51
|
Cranmer-Sargison G, Crewson C, Davis WM, Sidhu NP, Kundapur V. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization. Phys Med Biol 2015; 60:6991-7005. [PMID: 26305166 DOI: 10.1088/0031-9155/60/17/6991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy.
Collapse
Affiliation(s)
- G Cranmer-Sargison
- Department of Medical Physics, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada. Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
52
|
Prezado Y, Deman P, Varlet P, Jouvion G, Gil S, Le Clec'H C, Bernard H, Le Duc G, Sarun S. Tolerance to Dose Escalation in Minibeam Radiation Therapy Applied to Normal Rat Brain: Long-Term Clinical, Radiological and Histopathological Analysis. Radiat Res 2015; 184:314-321. [DOI: 10.1667/rr14018.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
53
|
Bouchet A, Serduc R, Laissue JA, Djonov V. Effects of microbeam radiation therapy on normal and tumoral blood vessels. Phys Med 2015; 31:634-41. [DOI: 10.1016/j.ejmp.2015.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022] Open
|
54
|
Yuan H, Zhang L, Frank JE, Inscoe CR, Burk LM, Hadsell M, Lee YZ, Lu J, Chang S, Zhou O. Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study. Radiat Res 2015; 184:322-33. [PMID: 26305294 DOI: 10.1667/rr13919.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 μm wide and spaced at 900 μm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications.
Collapse
Affiliation(s)
- Hong Yuan
- a Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,b Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lei Zhang
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jonathan E Frank
- b Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christina R Inscoe
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Laurel M Burk
- d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Mike Hadsell
- d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Yueh Z Lee
- a Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,b Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,e Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,g Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jianping Lu
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sha Chang
- d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,e Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,f Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,g Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Otto Zhou
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,g Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
55
|
Zhang L, Yuan H, Inscoe C, Chtcheprov P, Hadsell M, Lee Y, Lu J, Chang S, Zhou O. Nanotube x-ray for cancer therapy: a compact microbeam radiation therapy system for brain tumor treatment. Expert Rev Anticancer Ther 2015; 14:1411-8. [PMID: 25417729 DOI: 10.1586/14737140.2014.978293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Microbeam radiation therapy (MRT) is a promising preclinical modality for cancer treatment, with remarkable preferential tumoricidal effects, that is, tumor eradication without damaging normal tissue functions. Significant lifespan extension has been demonstrated in brain tumor-bearing small animals treated with MRT. So far, MRT experiments can only be performed in a few synchrotron facilities around the world. Limited access to MRT facilities prevents this enormously promising radiotherapy technology from reaching the broader biomedical research community and hinders its potential clinical translation. We recently demonstrated, for the first time, the feasibility of generating microbeam radiation in a laboratory environment using a carbon nanotube x-ray source array and performed initial small animal studies with various brain tumor models. This new nanotechnology-enabled microbeam delivery method, although still in its infancy, has shown promise for achieving comparable therapeutic effects to synchrotron MRT and has offered a potential pathway for clinical translation.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Crosbie JC, Fournier P, Bartzsch S, Donzelli M, Cornelius I, Stevenson AW, Requardt H, Bräuer-Krisch E. Energy spectra considerations for synchrotron radiotherapy trials on the ID17 bio-medical beamline at the European Synchrotron Radiation Facility. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1035-1041. [PMID: 26134808 DOI: 10.1107/s1600577515008115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to validate the kilovoltage X-ray energy spectrum on the ID17 beamline at the European Synchrotron Radiation Facility (ESRF). The purpose of such validation was to provide an accurate energy spectrum as the input to a computerized treatment planning system, which will be used in synchrotron microbeam radiotherapy trials at the ESRF. Calculated and measured energy spectra on ID17 have been reported previously but recent additions and safety modifications to the beamline for veterinary trials warranted a fresh investigation. The authors used an established methodology to compare X-ray attenuation measurements in copper sheets (referred to as half value layer measurements in the radiotherapy field) with the predictions of a theoretical model. A cylindrical ionization chamber in air was used to record the relative attenuation of the X-ray beam intensity by increasing thicknesses of high-purity copper sheets. The authors measured the half value layers in copper for two beamline configurations, which corresponded to differing spectral conditions. The authors obtained good agreement between the measured and predicted half value layers for the two beamline configurations. The measured first half value layer was 1.754 ± 0.035 mm Cu and 1.962 ± 0.039 mm Cu for the two spectral conditions, compared with theoretical predictions of 1.763 ± 0.039 mm Cu and 1.984 ± 0.044 mm Cu, respectively. The calculated mean energies for the two conditions were 105 keV and 110 keV and there was not a substantial difference in the calculated percentage depth dose curves in water between the different spectral conditions. The authors observed a difference between their calculated energy spectra and the spectra previously reported by other authors, particularly at energies greater than 100 keV. The validation of the beam spectrum by the copper half value layer measurements means the authors can provide an accurate spectrum as an input to a treatment planning system for the forthcoming veterinary trials of microbeam radiotherapy to spontaneous tumours in cats and dogs.
