pharmacological mechanisms in adult rat ventricular myocytes. METHODS AND RESULTS Isolated adult rat ventricular myocytes were infected with wild-type (WT)-Kv11.1- and T421M-Kv11.1-expressing adenovirus and analyzed with the use of patch clamp, Western blot, and confocal imaging techniques. Expression of WT-Kv11.1 or T421M-Kv11.1 produced peak tail current (I(Kv11.1)) of 8.78±1.18 and 1.91±0.22 pA/pF, respectively. Loss of mutant I(Kv11.1) resulted from (1) a partially trafficking-deficient channel protein with reduced cell surface expression and (2) altered channel gating with a positive shift in the voltage dependence of activation and altered kinetics of activation and deactivation. Coexpression of WT+T421M-Kv11.1 resulted in heterotetrameric channels that remained partially trafficking deficient with only a minimal increase in peak I(Kv11.1) density, whereas the voltage dependence of channel gating became WT-like. In the adult rat ventricular myocyte model, both WT-Kv11.1 and T421M-Kv11.1 channels responded to β-adrenergic stimulation by increasing I(Kv11.1). CONCLUSIONS The T421M-Kv11.1 mutation caused a loss of I(Kv11.1) through interactions of abnormal protein trafficking and channel gating. Furthermore, for coexpressed WT+T421M-Kv11.1 channels, different dominant-negative interactions govern protein trafficking and ion channel gating, and these are likely to be reflected in the clinical phenotype. Our results also show that WT and mutant Kv11.1 channels responded to β-adrenergic stimulation.
Collapse
|
87
|
Ceccarini L, Masetti M, Cavalli A, Recanatini M. Ion conduction through the hERG potassium channel. PLoS One 2012; 7:e49017. [PMID: 23133669 PMCID: PMC3487835 DOI: 10.1371/journal.pone.0049017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 10/09/2012] [Indexed: 12/02/2022] Open
Abstract
The inward rectifier voltage-gated potassium channel hERG is of primary importance for the regulation of the membrane potential of cardiomyocytes. Unlike most voltage-gated K+-channels, hERG shows a low elementary conductance at physiological voltage and potassium concentration. To investigate the molecular features underlying this unusual behavior, we simulated the ion conduction through the selectivity filter at a fully atomistic level by means of molecular dynamics-based methods, using a homology-derived model. According to our calculations, permeation of potassium ions can occur along two pathways, one involving site vacancies inside the filter (showing an energy barrier of about 6 kcal mol−1), and the other characterized by the presence of a knock-on intermediate (about 8 kcal mol−1). These barriers are indeed in accordance with a low conductance behavior, and can be explained in terms of a series of distinctive structural features displayed by the hERG ion permeation pathway.
Collapse
Affiliation(s)
- Luisa Ceccarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- * E-mail:
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Drug Discovery and Development, Italian Institute of Technology, via Morego 30, Genova, Italy
| | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
88
|
Blunck R, Batulan Z. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front Pharmacol 2012; 3:166. [PMID: 22988442 PMCID: PMC3439648 DOI: 10.3389/fphar.2012.00166] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/24/2012] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion - sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3-4e(+) each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during gating.
Collapse
Affiliation(s)
- Rikard Blunck
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
- Department of Physics, Université de MontréalMontreal, QC, Canada
| | - Zarah Batulan
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
89
|
Moreno C, Macias A, Prieto A, De La Cruz A, Valenzuela C. Polyunsaturated Fatty acids modify the gating of kv channels. Front Pharmacol 2012; 3:163. [PMID: 22973228 PMCID: PMC3437463 DOI: 10.3389/fphar.2012.00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/20/2012] [Indexed: 11/13/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have been reported to exhibit antiarrhythmic properties, which are attributed to their capability to modulate ion channels. This PUFAs ability has been reported to be due to their effects on the gating properties of ion channels. In the present review, we will focus on the role of PUFAs on the gating of two Kv channels, Kv1.5 and Kv11.1. Kv1.5 channels are blocked by n-3 PUFAs of marine [docosahexaenoic acid (DHA) and eicosapentaenoic acid] and plant origin (alpha-linolenic acid, ALA) at physiological concentrations. The blockade of Kv1.5 channels by PUFAs steeply increased in the range of membrane potentials coinciding with those of Kv1.5 channel activation, suggesting that PUFAs-channel binding may derive a significant fraction of its voltage sensitivity through the coupling to channel gating. A similar shift in the activation voltage was noted for the effects of n-6 arachidonic acid (AA) and DHA on Kv1.1, Kv1.2, and Kv11.1 channels. PUFAs-Kv1.5 channel interaction is time-dependent, producing a fast decay of the current upon depolarization. Thus, Kv1.5 channel opening is a prerequisite for the PUFA-channel interaction. Similar to the Kv1.5 channels, the blockade of Kv11.1 channels by AA and DHA steeply increased in the range of membrane potentials that coincided with the range of Kv11.1 channel activation, suggesting that the PUFAs-Kv channel interactions are also coupled to channel gating. Furthermore, AA regulates the inactivation process in other Kv channels, introducing a fast voltage-dependent inactivation in non-inactivating Kv channels. These results have been explained within the framework that AA closes voltage-dependent potassium channels by inducing conformational changes in the selectivity filter, suggesting that Kv channel gating is lipid dependent.
