51
|
van Geffen WH, Lamote K, Costantini A, Hendriks LEL, Rahman NM, Blum TG, van Meerbeeck J. The electronic nose: emerging biomarkers in lung cancer diagnostics. Breathe (Sheff) 2020; 15:e135-e141. [PMID: 32280381 PMCID: PMC7121878 DOI: 10.1183/20734735.0309-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is very common and the most common cause of cancer death worldwide. Despite recent progress in the systemic treatment of lung cancer (checkpoint inhibitors and tyrosine kinase inhibitors), each year, >1.5 million people die due to this disease. Most lung cancer patients already have advanced disease at the time of diagnosis. Computed tomography screening of high-risk individuals can detect lung cancer at an earlier stage but at a cost of false-positive findings. Biomarkers could lead towards a reduction of these false-positive findings and earlier lung cancer diagnosis, and have the potential to improve outcomes and treatment monitoring. To date, there is a lack of such biomarkers for lung cancer and other thoracic malignancies, although electronic nose (e-nose)-derived biomarkers are of interest. E-nose techniques using exhaled breath component measurements can detect lung cancer with a sensitivity ranging from 71% to 96% and specificity from 33 to 100%. In some case series, such results have been validated but this is mostly using internal validation and hence, more work is needed. Furthermore, standardised sampling and analysis methods are lacking, impeding interstudy comparison and clinical implementation. In this narrative review, we provide an overview of the currently available data on E-nose technology for lung cancer detection.
Collapse
Affiliation(s)
- Wouter H van Geffen
- Dept of Pulmonary Medicine, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Kevin Lamote
- Dept of Pulmonology, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Infla-Med Consortium of Excellence, University of Antwerp, Antwerp, Belgium.,Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Adrien Costantini
- Dept of Respiratory Diseases and Thoracic Oncology, APHP, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Lizza E L Hendriks
- Dept of Pulmonary Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Najib M Rahman
- Oxford Respiratory Trials Unit, Nuffield Dept of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Torsten G Blum
- Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Jan van Meerbeeck
- Dept of Pulmonology, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Infla-Med Consortium of Excellence, University of Antwerp, Antwerp, Belgium.,Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW The long-term management goals of the inflammatory airway diseases asthma and chronic obstructive pulmonary disease (COPD) are similar and focus on symptom control and reduction of exacerbation frequency and severity. Treatable traits have recently been postulated as a management concept which complements the traditional diagnostic labels 'asthma' and 'COPD', thereby focusing on therapy targeted to a patients' individual disease-associated characteristics. Exhaled volatile organic compounds (VOCs) may be utilized as noninvasive biomarker for disease activity or manifestation in asthma and COPD. In this review, we provide an overview of the current achievements concerning exhaled breath analysis in the field of uncontrolled chronic airways diseases. RECENT FINDINGS Monitoring of (airway) inflammation and identification of (molecular) phenotypic characteristics in asthma and COPD through exhaled VOC analysis by either mass spectrometry (MS) based or sensor-driven electronic nose technology (eNose) seems to be feasible, however pending confirmation could hamper the valorization of breathomics into clinical tests. SUMMARY Exhaled VOC analysis and the management of asthma and COPD through the concept of pulmonary treatable traits are an interesting match. To develop exhaled breath analysis into an added value for pulmonary treatable traits, multicentre studies are required following international standards for study populations, sampling methods and analytical strategies enabling external validation.
Collapse
|
53
|
A Low-Cost Breath Analyzer Module in Domiciliary Non-Invasive Mechanical Ventilation for Remote COPD Patient Monitoring. SENSORS 2020; 20:s20030653. [PMID: 31991608 PMCID: PMC7038329 DOI: 10.3390/s20030653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Smart Breath Analyzers were developed as sensing terminals of a telemedicine architecture devoted to remote monitoring of patients suffering from Chronic Obstructive Pulmonary Disease (COPD) and home-assisted by non-invasive mechanical ventilation via respiratory face mask. The devices based on different sensors (CO2/O2 and Volatile Organic Compounds (VOCs), relative humidity and temperature (R.H. & T) sensors) monitor the breath air exhaled into the expiratory line of the bi-tube patient breathing circuit during a noninvasive ventilo-therapy session; the sensor raw signals are transmitted pseudonymized to National Health Service units by TCP/IP communication through a cloud remote platform. The work is a proof-of-concept of a sensors-based IoT system with the perspective to check continuously the effectiveness of therapy and/or any state of exacerbation of the disease requiring healthcare. Lab tests in controlled experimental conditions by a gas-mixing bench towards CO2/O2 concentrations and exhaled breath collected in a sampling bag were carried out to test the realized prototypes. The Smart Breath Analyzers were also tested in real conditions both on a healthy volunteer subject and a COPD suffering patient.