Collapse
Affiliation(s)
- Jeffrey C Crosbie
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Pauline Fournier
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | | | | | - Iwan Cornelius
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | | | | | | |
Collapse
|
57
|
Zhang T, Liu T, Shao J, Sheng C, Hong Y, Ying W, Xia W. Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption. SPERMATOGENESIS 2015; 5:e1009313. [PMID: 26413412 DOI: 10.1080/21565562.2015.1009313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 01/06/2023]
Abstract
Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Oncogenes and Related Genes; Renji-Med X Clinical Stem Cell Research Center; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shanghai, China ; School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University ; Shanghai, China
| | - Tengyuan Liu
- State Key Laboratory of Oncogenes and Related Genes; Renji-Med X Clinical Stem Cell Research Center; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shanghai, China ; School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University ; Shanghai, China
| | - Jiaxiang Shao
- State Key Laboratory of Oncogenes and Related Genes; Renji-Med X Clinical Stem Cell Research Center; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shanghai, China ; School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University ; Shanghai, China
| | - Caibin Sheng
- School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University ; Shanghai, China
| | - Yunyi Hong
- School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University ; Shanghai, China
| | - Weihai Ying
- School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University ; Shanghai, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes; Renji-Med X Clinical Stem Cell Research Center; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shanghai, China ; School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University ; Shanghai, China
| |
Collapse
|
58
|
Fernandez-Palomo C, Bräuer-Krisch E, Laissue J, Vukmirovic D, Blattmann H, Seymour C, Schültke E, Mothersill C. Use of synchrotron medical microbeam irradiation to investigate radiation-induced bystander and abscopal effects in vivo. Phys Med 2015; 31:584-95. [PMID: 25817634 DOI: 10.1016/j.ejmp.2015.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 01/01/2023] Open
Abstract
The question of whether bystander and abscopal effects are the same is unclear. Our experimental system enables us to address this question by allowing irradiated organisms to partner with unexposed individuals. Organs from both animals and appropriate sham and scatter dose controls are tested for expression of several endpoints such as calcium flux, role of 5HT, reporter assay cell death and proteomic profile. The results show that membrane related functions of calcium and 5HT are critical for true bystander effect expression. Our original inter-animal experiments used fish species whole body irradiated with low doses of X-rays, which prevented us from addressing the abscopal effect question. Data which are much more relevant in radiotherapy are now available for rats which received high dose local irradiation to the implanted right brain glioma. The data were generated using quasi-parallel microbeams at the biomedical beamline at the European Synchrotron Radiation Facility in Grenoble France. This means we can directly compare abscopal and "true" bystander effects in a rodent tumour model. Analysis of right brain hemisphere, left brain and urinary bladder in the directly irradiated animals and their unirradiated partners strongly suggests that bystander effects (in partner animals) are not the same as abscopal effects (in the irradiated animal). Furthermore, the presence of a tumour in the right brain alters the magnitude of both abscopal and bystander effects in the tissues from the directly irradiated animal and in the unirradiated partners which did not contain tumours, meaning the type of signal was different.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - Elke Bräuer-Krisch
- European Synchrotron Radiation Facility, BP 220 6, rue Jules Horowitz, 38043 Grenoble, France
| | - Jean Laissue
- University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland
| | - Dusan Vukmirovic
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Colin Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Elisabeth Schültke
- Department of Radiotherapy, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
59
|
Fernandez-Palomo C, Mothersill C, Bräuer-Krisch E, Laissue J, Seymour C, Schültke E. γ-H2AX as a marker for dose deposition in the brain of wistar rats after synchrotron microbeam radiation. PLoS One 2015; 10:e0119924. [PMID: 25799425 PMCID: PMC4370487 DOI: 10.1371/journal.pone.0119924] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/17/2015] [Indexed: 01/01/2023] Open
Abstract
Objective Synchrotron radiation has shown high therapeutic potential in small animal models of malignant brain tumours. However, more studies are needed to understand the radiobiological effects caused by the delivery of high doses of spatially fractionated x-rays in tissue. The purpose of this study was to explore the use of the γ-H2AX antibody as a marker for dose deposition in the brain of rats after synchrotron microbeam radiation therapy (MRT). Methods Normal and tumour-bearing Wistar rats were exposed to 35, 70 or 350 Gy of MRT to their right cerebral hemisphere. The brains were extracted either at 4 or 8 hours after irradiation and immediately placed in formalin. Sections of paraffin-embedded tissue were incubated with anti γ-H2AX primary antibody. Results While the presence of the C6 glioma does not seem to modulate the formation of γ-H2AX in normal tissue, the irradiation dose and the recovery versus time are the most important factors affecting the development of γ-H2AX foci. Our results also suggest that doses of 350 Gy can trigger the release of bystander signals that significantly amplify the DNA damage caused by radiation and that the γ-H2AX biomarker does not only represent DNA damage produced by radiation, but also damage caused by bystander effects. Conclusion In conclusion, we suggest that the γ-H2AX foci should be used as biomarker for targeted and non-targeted DNA damage after synchrotron radiation rather than a tool to measure the actual physical doses.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Center, Freiburg, Germany
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | | | - Jean Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | - Elisabeth Schültke
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Center, Freiburg, Germany
- Department of Radiotherapy/Laboratory of Radiobiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
60
|
Sheng C, Chen H, Wang B, Wang C, Lin L, Li Y, Ying W. Poly(ADP-ribose) polymerase activation mediates synchrotron radiation X-ray-induced damage of rodent testes by exacerbating DNA damage and apoptotic changes. Int J Radiat Biol 2014; 90:580-6. [DOI: 10.3109/09553002.2014.908263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Hadsell M, Cao G, Zhang J, Burk L, Schreiber T, Schreiber E, Chang S, Lu J, Zhou O. Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner. Med Phys 2014; 41:061710. [PMID: 24877805 PMCID: PMC4032446 DOI: 10.1118/1.4873683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 04/02/2014] [Accepted: 04/14/2014] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Microbeam radiation therapy (MRT) is defined as the use of parallel, microplanar x-ray beams with an energy spectrum between 50 and 300 keV for cancer treatment and brain radiosurgery. Up until now, the possibilities of MRT have mainly been studied using synchrotron sources due to their high flux (100s Gy/s) and approximately parallel x-ray paths. The authors have proposed a compact x-ray based MRT system capable of delivering MRT dose distributions at a high dose rate. This system would employ carbon nanotube (CNT) field emission technology to create an x-ray source array that surrounds the target of irradiation. Using such a geometry, multiple collimators would shape the irradiation from this array into multiple microbeams that would then overlap or interlace in the target region. This pilot study demonstrates the feasibility of attaining a high dose rate and parallel microbeam beams using such a system. METHODS The microbeam dose distribution was generated by our CNT micro-CT scanner (100 μm focal spot) and a custom-made microbeam collimator. An alignment assembly was fabricated and attached to the scanner in order to collimate and superimpose beams coming from different gantry positions. The MRT dose distribution was measured using two orthogonal radiochromic films embedded inside a cylindrical phantom. This target was irradiated with microbeams incident from 44 different gantry angles to simulate an array of x-ray sources as in the proposed compact CNT-based MRT system. Finally, phantom translation in a direction perpendicular to the microplanar beams was used to simulate the use of multiple parallel microbeams. RESULTS Microbeams delivered from 44 gantry angles were superimposed to form a single microbeam dose distribution in the phantom with a FWHM of 300 μm (calculated value was 290 μm). Also, during the multiple beam simulation, a peak to valley dose ratio of ~10 was found when the phantom translation distance was roughly 4x the beam width. The first prototype CNT-based x-ray tube dedicated to the development of compact MRT technology development was proposed and planned based on the preliminary experimental results presented here and the previous corresponding Monte Carlo simulations. CONCLUSIONS The authors have demonstrated the feasibility of creating microbeam dose distributions at a high dose rate using a proposed compact MRT system. The flexibility of CNT field emission x-ray sources could possibly bring compact and low cost MRT devices to the larger research community and assist in the translational research of this promising new approach to radiation therapy.