Collapse
Affiliation(s)
- Cristina Moreno
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | | | | | | | | |
Collapse
|
90
|
Early LQT2 nonsense mutation generates N-terminally truncated hERG channels with altered gating properties by the reinitiation of translation. J Mol Cell Cardiol 2012; 53:725-33. [PMID: 22964610 DOI: 10.1016/j.yjmcc.2012.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/18/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022]
Abstract
Mutations in the human ether-a-go-go-related gene (hERG) result in long QT syndrome type 2 (LQT2). The hERG gene encodes a K(+) channel that contributes to the repolarization of the cardiac action potential. We have previously shown that hERG mRNA transcripts that contain premature termination codon mutations are rapidly degraded by nonsense-mediated mRNA decay (NMD). In this study, we identified a LQT2 nonsense mutation, Q81X, which escapes degradation by the reinitiation of translation and generates N-terminally truncated channels. RNA analysis of hERG minigenes revealed equivalent levels of wild-type and Q81X mRNA while the mRNA expressed from minigenes containing the LQT2 frameshift mutation, P141fs+2X, was significantly reduced by NMD. Western blot analysis revealed that Q81X minigenes expressed truncated channels. Q81X channels exhibited decreased tail current levels and increased deactivation kinetics compared to wild-type channels. These results are consistent with the disruption of the N-terminus, which is known to regulate hERG deactivation. Site-specific mutagenesis studies showed that translation of the Q81X transcript is reinitiated at Met124 following premature termination. Q81X co-assembled with hERG to form heteromeric channels that exhibited increased deactivation rates compared to wild-type channels. Mutant channels also generated less outward current and transferred less charge at late phases of repolarization during ventricular action potential clamp. These results provide new mechanistic insight into the prolongation of the QT interval in LQT2 patients. Our findings indicate that the reinitiation of translation may be an important pathogenic mechanism in patients with nonsense and frameshift LQT2 mutations near the 5' end of the hERG gene.
Collapse
|
91
|
Tan PS, Perry MD, Ng CA, Vandenberg JI, Hill AP. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels. ACTA ACUST UNITED AC 2012; 140:293-306. [PMID: 22891279 PMCID: PMC3434099 DOI: 10.1085/jgp.201110761] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human ether-a-go-go–related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.
Collapse
Affiliation(s)
- Peter S Tan
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | |
Collapse
|
92
|
Gustina AS, Trudeau MC. HERG potassium channel regulation by the N-terminal eag domain. Cell Signal 2012; 24:1592-8. [PMID: 22522181 PMCID: PMC4793660 DOI: 10.1016/j.cellsig.2012.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 01/19/2023]
Abstract
Human ether-á-go-go related gene (hERG, K(v)11.1) potassium channels play a significant role in cardiac excitability. Like other K(v) channels, hERG is activated by membrane voltage; however, distinct from other K(v) channels, hERG channels have unusually slow kinetics of closing (deactivation). The mechanism for slow deactivation involves an N-terminal "eag domain" which comprises a PAS (Per-Arnt-Sim) domain and a short Cap domain. Here we review recent advances in understanding how the eag domain regulates deactivation, including several new Nuclear Magnetic Resonance (NMR) solution structures of the eag domain, and evidence showing that the eag domain makes a direct interaction with the C-terminal C-linker and Cyclic Nucleotide-Binding Homology Domain.