Collapse
|
54
|
Abdel-Aziz MI, Neerincx AH, Vijverberg SJ, Kraneveld AD, Maitland-van der Zee AH. Omics for the future in asthma. Semin Immunopathol 2020; 42:111-126. [PMID: 31942640 DOI: 10.1007/s00281-019-00776-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022]
Abstract
Asthma is a common, complex, multifaceted disease. It comprises multiple phenotypes, which might benefit from treatment with different types of innovative targeted therapies. Refining these phenotypes and understanding their underlying biological structure would help to apply precision medicine approaches. Using different omics methods, such as (epi)genomics, transcriptomics, proteomics, metabolomics, microbiomics, and exposomics, allowed to view and investigate asthma from diverse angles. Technological advancement led to a large increase in the application of omics studies in the asthma field. Although the use of omics technologies has reduced the gap between bench to bedside, several design and methodological challenges still need to be tackled before omics can be applied in asthma patient care. Collaborating under a centralized harmonized work frame (such as in consortia, under consistent methodologies) could help worldwide research teams to tackle these challenges. In this review, we discuss the transition of single biomarker research to multi-omics studies. In addition, we deliberate challenges such as the lack of standardization of sampling and analytical methodologies and validation of findings, which comes in between omics and personalized patient care. The future of omics in asthma is encouraging but not completely clear with some unanswered questions, which have not been adequately addressed before. Therefore, we highlight these questions and emphasize on the importance of fulfilling them.
Collapse
Affiliation(s)
- Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands.,Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anne H Neerincx
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Susanne J Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands. .,Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, Netherlands.
| |
Collapse
|
55
|
Wingelaar TT, Brinkman P, de Vries R, van Ooij PJA, Hoencamp R, Maitland-van der Zee AH, Hollmann MW, van Hulst RA. Detecting Pulmonary Oxygen Toxicity Using eNose Technology and Associations between Electronic Nose and Gas Chromatography-Mass Spectrometry Data. Metabolites 2019; 9:metabo9120286. [PMID: 31766640 PMCID: PMC6950559 DOI: 10.3390/metabo9120286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Exposure to oxygen under increased atmospheric pressures can induce pulmonary oxygen toxicity (POT). Exhaled breath analysis using gas chromatography–mass spectrometry (GC–MS) has revealed that volatile organic compounds (VOCs) are associated with inflammation and lipoperoxidation after hyperbaric–hyperoxic exposure. Electronic nose (eNose) technology would be more suited for the detection of POT, since it is less time and resource consuming. However, it is unknown whether eNose technology can detect POT and whether eNose sensor data can be associated with VOCs of interest. In this randomized cross-over trial, the exhaled breath from divers who had made two dives of 1 h to 192.5 kPa (a depth of 9 m) with either 100% oxygen or compressed air was analyzed, at several time points, using GC–MS and eNose. We used a partial least square discriminant analysis, eNose discriminated oxygen and air dives at 30 min post dive with an area under the receiver operating characteristics curve of 79.9% (95%CI: 61.1–98.6; p = 0.003). A two-way orthogonal partial least square regression (O2PLS) model analysis revealed an R² of 0.50 between targeted VOCs obtained by GC–MS and eNose sensor data. The contribution of each sensor to the detection of targeted VOCs was also assessed using O2PLS. When all GC–MS fragments were included in the O2PLS model, this resulted in an R² of 0.08. Thus, eNose could detect POT 30 min post dive, and the correlation between targeted VOCs and eNose data could be assessed using O2PLS.