Collapse
Affiliation(s)
- Mike Hadsell
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Guohua Cao
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jian Zhang
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Laurel Burk
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Torsten Schreiber
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Eric Schreiber
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sha Chang
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jianping Lu
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Otto Zhou
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
62
|
Characterization of the 9L gliosarcoma implanted in the Fischer rat: an orthotopic model for a grade IV brain tumor. Tumour Biol 2014; 35:6221-33. [PMID: 24633919 DOI: 10.1007/s13277-014-1783-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/19/2014] [Indexed: 10/25/2022] Open
Abstract
Among rodent models for brain tumors, the 9L gliosarcoma is one of the most widely used. Our 9L-European Synchrotron Radiation Facility (ESRF) model was developed from cells acquired at the Brookhaven National Laboratory (NY, USA) in 1997 and implanted in the right caudate nucleus of syngeneic Fisher rats. It has been largely used by the user community of the ESRF during the last decade, for imaging, radiotherapy, and chemotherapy, including innovative treatments based on particular irradiation techniques and/or use of new drugs. This work presents a detailed study of its characteristics, assessed by magnetic resonance imaging (MRI), histology, immunohistochemistry, and cytogenetic analysis. The data used for this work were from rats sampled in six experiments carried out over a 3-year period in our lab (total number of rats = 142). The 9L-ESRF tumors were induced by a stereotactic inoculation of 10(4) 9L cells in the right caudate nucleus of the brain. The assessment of vascular parameters was performed by MRI (blood volume fraction and vascular size index) and by immunostaining of vessels (rat endothelial cell antigen-1 and type IV collagen). Immunohistochemistry and regular histology were used to describe features such as tumor cell infiltration, necrosis area, nuclear pleomorphism, cellularity, mitotic characteristics, leukocytic infiltration, proliferation, and inflammation. Moreover, for each of the six experiments, the survival of the animals was assessed and related to the tumor growth observed by MRI or histology. Additionally, the cytogenetic status of the 9L cells used at ESRF lab was investigated by comparative genomics hybridization analysis. Finally, the response of the 9L-ESRF tumor to radiotherapy was estimated by plotting the survival curves after irradiation. The median survival time of 9L-ESRF tumor-bearing rats was highly reproducible (19-20 days). The 9L-ESRF tumors presented a quasi-exponential growth, were highly vascularized with a high cellular density and a high proliferative index, accompanied by signs of inflammatory responses. We also report an infiltrative pattern which is poorly observed on conventional 9 L tumor. The 9L-ESRF cells presented some cytogenetic specificities such as altered regions including CDK4, CDKN2A, CDKN2B, and MDM2 genes. Finally, the lifespan of 9L-ESRF tumor-bearing rats was enhanced up to 28, 35, and 45 days for single doses of 10, 20, and 2 × 20 Gy, respectively. First, this report describes an animal model that is used worldwide. Second, we describe few features typical of our model if compared to other 9L models worldwide. Altogether, the 9L-ESRF tumor model presents characteristics close to the human high-grade gliomas such as high proliferative capability, high vascularization and a high infiltrative pattern. Its response to radiotherapy demonstrates its potential as a tool for innovative radiotherapy protocols.
Collapse
|
63
|
Bartzsch S, Lerch M, Petasecca M, Bräuer-Krisch E, Oelfke U. Influence of polarization and a source model for dose calculation in MRT. Med Phys 2014; 41:041703. [DOI: 10.1118/1.4867858] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
64
|
Kim SR, Kim EH. Effect of acidic environment on the response of endothelial cells to irradiation: implications for microbeam radiation therapy. Int J Radiat Biol 2014; 90:325-33. [PMID: 24467329 DOI: 10.3109/09553002.2014.887867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Microbeam radiation therapy (MRT) is a novel experimental radiotherapy regimen, which delivers high doses of synchrotron-generated X-rays in the form of quasi-parallel arrays of microbeam separated by microplanar spaces. The repair or healing of irradiated regions (Peak) via migration of endothelial cells (EC) from unirradiated regions (Valley) plays an important role in the response of tumors and normal tissues to MRT. It is known that intratumor microenvironment is acidic. We investigated the influence of environmental acidity on the response of EC to ionizing radiation. MATERIALS AND METHODS Effects of irradiation on the viability, clonogenicity and migration rate of endothelial cells were studied using human umbilical vascular endothelial cells and mouse endothelial cells in pH 7.3 and 6.4 environments. RESULTS An exposure to acidic environment (pH 6.4) for 2-4 days exerted little effect on the viability of EC. On the other hand, acidic environment significantly retarded the migration of control and irradiated EC. The migration of EC into 2000 μm-wide wound was slower than that into 1000 μm-side wounds. CONCLUSION The microenvironmental acidity and the size of beam opening in MRT may greatly affect the repair of irradiated peak regions via migration of EC from unirradiated valley regions.