Collapse
Affiliation(s)
- Ahleah S. Gustina
- Program in Neuroscience, University of Maryland, School of Medicine, 660 W Redwood St, Baltimore, MD 21201
- Department of Physiology, University of Maryland, School of Medicine, 660 W Redwood St, Baltimore, MD 21201
| | - Matthew C. Trudeau
- Department of Physiology, University of Maryland, School of Medicine, 660 W Redwood St, Baltimore, MD 21201
| |
Collapse
|
93
|
Mechanism of Cd2+ coordination during slow inactivation in potassium channels. Structure 2012; 20:1332-42. [PMID: 22771214 DOI: 10.1016/j.str.2012.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/14/2012] [Accepted: 03/27/2012] [Indexed: 11/22/2022]
Abstract
In K+ channels, rearrangements of the pore outer vestibule have been associated with C-type inactivation gating. Paradoxically, the crystal structure of Open/C-type inactivated KcsA suggests these movements to be modest in magnitude. In this study, we show that under physiological conditions, the KcsA outer vestibule undergoes relatively large dynamic rearrangements upon inactivation. External Cd2+ enhances the rate of C-type inactivation in an cysteine mutant (Y82C) via metal-bridge formation. This effect is not present in a non-inactivating mutant (E71A/Y82C). Tandem dimer and tandem tetramer constructs of equivalent cysteine mutants in KcsA and Shaker K+ channels demonstrate that these Cd2+ metal bridges are formed only between adjacent subunits. This is well supported by molecular dynamics simulations. Based on the crystal structure of Cd2+ -bound Y82C-KcsA in the closed state, together with electron paramagnetic resonance distance measurements in the KcsA outer vestibule, we suggest that subunits must dynamically come in close proximity as the channels undergo inactivation.
Collapse
|
94
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 526] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
95
|
Trudeau MC, Leung LM, Roti ER, Robertson GA. hERG1a N-terminal eag domain-containing polypeptides regulate homomeric hERG1b and heteromeric hERG1a/hERG1b channels: a possible mechanism for long QT syndrome. ACTA ACUST UNITED AC 2012; 138:581-92. [PMID: 22124116 PMCID: PMC3226966 DOI: 10.1085/jgp.201110683] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Human ether-á-go-go–related gene (hERG) potassium channels are critical for cardiac action potential repolarization. Cardiac hERG channels comprise two primary isoforms: hERG1a, which has a regulatory N-terminal Per-Arnt-Sim (PAS) domain, and hERG1b, which does not. Isolated, PAS-containing hERG1a N-terminal regions (NTRs) directly regulate NTR-deleted hERG1a channels; however, it is unclear whether hERG1b isoforms contain sufficient machinery to support regulation by hERG1a NTRs. To test this, we constructed a series of PAS domain–containing hERG1a NTRs (encoding amino acids 1–181, 1–228, 1–319, and 1–365). The NTRs were also predicted to form from truncation mutations that were linked to type 2 long QT syndrome (LQTS), a cardiac arrhythmia disorder associated with mutations in the hERG gene. All of the hERG1a NTRs markedly regulated heteromeric hERG1a/hERG1b channels and homomeric hERG1b channels by decreasing the magnitude of the current–voltage relationship and slowing the kinetics of channel closing (deactivation). In contrast, NTRs did not measurably regulate hERG1a channels. A short NTR (encoding amino acids 1–135) composed primarily of the PAS domain was sufficient to regulate hERG1b. These results suggest that isolated hERG1a NTRs directly interact with hERG1b subunits. Our results demonstrate that deactivation is faster in hERG1a/hERG1b channels compared to hERG1a channels because of fewer PAS domains, not because of an inhibitory effect of the unique hERG1b NTR. A decrease in outward current density of hERG1a/hERG1b channels by hERG1a NTRs may be a mechanism for LQTS.
Collapse
Affiliation(s)
- Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
96
|
Cheng YM, Claydon TW. Voltage-dependent gating of HERG potassium channels. Front Pharmacol 2012; 3:83. [PMID: 22586397 PMCID: PMC3347040 DOI: 10.3389/fphar.2012.00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/16/2012] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.