Collapse
Affiliation(s)
- Thijs T. Wingelaar
- Diving and Submarine Medical Center, Royal Netherlands Navy, Rijkszee en Marinehaven, 1780 CA Den Helder, The Netherlands
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-889-510-480
| | - Paul Brinkman
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rianne de Vries
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Breathomix, Pascalstraat 13H, 2811 EL Reeuwijk, the Netherlands
| | - Pieter-Jan A.M. van Ooij
- Diving and Submarine Medical Center, Royal Netherlands Navy, Rijkszee en Marinehaven, 1780 CA Den Helder, The Netherlands
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rigo Hoencamp
- Department of Surgery, Alrijne Hospital, Simon Smitweg 1, 2353 GA Leiderdorp, The Netherlands
- Defense Healthcare Organisation, Ministry of Defence, Herculeslaan 1, 3584 AB Utrecht, The Netherlands
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Anke-Hilse Maitland-van der Zee
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rob A. van Hulst
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
56
|
Ivanova O, Richards LB, Vijverberg SJ, Neerincx AH, Sinha A, Sterk PJ, Maitland‐van der Zee AH. What did we learn from multiple omics studies in asthma? Allergy 2019; 74:2129-2145. [PMID: 31004501 DOI: 10.1111/all.13833] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
More than a decade has passed since the finalization of the Human Genome Project. Omics technologies made a huge leap from trendy and very expensive to routinely executed and relatively cheap assays. Simultaneously, we understood that omics is not a panacea for every problem in the area of human health and personalized medicine. Whilst in some areas of research omics showed immediate results, in other fields, including asthma, it only allowed us to identify the incredibly complicated molecular processes. Along with their possibilities, omics technologies also bring many issues connected to sample collection, analyses and interpretation. It is often impossible to separate the intrinsic imperfection of omics from asthma heterogeneity. Still, many insights and directions from applied omics were acquired-presumable phenotypic clusters of patients, plausible biomarkers and potential pathways involved. Omics technologies develop rapidly, bringing improvements also to asthma research. These improvements, together with our growing understanding of asthma subphenotypes and underlying cellular processes, will likely play a role in asthma management strategies.
Collapse
Affiliation(s)
- Olga Ivanova
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Levi B. Richards
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anne H. Neerincx
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anirban Sinha
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Peter J. Sterk
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anke H. Maitland‐van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
- Department of Paediatric Pulmonology Amsterdam UMC/ Emma Children's Hospital Amsterdam the Netherlands
| |
Collapse
|
57
|
Kononov A, Korotetsky B, Jahatspanian I, Gubal A, Vasiliev A, Arsenjev A, Nefedov A, Barchuk A, Gorbunov I, Kozyrev K, Rassadina A, Iakovleva E, Sillanpää M, Safaei Z, Ivanenko N, Stolyarova N, Chuchina V, Ganeev A. Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer. J Breath Res 2019; 14:016004. [PMID: 31505480 DOI: 10.1088/1752-7163/ab433d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The analysis of exhaled breath is drawing a high degree of interest in the diagnostics of various diseases, including lung cancer. Electronic nose (E-nose) technology is one of the perspective approaches in the field due to its relative simplicity and cost efficiency. The use of an E-nose together with pattern recognition algorithms allow 'breath-prints' to be discriminated. The aim of this study was to develop an efficient online E-nose-based lung cancer diagnostic method via exhaled breath analysis with the use of some statistical classification methods. A developed multisensory system consisting of six metal oxide chemoresistance gas sensors was employed in three temperature regimes. This study involved 118 individuals: 65 in the lung cancer group (cytologically verified) and 53 in the healthy control group. The exhaled breath samples of the volunteers were analysed using the developed E-nose system. The dataset obtained, consisting of the sensor responses, was pre-processed and split into training (70%) and test (30%) subsets. The training data was used to fit the classification models; the test data was used for the estimation of prediction possibility. Logistic regression was found to be an adequate data-processing approach. The performance of the developed method was promising for the screening purposes (sensitivity-95.0%, specificity-100.0%, accuracy-97.2%). This shows the applicability of the gas-sensitive sensor array for the exhaled breath diagnostics. Metal oxide sensors are highly sensitive, low-cost and stable, and their poor sensitivity can be enhanced by integrating them with machine learning algorithms, as can be seen in this study. All experiments were carried out with the permission of the N.N. Petrov Research Institute of Oncology ethics committee no. 15/83 dated March 15, 2017.