Collapse
Affiliation(s)
- So-Ra Kim
- Radiation Bioengineering Laboratory, Department of Nuclear Engineering, Seoul National University , Seoul , Republic of Korea
| | | |
Collapse
|
65
|
Zhang L, Yuan H, Burk LM, Inscoe CR, Hadsell MJ, Chtcheprov P, Lee YZ, Lu J, Chang S, Zhou O. Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array. Phys Med Biol 2014; 59:1283-303. [PMID: 24556798 DOI: 10.1088/0031-9155/59/5/1283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microbeam radiation therapy (MRT) is a promising experimental and preclinical radiotherapy method for cancer treatment. Synchrotron based MRT experiments have shown that spatially fractionated microbeam radiation has the unique capability of preferentially eradicating tumour cells while sparing normal tissue in brain tumour bearing animal models. We recently demonstrated the feasibility of generating orthovoltage microbeam radiation with an adjustable microbeam width using a carbon nanotube based x-ray source array. Here we report the preliminary results from our efforts in developing an image guidance procedure for the targeted delivery of the narrow microbeams to the small tumour region in the mouse brain. Magnetic resonance imaging was used for tumour identification, and on-board x-ray radiography was used for imaging of landmarks without contrast agents. The two images were aligned using 2D rigid body image registration to determine the relative position of the tumour with respect to a landmark. The targeting accuracy and consistency were evaluated by first irradiating a group of mice inoculated with U87 human glioma brain tumours using the present protocol and then determining the locations of the microbeam radiation tracks using γ-H2AX immunofluorescence staining. The histology results showed that among 14 mice irradiated, 11 received the prescribed number of microbeams on the targeted tumour, with an average localization accuracy of 454 µm measured directly from the histology (537 µm if measured from the registered histological images). Two mice received one of the three prescribed microbeams on the tumour site. One mouse was excluded from the analysis due to tissue staining errors.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Synchrotron X ray induced axonal transections in the brain of rats assessed by high-field diffusion tensor imaging tractography. PLoS One 2014; 9:e88244. [PMID: 24505446 PMCID: PMC3914957 DOI: 10.1371/journal.pone.0088244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Since approximately two thirds of epileptic patients are non-eligible for surgery, local axonal fiber transections might be of particular interest for them. Micrometer to millimeter wide synchrotron-generated X-ray beamlets produced by spatial fractionation of the main beam could generate such fiber disruptions non-invasively. The aim of this work was to optimize irradiation parameters for the induction of fiber transections in the rat brain white matter by exposure to such beamlets. For this purpose, we irradiated cortex and external capsule of normal rats in the antero-posterior direction with a 4 mm×4 mm array of 25 to 1000 µm wide beamlets and entrance doses of 150 Gy to 500 Gy. Axonal fiber responses were assessed with diffusion tensor imaging and fiber tractography; myelin fibers were examined histopathologically. Our study suggests that high radiation doses (500 Gy) are required to interrupt axons and myelin sheaths. However, a radiation dose of 500 Gy delivered by wide minibeams (1000 µm) induced macroscopic brain damage, depicted by a massive loss of matter in fiber tractography maps. With the same radiation dose, the damage induced by thinner microbeams (50 to 100 µm) was limited to their paths. No macroscopic necrosis was observed in the irradiated target while overt transections of myelin were detected histopathologically. Diffusivity values were found to be significantly reduced. A radiation dose ≤ 500 Gy associated with a beamlet size of < 50 µm did not cause visible transections, neither on diffusion maps nor on sections stained for myelin. We conclude that a peak dose of 500 Gy combined with a microbeam width of 100 µm optimally induced axonal transections in the white matter of the brain.
Collapse
|
67
|
Ying W. Roles of NAD (+) , PARP-1, and Sirtuins in Cell Death, Ischemic Brain Injury, and Synchrotron Radiation X-Ray-Induced Tissue Injury. SCIENTIFICA 2013; 2013:691251. [PMID: 24386592 PMCID: PMC3872437 DOI: 10.1155/2013/691251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
NAD(+) plays crucial roles in a variety of biological processes including energy metabolism, aging, and calcium homeostasis. Multiple studies have also shown that NAD(+) administration can profoundly decrease oxidative cell death and ischemic brain injury. A number of recent studies have further indicated that NAD(+) administration can decrease ischemic brain damage, traumatic brain damage and synchrotron radiation X-ray-induced tissue injury by such mechanisms as inhibiting inflammation, decreasing autophagy, and reducing DNA damage. Our latest study that applies nano-particles as a NAD(+) carrier has also provided first direct evidence demonstrating a key role of NAD(+) depletion in oxidative stress-induced ATP depletion. Poly(ADP-ribose) polymerase-1 (PARP-1) and sirtuins are key NAD(+)-consuming enzymes that mediate multiple biological processes. Recent studies have provided new information regarding PARP-1 and sirtuins in cell death, ischemic brain damage and synchrotron radiation X-ray-induced tissue damage. These findings have collectively supported the hypothesis that NAD(+) metabolism, PARP-1 and sirtuins play fundamental roles in oxidative stress-induced cell death, ischemic brain injury, and radiation injury. The findings have also supported "the Central Regulatory Network Hypothesis", which proposes that a fundamental network that consists of ATP, NAD(+) and Ca(2+) as its key components is the essential network regulating various biological processes.