Collapse
Affiliation(s)
- Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | | |
Collapse
|
97
|
Hayashi M, Wang J, Hede SE, Novak I. An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. Am J Physiol Cell Physiol 2012; 303:C151-9. [PMID: 22555847 DOI: 10.1152/ajpcell.00089.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels play a vital role in maintaining the membrane potential and the driving force for anion secretion in epithelia. In pancreatic ducts, which secrete bicarbonate-rich fluid, the identity of K(+) channels has not been extensively investigated. In this study, we investigated the molecular basis of functional K(+) channels in rodent and human pancreatic ducts (Capan-1, PANC-1, and CFPAC-1) using molecular and electrophysiological techniques. RT-PCR analysis revealed mRNAs for KCNQ1, KCNH2, KCNH5, KCNT1, and KCNT2, as well as KCNN4 coding for the following channels: KVLQT1; HERG; EAG2; Slack; Slick; and an intermediate-conductance Ca(2+)-activated K(+) (IK) channel (K(Ca)3.1). The following functional studies were focused on the IK channel. 5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DC-EBIO), an activator of IK channel, increased equivalent short-circuit current (I(sc)) in Capan-1 monolayer, consistent with a secretory response. Clotrimazole, a blocker of IK channel, inhibited I(sc). IK channel blockers depolarized the membrane potential of cells in microperfused ducts dissected from rodent pancreas. Cell-attached patch-clamp single-channel recordings revealed IK channels with an average conductance of 80 pS in freshly isolated rodent duct cells. These results indicated that the IK channels may, at least in part, be involved in setting the resting membrane potential. Furthermore, the IK channels are involved in anion and potassium transport in stimulated pancreatic ducts.
Collapse
Affiliation(s)
- Mikio Hayashi
- Department of Biology, August Krogh Building, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
98
|
Van Slyke AC, Cheng YM, Mafi P, Allard CR, Hull CM, Shi YP, Claydon TW. Proton block of the pore underlies the inhibition of hERG cardiac K+ channels during acidosis. Am J Physiol Cell Physiol 2012; 302:C1797-806. [PMID: 22517356 DOI: 10.1152/ajpcell.00324.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human ether-a-go-go-related gene (hERG) potassium channels are critical determinants of cardiac repolarization. Loss of function of hERG channels is associated with Long QT Syndrome, arrhythmia, and sudden death. Acidosis occurring as a result of myocardial ischemia inhibits hERG channel function and may cause a predisposition to arrhythmias. Acidic pH inhibits hERG channel maximal conductance and accelerates deactivation, likely by different mechanisms. The mechanism underlying the loss of conductance has not been demonstrated and is the focus of the present study. The data presented demonstrate that, unlike in other voltage-gated potassium (Kv) channels, substitution of individual histidine residues did not abolish the pH dependence of hERG channel conductance. Abolition of inactivation, by the mutation S620T, also did not affect the proton sensitivity of channel conductance. Instead, voltage-dependent channel inhibition (δ = 0.18) indicative of pore block was observed. Consistent with a fast block of the pore, hERG S620T single channel data showed an apparent reduction of the single channel current amplitude at low pH. Furthermore, the effect of protons was relieved by elevating external K(+) or Na(+) and could be modified by charge introduction within the outer pore. Taken together, these data strongly suggest that extracellular protons inhibit hERG maximal conductance by blocking the external channel pore.
Collapse
Affiliation(s)
- Aaron C Van Slyke
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
99
|
Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol 2012; 3:49. [PMID: 22470342 PMCID: PMC3311039 DOI: 10.3389/fphar.2012.00049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo Oviedo, Asturias, Spain
| | | | | |
Collapse
|
100
|
Harley CA, Jesus CSH, Carvalho R, Brito RMM, Morais-Cabral JH. Changes in channel trafficking and protein stability caused by LQT2 mutations in the PAS domain of the HERG channel. PLoS One 2012; 7:e32654. [PMID: 22396785 PMCID: PMC3292575 DOI: 10.1371/journal.pone.0032654] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/30/2012] [Indexed: 11/25/2022] Open
Abstract
Inherited human long-QT2 syndrome (LQTS) results from mutations in the gene encoding the HERG channel. Several LQT2-associated mutations have been mapped to the amino terminal cytoplasmic Per-Arnt-Sim (PAS) domain of the HERG1a channel subunit. Here we have characterized the trafficking properties of some LQT2-associated PAS domain mutants and analyzed rescue of the trafficking mutants by low temperature (27°C) or by the pore blocker drug E4031. We show that the LQT2-associated mutations in the PAS domain of the HERG channel display molecular properties that are distinct from the properties of LQT2-associated mutations in the trans-membrane region. Unlike the latter, many of the tested PAS domain LQT2-associated mutations do not result in trafficking deficiency of the channel. Moreover, the majority of the PAS domain mutations that cause trafficking deficiencies are not rescued by a pore blocking drug. We have also explored the in vitro folding stability properties of isolated mutant PAS domain proteins using a thermal unfolding fluorescence assay and a chemical unfolding assay.
Collapse
Affiliation(s)
- Carol A Harley
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|