Collapse
Affiliation(s)
- Aleksandr Kononov
- St Petersburg State University, Universitetskaya nab.7/9, 199034, St Petersburg, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
de Vries R, Muller M, van der Noort V, Theelen WSME, Schouten RD, Hummelink K, Muller SH, Wolf-Lansdorf M, Dagelet JWF, Monkhorst K, Maitland-van der Zee AH, Baas P, Sterk PJ, van den Heuvel MM. Prediction of response to anti-PD-1 therapy in patients with non-small-cell lung cancer by electronic nose analysis of exhaled breath. Ann Oncol 2019; 30:1660-1666. [PMID: 31529107 DOI: 10.1093/annonc/mdz279] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have improved survival outcome of advanced non-small-cell lung cancer (NSCLC). However, most patients do not benefit. Therefore, biomarkers are needed that accurately predict response. We hypothesized that molecular profiling of exhaled air may capture the inflammatory milieu related to the individual responsiveness to anti-programmed death ligand 1 (PD-1) therapy. This study aimed to determine the accuracy of exhaled breath analysis at baseline for assessing nonresponders versus responders to anti-PD-1 therapy in NSCLC patients. METHODS This was a prospective observational study in patients receiving checkpoint inhibitor therapy using both a training and validation set of NSCLC patients. At baseline, breath profiles were collected in duplicate by a metal oxide semiconductor electronic nose (eNose) positioned at the rear end of a pneumotachograph. Patients received nivolumab or pembrolizumab of which the efficacy was assessed by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 at 3-month follow-up. Data analysis involved advanced signal-processing and statistics based on independent t-tests followed by linear discriminant and receiver operating characteristic (ROC) analysis. RESULTS Exhaled breath data of 143 NSCLC patients (training: 92, validation: 51) were available at baseline. ENose sensors contributed significantly (P < 0.05) at baseline in differentiating between patients with different responses at 3 months of anti-PD-1 treatment. The eNose sensors were combined into a single biomarker with an ROC-area under the curve (AUC) of 0.89 [confidence interval (CI) 0.82-0.96]. This AUC was confirmed in the validation set: 0.85 (CI 0.75-0.96). CONCLUSION ENose assessment was effective in the noninvasive prediction of individual patient responses to immunotherapy. The predictive accuracy and efficacy of the eNose for discrimination of immunotherapy responder types were replicated in an independent validation set op patients. This finding can potentially avoid application of ineffective treatment in identified probable nonresponders.
Collapse
Affiliation(s)
- R de Vries
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands; Breathomix B.V., Reeuwijk, The Netherlands.
| | - M Muller
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - V van der Noort
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - W S M E Theelen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R D Schouten
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - K Hummelink
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - S H Muller
- Department of Clinical Physics and Instrumentation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M Wolf-Lansdorf
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J W F Dagelet
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - K Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - P Baas
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - P J Sterk
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - M M van den Heuvel
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Respiratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
59
|
Azim A, Barber C, Dennison P, Riley J, Howarth P. Exhaled volatile organic compounds in adult asthma: a systematic review. Eur Respir J 2019; 54:13993003.00056-2019. [PMID: 31273044 DOI: 10.1183/13993003.00056-2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
The search for biomarkers that can guide precision medicine in asthma, particularly those that can be translated to the clinic, has seen recent interest in exhaled volatile organic compounds (VOCs). Given the number of studies reporting "breathomics" findings and its growing integration in clinical trials, we performed a systematic review of the literature to summarise current evidence and understanding of breathomics technology in asthma.A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-oriented systematic search was performed (CRD42017084145) of MEDLINE, Embase and the Cochrane databases to search for any reports that assessed exhaled VOCs in adult asthma patients, using the following terms (asthma AND (volatile organic compounds AND exhaled) OR breathomics).Two authors independently determined the eligibility of 2957 unique records, of which 66 underwent full-text review. Data extraction and risk of bias assessment was performed on the 22 studies deemed to fulfil the search criteria. The studies are described in terms of methodology and the evidence narratively summarised under the following clinical headings: diagnostics, phenotyping, treatment stratification, treatment monitoring and exacerbation prediction/assessment.Our review found that most studies were designed to assess diagnostic potential rather than focus on underlying biology or treatable traits. Results are generally limited by a lack of methodological standardisation and external validation and by insufficiently powered studies, but there is consistency across the literature that exhaled VOCs are sensitive to underlying inflammation. Modern studies are applying robust breath analysis workflows to large multi-centre study designs, which should unlock the full potential of measurement of exhaled volatile organic compounds in airways diseases such as asthma.
Collapse
Affiliation(s)
- Adnan Azim
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK .,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Clair Barber
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paddy Dennison
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - John Riley
- Galaxy Asthma, GSK, Medicines Research Centre, Stevenage, UK
| | - Peter Howarth
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
60
|
Jaeschke C, Glöckler J, El Azizi O, Gonzalez O, Padilla M, Mitrovics J, Mizaikoff B. An Innovative Modular eNose System Based on a Unique Combination of Analog and Digital Metal Oxide Sensors. ACS Sens 2019; 4:2277-2281. [PMID: 31389228 DOI: 10.1021/acssensors.9b01244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An innovative concept for an electronic nose (eNose) system based on a unique combination of analog and digital sensors for online monitoring is presented. The developed system consists of small sensing arrays of commercially available semiconducting metal oxide (MOX) gas sensors in a compact, modular, low sample volume, temperature-controlled sensing chamber. The sensing chamber comprises three compartments, each of which may contain several analog and/or digital MOX sensors. Additional sensors within the digital compartment allow for pressure, humidity, and temperature measurements. The presented prototype eNose system comprises one compartment with 8 analog MOX sensors and two compartments with 10 digital sensors each and was explicitly tested here for the discrimination between midrange (3-18 ppm) concentrations of ethanol and acetone at dry and moderately humid conditions.