Collapse
Affiliation(s)
- Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200032, China
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
68
|
Gokeri G, Kocar C, Tombakoglu M, Cecen Y. Monte Carlo simulation of stereotactic microbeam radiation therapy: evaluation of the usage of a linear accelerator as the x-ray source. Phys Med Biol 2013; 58:4621-42. [PMID: 23771153 DOI: 10.1088/0031-9155/58/13/4621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The usage of linear accelerator-generated x-rays for the stereotactic microbeam radiation therapy technique was evaluated in this study. Dose distributions were calculated with the Monte Carlo code MCNPX. Unidirectional single beams and beam arrays were simulated in a cylindrical water phantom to observe the effects of x-ray energies and irradiation geometry on dose distributions. Beam arrays were formed with square pencil beams. Two orthogonally interlaced beam arrays were simulated in a detailed head phantom and dose distributions were compared with ones which had been calculated for a bidirectional interlaced microbeam therapy (BIMRT) technique that uses synchrotron-generated x-rays. A parallel pattern of the beams was preserved through the phantom; however an unsegmented dose region could not be formed at the target. Five orthogonally interlaced beam array pairs (ten beam arrays) were simulated in a mathematical head phantom and the unsegmented dose region was formed. However, the dose fall-off distance is longer than the one that had been calculated for the BIMRT technique. Besides, the peak-to-dose ratios between the phantom's outer surface and the target region are lower. Therefore, the advantages of the MRT technique may not be preserved with the usage of a linac as the x-ray source.
Collapse
Affiliation(s)
- Gurdal Gokeri
- Department of Nuclear Engineering, Hacettepe University, Ankara, Turkey.
| | | | | | | |
Collapse
|
69
|
Schültke E, Trippel M, Bräuer-Krisch E, Renier M, Bartzsch S, Requardt H, Döbrössy MD, Nikkhah G. Pencilbeam irradiation technique for whole brain radiotherapy: technical and biological challenges in a small animal model. PLoS One 2013; 8:e54960. [PMID: 23383014 PMCID: PMC3557252 DOI: 10.1371/journal.pone.0054960] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022] Open
Abstract
We have conducted the first in-vivo experiments in pencilbeam irradiation, a new synchrotron radiation technique based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. In an animal model of adult C57 BL/6J mice we have determined technical and physiological limitations with the present technical setup of the technique. Fifty-eight animals were distributed in eleven experimental groups, ten groups receiving whole brain radiotherapy with arrays of 50 µm wide beams. We have tested peak doses ranging between 172 Gy and 2,298 Gy at 3 mm depth. Animals in five groups received whole brain radiotherapy with a center-to-center (ctc) distance of 200 µm and a peak-to-valley ratio (PVDR) of ∼ 100, in the other five groups the ctc was 400 µm (PVDR ∼ 400). Motor and memory abilities were assessed during a six months observation period following irradiation. The lower dose limit, determined by the technical equipment, was at 172 Gy. The LD50 was about 1,164 Gy for a ctc of 200 µm and higher than 2,298 Gy for a ctc of 400 µm. Age-dependent loss in motor and memory performance was seen in all groups. Better overall performance (close to that of healthy controls) was seen in the groups irradiated with a ctc of 400 µm.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Division of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2012; 35:301-9. [PMID: 22892958 DOI: 10.1007/s13246-012-0157-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
Abstract
Normoxic type polyacrylamide gel (nPAG) dosimeters are established for dose quantification in three-dimensions for radiotherapy and hence represent an adequate dosimeter for quantification of the dose variation due to the existence of the gold nanoparticles (AuNPs) in the target during irradiation. This work compared the degree of polymerisation in gel doped with nanoparticles (nPAG-AuNP) with control gel samples when irradiated by various sources. Samples were irradiated with a synchrotron radiation source of mean energy 125 keV, 80 kV X-ray beams from superficial therapy machine (SXRT), 6 MV X-rays and 6 MeV electron beams from linear accelerator. Analysis of the dose-response relation was used to determine a dose enhancement factor (DEF) of 1.76 ± 0.34 and 1.64 ± 0.44 obtained for samples irradiated with kilovoltage X-rays energy from synchrotron source and SXRT respectively. Similarly, including AuNPs in gel results in a DEF of approximately 1.37 ± 0.35 when irradiated by an electron beam and 1.14 ± 0.28 for high energy X-ray beams. The results demonstrate the use of AuNPs embedded in polymer gels for measuring the enhancement of radiation caused by metallic nanoparticles.
Collapse
|
71
|
Bouchet A, Boumendjel A, Khalil E, Serduc R, Bräuer E, Siegbahn EA, Laissue JA, Boutonnat J. Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:478-482. [PMID: 22713877 DOI: 10.1107/s0909049512015105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/05/2012] [Indexed: 06/01/2023]
Abstract
Microbeam radiation therapy (MRT), a preclinical form of radiosurgery, uses spatially fractionated micrometre-wide synchrotron-generated X-ray beams. As MRT alone is predominantly palliative for animal tumors, the effects of the combination of MRT and a newly synthesized chemotherapeutic agent JAI-51 on 9L gliosarcomas have been evaluated. Fourteen days (D14) after implantation (D0), intracerebral 9LGS-bearing rats received either MRT, JAI-51 or both treatments. JAI-51, alone or immediately after MRT, was administered three times per week. Animals were kept up to ∼20 weeks after irradiation or sacrificed at D16 or D28 after treatment for cell cycle analysis. MRT plus JAI-51 increased significantly the lifespan compared with MRT alone (p = 0.0367). JAI-51 treatment alone had no effect on rat survival. MRT alone or associated with JAI-51 induced a cell cycle blockade in G2/M (p < 0.01) while the combined treatment also reduced the proportion of G0/G1 cells. At D28 after irradiation, MRT and MRT/JAI-51 had a smaller cell blockade effect in the G2/M phase owing to a significant increase in tumor cell death rate (<2c) and a proportional increase of endoreplicative cells (>8c). The combination of MRT and JAI-51 increases the survival of 9LGS-bearing rats by inducing endoreduplication of DNA and tumor cell death; further, it slowed the onset of tumor growth resumption two weeks after treatment.
Collapse
|
72
|
Griffin RJ, Koonce NA, Dings RPM, Siegel E, Moros EG, Bräuer-Krisch E, Corry PM. Microbeam radiation therapy alters vascular architecture and tumor oxygenation and is enhanced by a galectin-1 targeted anti-angiogenic peptide. Radiat Res 2012; 177:804-812. [PMID: 22607585 PMCID: PMC3391740 DOI: 10.1667/rr2784.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
In this study, we sought to determine the therapeutic potential of variably sized (50 μm or 500 μm wide, 14 mm tall) parallel microbeam radiation therapy (MRT) alone and in combination with a novel anti-angiogenic peptide, anginex, in mouse mammary carcinomas (4T1)--a moderately hypoxic and radioresistant tumor with propensity to metastasize. The fraction of total tumor volume that was directly irradiated was approximately 25% in each case, but the distance between segments irradiated by the planar microbeams (width of valley dose region) varied by an order of magnitude from 150-1500 μm corresponding to 200 μm and 2000 μm center-to-center inter-microbeam distances, respectively. We found that MRT administered in 50 μm beams at 150 Gy was most effective in delaying tumor growth. Furthermore, tumor growth delay induced by 50 μm beams at 150 Gy was virtually indistinguishable from the 500 μm beams at 150 Gy. Fifty-micrometer beams at the lower peak dose of 75 Gy induced growth delay intermediate between 150 Gy and untreated tumors, while 500 μm beams at 75 Gy were unable to alter tumor growth compared to untreated tumors. However, the addition of anginex treatment increased the relative tumor growth delay after 500 μm beams at 75 Gy most substantially out of the conditions tested. Anginex treatment of animals whose tumors received the 50 μm beams at 150 Gy also led to an improvement in growth delay from that induced by the comparable MRT alone. Immunohistochemical staining for CD31 (endothelial cells) and αSMA (smooth muscle pericyte-associated blood vessels as a measure of vessel normalization) indicated that vessel density was significantly decreased in all irradiated groups and pericyte staining was significantly increased in the irradiated groups on day 14 after irradiation. The addition of anginex treatment further decreased the mean vascular density in all combination treatment groups and further increased the amount of pericyte staining in these tumors. Finally, evidence of tumor hypoxia was found to decrease in tumors analyzed at 1-14 days after MRT in the groups receiving 150 Gy peak dose, but not 75 Gy peak dose. Our results suggest that tumor vascular damage induced by MRT at these potentially clinically acceptable peak entrance doses may provoke vascular normalization and may be exploited to improve tumor control using agents targeting angiogenesis.
Collapse
Affiliation(s)
- Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
73
|
Anderson D, Siegbahn EA, Fallone BG, Serduc R, Warkentin B. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations. Phys Med Biol 2012; 57:3223-48. [PMID: 22546732 DOI: 10.1088/0031-9155/57/10/3223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm² microbeam array in each phantom, as well as a 16 × 16 mm² array in the 8 cm cat head, and a 32 × 32 mm² array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study illustrate that different dose-volume metrics exhibit different functional dependences on MRT geometry parameters, and suggest that reliance on the PVDR as a predictor of therapeutic outcome may be insufficient.
Collapse
Affiliation(s)
- Danielle Anderson
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada.
| | | | | | | | | |
Collapse
|
74
|
Deman P, Vautrin M, Edouard M, Stupar V, Bobyk L, Farion R, Elleaume H, Rémy C, Barbier EL, Estève F, Adam JF. Monochromatic minibeams radiotherapy: from healthy tissue-sparing effect studies toward first experimental glioma bearing rats therapy. Int J Radiat Oncol Biol Phys 2012; 82:e693-700. [PMID: 22270173 DOI: 10.1016/j.ijrobp.2011.09.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 08/24/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022]
Abstract
PURPOSE The purpose of this study was to evaluate high-dose single fraction delivered with monochromatic X-rays minibeams for the radiotherapy of primary brain tumors in rats. METHODS AND MATERIALS Two groups of healthy rats were irradiated with one anteroposterior minibeam incidence (four minibeams, 123 Gy prescribed dose at 1 cm depth in the brain) or two interleaved incidences (54 Gy prescribed dose in a 5 × 5 × 4.8 mm(3) volume centered in the right hemisphere), respectively. Magnetic resonance imaging (MRI) follow-up was performed over 1 year. T2-weighted (T2w) images, apparent diffusion coefficient (ADC), and blood vessel permeability maps were acquired. F98 tumor bearing rats were also irradiated with interleaved minibeams to achieve a homogeneous dose of 54 Gy delivered to an 8 × 8 × 7.8 mm(3) volume centered on the tumor. Anatomic and functional MRI follow-up was performed every 10 days after irradiation. T2w images, ADC, and perfusion maps were acquired. RESULTS All healthy rats were euthanized 1 year after irradiation without any clinical alteration visible by simple examination. T2w and ADC measurements remain stable for the single incidence irradiation group. Localized Gd-DOTA permeability, however, was observed 9 months after irradiation for the interleaved incidences group. The survival time of irradiated glioma bearing rats was significantly longer than that of untreated animals (49 ± 12.5 days versus 23.3 ± 2 days, p < 0.001). The tumoral cerebral blood flow and blood volume tend to decrease after irradiation. CONCLUSIONS This study demonstrates the sparing effect of minibeams on healthy tissue. The increased life span achieved for irradiated glioma bearing rats was similar to the one obtained with other radiotherapy techniques. This experimental tumor therapy study shows the feasibility of using X-ray minibeams with high doses in brain tumor radiotherapy.