Collapse
Affiliation(s)
- Carsten Jaeschke
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- JLM Innovation GmbH, Vor dem Kreuzberg 17, 72070 Tuebingen, Germany
| | - Johannes Glöckler
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oussama El Azizi
- Rovira i Virgili University, Avda. Països Catalans 26, 43007 Tarragona, Spain
| | - Oriol Gonzalez
- JLM Innovation GmbH, Vor dem Kreuzberg 17, 72070 Tuebingen, Germany
| | - Marta Padilla
- JLM Innovation GmbH, Vor dem Kreuzberg 17, 72070 Tuebingen, Germany
| | - Jan Mitrovics
- JLM Innovation GmbH, Vor dem Kreuzberg 17, 72070 Tuebingen, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
61
|
Rodríguez-Aguilar M, Ramírez-García S, Ilizaliturri-Hernández C, Gómez-Gómez A, Van-Brussel E, Díaz-Barriga F, Medellín-Garibay S, Flores-Ramírez R. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study. Biomed Chromatogr 2019; 33:e4684. [PMID: 31423612 DOI: 10.1002/bmc.4684] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 11/11/2022]
Abstract
An analytical method to identify volatile organic compounds (VOCs) in the exhaled breath from patients with a diagnosis of chronic obstructive pulmonary disease (COPD) using a ultrafast gas chromatography system equipped with an electronic nose detector (FGC eNose) has been developed. A prospective study was performed in 23 COPD patients and 33 healthy volunteers; exhalation breathing tests were performed with Tedlar bags. Each sample was analyzed by FCG eNose and the identification of VOCs was based on the Kovats index. Raw data were reduced by principal component analysis (PCA) and canonical discriminant analysis [canonical analysis of principal coordinates (CAP)]. The FCG eNose technology was able to identify 17 VOCs that distinguish COPD patients from healthy volunteers. At all stages of PCA and CAP the discrimination between groups was obvious. Chemical prints were correctly classified up to 82.2%, and were matched with 78.9% of the VOCs detected in the exhaled breath samples. Receiver operating characteristic curve analysis indicated the sensitivity and specificity to be 96% and 91%, respectively. This pilot study demonstrates that FGC eNose is a useful tool to identify VOCs as biomarkers in exhaled breath from COPD patients. Further studies should be performed to enhance the clinical relevance of this quick and ease methodology for COPD diagnosis.
Collapse
Affiliation(s)
- Maribel Rodríguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Sofía Ramírez-García
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Cesar Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Alejandro Gómez-Gómez
- Pulmonology Service, Hospital Central "Dr. Ignacio Morones Prieto" San Luis Potosí, San Luis Potosí, Mexico
| | - Evelyn Van-Brussel
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Susanna Medellín-Garibay
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico.,Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| |
Collapse
|
62
|
Muller M, Baas P. I love my dog. Lung Cancer 2019; 135:228-229. [DOI: 10.1016/j.lungcan.2019.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
63
|
Fung AG, Tan LD, Duong TN, Schivo M, Littlefield L, Delplanque JP, Davis CE, Kenyon NJ. Design and Benchmark Testing for Open Architecture Reconfigurable Mobile Spirometer and Exhaled Breath Monitor with GPS and Data Telemetry. Diagnostics (Basel) 2019; 9:diagnostics9030100. [PMID: 31438639 PMCID: PMC6787596 DOI: 10.3390/diagnostics9030100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Portable and wearable medical instruments are poised to play an increasingly important role in health monitoring. Mobile spirometers are available commercially, and are used to monitor patients with advanced lung disease. However, these commercial monitors have a fixed product architecture determined by the manufacturer, and researchers cannot easily experiment with new configurations or add additional novel sensors over time. Spirometry combined with exhaled breath metabolite monitoring has the potential to transform healthcare and improve clinical management strategies. This research provides an updated design and benchmark testing for a flexible, portable, open access architecture to measure lung function, using common Arduino/Android microcontroller technologies. To demonstrate the feasibility and the proof-of-concept of this easily-adaptable platform technology, we had 43 subjects (healthy, and those with lung diseases) perform three spirometry maneuvers using our reconfigurable device and an office-based commercial spirometer. We found that our system compared favorably with the traditional spirometer, with high accuracy and agreement for forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), and gas measurements were feasible. This provides an adaptable/reconfigurable open access “personalized medicine” platform for researchers and patients, and new chemical sensors and other modular instrumentation can extend the flexibility of the device in the future.