Collapse
|
75
|
Prezado Y, Sarun S, Gil S, Deman P, Bouchet A, Le Duc G. Increase of lifespan for glioma-bearing rats by using minibeam radiation therapy. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:60-65. [PMID: 22186645 DOI: 10.1107/s0909049511047042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
This feasibility work assesses the therapeutic effectiveness of minibeam radiation therapy, a new synchrotron radiotherapy technique. In this new approach the irradiation is performed on 9L gliosarcoma-bearing rats with arrays of parallel beams of width 500-700 µm. Two irradiation configurations were compared: a lateral unidirectional irradiation and two orthogonal arrays interlacing at the target. A dose escalation study was performed. A factor of three gain in the mean survival time obtained for some animals paves the way for further exploration of the different possibilities of this technique and its further optimization.
Collapse
Affiliation(s)
- Yolanda Prezado
- ID17 Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, France.
| | | | | | | | | | | |
Collapse
|
76
|
Lerch M, Petasecca M, Cullen A, Hamad A, Requardt H, Bräuer-Krisch E, Bravin A, Perevertaylo V, Rosenfeld A. Dosimetry of intensive synchrotron microbeams. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
77
|
Priyadarshika RCU, Crosbie JC, Kumar B, Rogers PAW. Biodosimetric quantification of short-term synchrotron microbeam versus broad-beam radiation damage to mouse skin using a dermatopathological scoring system. Br J Radiol 2011; 84:833-42. [PMID: 21849367 DOI: 10.1259/bjr/58503354] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Microbeam radiotherapy (MRT) with wafers of microscopically narrow, synchrotron generated X-rays is being used for pre-clinical cancer trials in animal models. It has been shown that high dose MRT can be effective at destroying tumours in animal models, while causing unexpectedly little damage to normal tissue. The aim of this study was to use a dermatopathological scoring system to quantify and compare the acute biological response of normal mouse skin with microplanar and broad-beam (BB) radiation as a basis for biological dosimetry. METHOD The skin flaps of three groups of mice were irradiated with high entrance doses (200 Gy, 400 Gy and 800 Gy) of MRT and BB and low dose BB (11 Gy, 22 Gy and 44 Gy). The mice were culled at different time-points post-irradiation. Skin sections were evaluated histologically using the following parameters: epidermal cell death, nuclear enlargement, spongiosis, hair follicle damage and dermal inflammation. The fields of irradiation were identified by γH2AX-positive immunostaining. RESULTS The acute radiation damage in skin from high dose MRT was significantly lower than from high dose BB and, importantly, similar to low dose BB. CONCLUSION The integrated MRT dose was more relevant than the peak or valley dose when comparing with BB fields. In MRT-treated skin, the apoptotic cells of epidermis and hair follicles were not confined to the microbeam paths.
Collapse
Affiliation(s)
- R C U Priyadarshika
- Department of Pathology, Southern Health, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
78
|
Uyama A, Kondoh T, Nariyama N, Umetani K, Fukumoto M, Shinohara K, Kohmura E. A narrow microbeam is more effective for tumor growth suppression than a wide microbeam: an in vivo study using implanted human glioma cells. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:671-678. [PMID: 21685685 PMCID: PMC3286866 DOI: 10.1107/s090904951101185x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
The tumoricidal mechanisms of microbeam radiation therapy, and the more recently proposed minibeam radiation therapy, for the treatment of brain tumors are as yet unclear. Moreover, from among the various parameters of beam geometry the impact of changing the beam width is unknown. In this study, suppression of tumor growth in human glioma cells implanted in mice was evaluated experimentally using microbeams of two different widths: a conventional narrow beam (20 µm width, 100 µm center-to-center distance) and a wide beam (100 µm width, 500 µm center-to-center distance). The tumor growth ratio was compared and acute cell death was studied histologically. With cross-planar irradiation, tumor growth was significantly suppressed between days 4 and 28 after 20 µm microbeam irradiation, whereas tumor growth was suppressed, and not significantly so, only between days 4 and 18 after 100 µm microbeam irradiation. Immunohistochemistry using TUNEL staining showed no increase in TUNEL-positive cells with either microbeam at 24 and 72 h post-irradiation. The 20 µm microbeam was found to be more tumoricidal than the 100 µm microbeam, and the effect was not related to apoptotic cell death. The underlying mechanism may be functional tissue deterioration rather than direct cellular damage in the beam path.
Collapse
Affiliation(s)
- Atsushi Uyama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | |
Collapse
|
79
|
Deman P, Vautrin M, Stupar V, Barbier EL, Elleaume H, Esteve F, Adam JF. Monochromatic minibeam radiotherapy: theoretical and experimental dosimetry for preclinical treatment plans. Phys Med Biol 2011; 56:4465-80. [DOI: 10.1088/0031-9155/56/14/015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
80
|
Gil S, Sarun S, Biete A, Prezado Y, Sabés M. Survival analysis of F98 glioma rat cells following minibeam or broad-beam synchrotron radiation therapy. Radiat Oncol 2011; 6:37. [PMID: 21489271 PMCID: PMC3094367 DOI: 10.1186/1748-717x-6-37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/13/2011] [Indexed: 12/01/2022] Open
Abstract
Background In the quest of a curative radiotherapy treatment for gliomas new delivery modes are being explored. At the Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF), a new spatially-fractionated technique, called Minibeam Radiation Therapy (MBRT) is under development. The aim of this work is to compare the effectiveness of MBRT and broad-beam (BB) synchrotron radiation to treat F98 glioma rat cells. A dose escalation study was performed in order to delimit the range of doses where a therapeutic effect could be expected. These results will help in the design and optimization of the forthcoming in vivo studies at the ESRF. Methods Two hundred thousand F98 cells were seeded per well in 24-well plates, and incubated for 48 hours before being irradiated with spatially fractionated and seamless synchrotron x-rays at several doses. The percentage of each cell population (alive, early apoptotic and dead cells, where either late apoptotic as necrotic cells are included) was assessed by flow cytometry 48 hours after irradiation, whereas the metabolic activity of surviving cells was analyzed on days 3, 4, and 9 post-irradiation by using QBlue test. Results The endpoint (or threshold dose from which an important enhancement in the effectiveness of both radiation treatments is achieved) obtained by flow cytometry could be established just before 12 Gy in the two irradiation schemes, whilst the endpoints assessed by the QBlue reagent, taking into account the cell recovery, were set around 18 Gy in both cases. In addition, flow cytometric analysis pointed at a larger effectiveness for minibeams, due to the higher proportion of early apoptotic cells. Conclusions When the valley doses in MBRT equal the dose deposited in the BB scheme, similar cell survival ratio and cell recovery were observed. However, a significant increase in the number of early apoptotic cells were found 48 hours after the minibeam radiation in comparison with the seamless mode.
Collapse
Affiliation(s)
- Silvia Gil
- Centre d'Estudis en Biofísica, Faculty of Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain.
| | | | | | | | | |
Collapse
|
81
|
Babcock K, Sidhu N, Kundapur V, Ali K. Collimator design for experimental minibeam radiation therapy. Med Phys 2011; 38:2192-7. [DOI: 10.1118/1.3560425] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
82
|
Preferential Effect of Synchrotron Microbeam Radiation Therapy on Intracerebral 9L Gliosarcoma Vascular Networks. Int J Radiat Oncol Biol Phys 2010; 78:1503-12. [DOI: 10.1016/j.ijrobp.2010.06.021] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 06/10/2010] [Accepted: 06/15/2010] [Indexed: 11/22/2022]
|
83
|
van der Sanden B, Bräuer-Krisch E, Siegbahn EA, Ricard C, Vial JC, Laissue J. Tolerance of Arteries to Microplanar X-Ray Beams. Int J Radiat Oncol Biol Phys 2010; 77:1545-52. [DOI: 10.1016/j.ijrobp.2010.02.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 11/30/2022]
|
84
|
Serduc R, Berruyer G, Brochard T, Renier M, Nemoz C. In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy. JOURNAL OF SYNCHROTRON RADIATION 2010; 17:325-331. [PMID: 20400830 PMCID: PMC3025656 DOI: 10.1107/s0909049510006667] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/21/2010] [Indexed: 05/29/2023]
Abstract
A fast 50 microm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. In vivo imaging was performed using the pink beam (35-60 keV) produced by the ID17 wiggler at the ESRF opened at 120 mm and filtered. A graphical user interface has been developed in order to define the irradiation field size and to position the target with respect to the skull structures observed in X-ray images. The method proposed here allows tremendous time saving by skipping the swap from white beam to monochromatic beam and vice versa. To validate the concept, the somatosensory cortex or thalamus of GAERS rats were irradiated under several ports using this alignment procedure. The magnetic resonance images acquired after contrast agent injection showed that the irradiations were selectively performed in these two expected brain regions. Image-guided microbeam irradiations have therefore been realised for the first time ever, and, thanks to this new development, the ID17 biomedical beamline provides a major tool allowing brain radiosurgery trials on animal patients.
Collapse
Affiliation(s)
- Raphaël Serduc
- European Synchrotron Radiation Facility, Grenoble, France.
| | | | | | | | | |
Collapse
|
85
|
High-precision radiosurgical dose delivery by interlaced microbeam arrays of high-flux low-energy synchrotron X-rays. PLoS One 2010; 5:e9028. [PMID: 20140254 PMCID: PMC2815784 DOI: 10.1371/journal.pone.0009028] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/16/2009] [Indexed: 11/19/2022] Open
Abstract
Microbeam Radiation Therapy (MRT) is a preclinical form of radiosurgery dedicated to brain tumor treatment. It uses micrometer-wide synchrotron-generated X-ray beams on the basis of spatial beam fractionation. Due to the radioresistance of normal brain vasculature to MRT, a continuous blood supply can be maintained which would in part explain the surprising tolerance of normal tissues to very high radiation doses (hundreds of Gy). Based on this well described normal tissue sparing effect of microplanar beams, we developed a new irradiation geometry which allows the delivery of a high uniform dose deposition at a given brain target whereas surrounding normal tissues are irradiated by well tolerated parallel microbeams only. Normal rat brains were exposed to 4 focally interlaced arrays of 10 microplanar beams (52 µm wide, spaced 200 µm on-center, 50 to 350 keV in energy range), targeted from 4 different ports, with a peak entrance dose of 200Gy each, to deliver an homogenous dose to a target volume of 7 mm3 in the caudate nucleus. Magnetic resonance imaging follow-up of rats showed a highly localized increase in blood vessel permeability, starting 1 week after irradiation. Contrast agent diffusion was confined to the target volume and was still observed 1 month after irradiation, along with histopathological changes, including damaged blood vessels. No changes in vessel permeability were detected in the normal brain tissue surrounding the target. The interlacing radiation-induced reduction of spontaneous seizures of epileptic rats illustrated the potential pre-clinical applications of this new irradiation geometry. Finally, Monte Carlo simulations performed on a human-sized head phantom suggested that synchrotron photons can be used for human radiosurgical applications. Our data show that interlaced microbeam irradiation allows a high homogeneous dose deposition in a brain target and leads to a confined tissue necrosis while sparing surrounding tissues. The use of synchrotron-generated X-rays enables delivery of high doses for destruction of small focal regions in human brains, with sharper dose fall-offs than those described in any other conventional radiation therapy.
Collapse
|