Collapse
Affiliation(s)
- Alexander G Fung
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | - Laren D Tan
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Theresa N Duong
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Michael Schivo
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
- VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Leslie Littlefield
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Jean Pierre Delplanque
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | - Cristina E Davis
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA.
| | - Nicholas J Kenyon
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA.
- VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA.
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
64
|
Hashoul D, Haick H. Sensors for detecting pulmonary diseases from exhaled breath. Eur Respir Rev 2019; 28:28/152/190011. [PMID: 31243097 PMCID: PMC9489036 DOI: 10.1183/16000617.0011-2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023] Open
Abstract
This review presents and discusses a new frontier for fast, risk-free and potentially inexpensive diagnostics of respiratory diseases by detecting volatile organic compounds (VOCs) present in exhaled breath. One part of the review is a didactic presentation of the overlaying concept and the chemistry of exhaled breath. The other part discusses diverse sensors that have been developed and used for the detection of respiratory diseases (e.g. chronic obstructive pulmonary disease, asthma, lung cancer, pulmonary arterial hypertension, tuberculosis, cystic fibrosis, obstructive sleep apnoea syndrome and pneumoconiosis) by analysis of VOCs in exhaled breath. The strengths and pitfalls are discussed and criticised, particularly in the perspective in disseminating information regarding these advances. Ideas regarding the improvement of sensors, sensor arrays, sensing devices and the further planning of workflow are also discussed. Detection of volatile organic compounds from exhaled breath by nanomaterial-based sensors is a new diagnostics frontier in the screening of pulmonary diseases.http://bit.ly/2JoBKXn
Collapse
Affiliation(s)
- Dina Hashoul
- Dept of Chemical Engineering, Russell Berrie Nanotechnology Institute, and the Technion Integrated Cancer Center, Haifa, Israel
| | - Hossam Haick
- Dept of Chemical Engineering, Russell Berrie Nanotechnology Institute, and the Technion Integrated Cancer Center, Haifa, Israel
| |
Collapse
|
65
|
Hybrid Analytical Platform Based on Field-Asymmetric Ion Mobility Spectrometry, Infrared Sensing, and Luminescence-Based Oxygen Sensing for Exhaled Breath Analysis. SENSORS 2019; 19:s19122653. [PMID: 31212768 PMCID: PMC6630267 DOI: 10.3390/s19122653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 12/19/2022]
Abstract
The reliable online analysis of volatile compounds in exhaled breath remains a challenge, as a plethora of molecules occur in different concentration ranges (i.e., ppt to %) and need to be detected against an extremely complex background matrix. Although this complexity is commonly addressed by hyphenating a specific analytical technique with appropriate preconcentration and/or preseparation strategies prior to detection, we herein propose the combination of three different detector types based on truly orthogonal measurement principles as an alternative solution: Field-asymmetric ion mobility spectrometry (FAIMS), Fourier-transform infrared (FTIR) spectroscopy-based sensors utilizing substrate-integrated hollow waveguides (iHWG), and luminescence sensing (LS). By carefully aligning the experimental needs and measurement protocols of all three methods, they were successfully integrated into a single compact analytical platform suitable for online measurements. The analytical performance of this prototype system was tested via artificial breath samples containing nitrogen (N2), oxygen (O2), carbon dioxide (CO2), and acetone as a model volatile organic compound (VOC) commonly present in breath. All three target analytes could be detected within their respectively breath-relevant concentration range, i.e., CO2 and O2 at 3-5 % and at ~19.6 %, respectively, while acetone could be detected with LOQs as low as 165-405 ppt. Orthogonality of the three methods operating in concert was clearly proven, which is essential to cover a possibly wide range of detectable analytes. Finally, the remaining challenges toward the implementation of the developed hybrid FAIMS-FTIR-LS system for exhaled breath analysis for metabolic studies in small animal intensive care units are discussed.
Collapse
|
66
|
Bannier MAGE, van de Kant KDG, Jöbsis Q, Dompeling E. Feasibility and diagnostic accuracy of an electronic nose in children with asthma and cystic fibrosis. J Breath Res 2019; 13:036009. [PMID: 30213921 DOI: 10.1088/1752-7163/aae158] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The measurement of volatile organic compounds (VOCs) in exhaled breath is a promising tool for diagnosing and monitoring various lung diseases in children. Gas chromatography mass spectrometry (GC-MS) analysis is a frequently used standard technique for VOCs analysis. However, as GC-MS is an expensive and time-consuming technique, hand-held devices or electronic noses have been developed. Recently, the Aeonose was introduced as an easy-to-use hand-held eNose capable of point-of-care testing. Although first results using this eNose in adults are promising, studies in children are lacking. We therefore performed a cross-sectional study in 55 children and adolescents ≥6 years of age (20 children with moderate to severe asthma, 13 children with CF, and 22 healthy controls). The feasibility of the Aeonose was high (>98% successful measurements). The diagnostic accuracy was high for discriminating asthma from CF (Area Under the Receiver Operating Characteristic Curve [AUC] 0.90 [95% Confidence Interval 0.78-1.00] sensitivity 89% [65%-98%], specificity 77% [46%-94%]), and for the distinction between CF and healthy controls (AUC 0.87 [0.74-1.00], sensitivity 85% [54%-97%], specificity 77% [54%-91%]). However, the diagnostic accuracy for the discrimination between asthma and healthy controls was modest (AUC 0.79 [0.63-0.94], sensitivity 74% [49%-90%], specificity 91% [69%-98%]). This is the first study to report test results of the Aeonose in children and adolescents ≥6 years. This eNose showed a high feasibility with modest to good diagnostic accuracies in asthma and CF. This study was registered at clinicaltrial.gov (NCT03377686).
Collapse
Affiliation(s)
- Michiel A G E Bannier
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
67
|
Kalidoss R, Umapathy S. A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; from powder processing to clinical monitoring prototype. J Breath Res 2019; 13:036008. [PMID: 30794992 DOI: 10.1088/1752-7163/ab09ae] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Several breath analysis studies have suggested a correlation between blood glucose (BG) levels and breath acetone, indicating acetone as a primary biomarker in exhaled breath for diabetes diagnosis. Herein, we have (i) fabricated and validated graphene-based chemi-resistive sensors for selective and sensitive detection of acetone, (ii) performed offline breath analysis by a static gas sensing set-up to acquire olfactory signals, and (iii) developed an LED-based portable on/off binary e-nose system for pre-screening diabetes through online analysis. The fabricated sensors showed selective detection for acetone with high sensitivity (5.66 for 1 ppm acetone vapor) and fast response and recovery times (10 s and 12 s) at low concentrations. The sensor responses of end tidal fractional breath (collected in Tedlar bags) in the fasting and postprandial conditions were compared with BG levels and glycated hemoglobin (HbA1c) levels taken at the same time in 30 volunteers (13 healthy and 17 diabetic subjects). The mean sensor responses of the diabetic subjects as obtained by offline analysis were 1.1 times higher than those of the healthy subjects. The optimal regression equation framed with the significant correlating variables for HbA1c estimation achieved an accuracy of 66.67%. The online breath analysis by on/off binary prototype exhibited an accuracy of 60.51%. Though there exists a minimal uncertainty in classification, the on/off type portable prototype is easy to operate, gives a quicker response with a refresh/recovery rate of 19 s and can be used for preliminary diagnosis, and can be used for preliminary diagnosis. This inexpensive sensor technology may revolutionize personalized medicine in the near future and greatly benefit the underprivileged.
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, SRM Institute of Science & Technology, Tamil Nadu, 603203, India
| | | |
Collapse
|
68
|
Ibrahim W, Wilde M, Cordell R, Salman D, Ruszkiewicz D, Bryant L, Richardson M, Free RC, Zhao B, Yousuf A, White C, Russell R, Jones S, Patel B, Awal A, Phillips R, Fowkes G, McNally T, Foxon C, Bhatt H, Peltrini R, Singapuri A, Hargadon B, Suzuki T, Ng LL, Gaillard E, Beardsmore C, Ryanna K, Pandya H, Coates T, Monks PS, Greening N, Brightling CE, Thomas P, Siddiqui S. Assessment of breath volatile organic compounds in acute cardiorespiratory breathlessness: a protocol describing a prospective real-world observational study. BMJ Open 2019; 9:e025486. [PMID: 30852546 PMCID: PMC6429860 DOI: 10.1136/bmjopen-2018-025486] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/23/2018] [Accepted: 01/08/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Patients presenting with acute undifferentiated breathlessness are commonly encountered in admissions units across the UK. Existing blood biomarkers have clinical utility in distinguishing patients with single organ pathologies but have poor discriminatory power in multifactorial presentations. Evaluation of volatile organic compounds (VOCs) in exhaled breath offers the potential to develop biomarkers of disease states that underpin acute cardiorespiratory breathlessness, owing to their proximity to the cardiorespiratory system. To date, there has been no systematic evaluation of VOC in acute cardiorespiratory breathlessness. The proposed study will seek to use both offline and online VOC technologies to evaluate the predictive value of VOC in identifying common conditions that present with acute cardiorespiratory breathlessness. METHODS AND ANALYSIS A prospective real-world observational study carried out across three acute admissions units within Leicestershire. Participants with self-reported acute breathlessness, with a confirmed primary diagnosis of either acute heart failure, community-acquired pneumonia and acute exacerbation of asthma or chronic obstructive pulmonary disease will be recruited within 24 hours of admission. Additionally, school-age children admitted with severe asthma will be evaluated. All participants will undergo breath sampling on admission and on recovery following discharge. A range of online technologies including: proton transfer reaction mass spectrometry, gas chromatography ion mobility spectrometry, atmospheric pressure chemical ionisation-mass spectrometry and offline technologies including gas chromatography mass spectroscopy and comprehensive two-dimensional gas chromatography-mass spectrometry will be used for VOC discovery and replication. For offline technologies, a standardised CE-marked breath sampling device (ReCIVA) will be used. All recruited participants will be characterised using existing blood biomarkers including C reactive protein, brain-derived natriuretic peptide, troponin-I and blood eosinophil levels and further evaluated using a range of standardised questionnaires, lung function testing, sputum cell counts and other diagnostic tests pertinent to acute disease. ETHICS AND DISSEMINATION The National Research Ethics Service Committee East Midlands has approved the study protocol (REC number: 16/LO/1747). Integrated Research Approval System (IRAS) 198921. Findings will be presented at academic conferences and published in peer-reviewed scientific journals. Dissemination will be facilitated via a partnership with the East Midlands Academic Health Sciences Network and via interaction with all UK-funded Medical Research Council and Engineering and Physical Sciences Research Council molecular pathology nodes. TRIAL REGISTRATION NUMBER NCT03672994.
Collapse
Affiliation(s)
- Wadah Ibrahim
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Michael Wilde
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Rebecca Cordell
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Dahlia Salman
- Department of Chemistry, Loughborough University, Loughborough, UK
| | | | - Luke Bryant
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Matthew Richardson
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Robert C Free
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Bo Zhao
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Ahmed Yousuf
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Christobelle White
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Richard Russell
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Sheila Jones
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Bharti Patel
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Asia Awal
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Graham Fowkes
- NIHR Leicester Clinical Research Facility, Leicester, UK
| | | | - Clare Foxon
- Paediatric Clinical Investigation Centre, Leicester, UK
| | - Hetan Bhatt
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Rosa Peltrini
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Amisha Singapuri
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Beverley Hargadon
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Toru Suzuki
- Department of Cardiovascular Sciences, Cardiovascular Research Centre, University of Leicester, Leicester, UK
- Leicester NIHR Biomedical Research Centre (Cardiovascular Theme), Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences, Cardiovascular Research Centre, University of Leicester, Leicester, UK
- Leicester NIHR Biomedical Research Centre (Cardiovascular Theme), Leicester, UK
| | - Erol Gaillard
- Paediatric Clinical Investigation Centre, Leicester, UK
| | | | - Kimuli Ryanna
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hitesh Pandya
- Discovery Medicine, Respiratory Therapeutic Area, GlaxoSmithKline PLC, Stevenage, UK
| | - Tim Coates
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Paul S Monks
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Neil Greening
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Christopher E Brightling
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Paul Thomas
- Department of Chemistry, Loughborough University, Loughborough, UK
| | - Salman Siddiqui
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
69
|
Finamore P, Scarlata S, Incalzi RA. Breath analysis in respiratory diseases: state-of-the-art and future perspectives. Expert Rev Mol Diagn 2018; 19:47-61. [PMID: 30575423 DOI: 10.1080/14737159.2019.1559052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The vast majority of respiratory diseases are associated with the production of volatile organic compounds (VOCs), the analysis of which might improve our knowledge about these disorders and their clinical management. The aim of this narrative review is to provide a comprehensive summary of current evidence supporting the application of breath analysis in the field of respiratory diseases, as well as suggesting potential applications available in the near future. Areas covered: A computerized literature search was performed to identify relevant articles reporting original data on the clinical use of breath analysis in respiratory diseases. Papers focusing on diseases other than respiratory, technical issues of VOC sampling and analysis, in vitro experiments or exogenous compounds were excluded. Expert commentary: Currently available evidence on the application of breath analysis in respiratory diseases is encouraging; however, it is mostly based on single-center studies without external validation. The standardization of the technique, together with multicenter clinical trials with external validation, will ensure it is ready for clinical use. Current and new applications in respiratory diseases may represent a major breakthrough in the field, so much so as to deserve further efforts in outlining the most effective way to apply VOC analysis for clinical purposes.
Collapse
Affiliation(s)
| | - Simone Scarlata
- a Unit of Geriatrics , Campus Bio-Medico University, Rome, Italy
| | | |
Collapse
|
70
|
Brinkman P, Wagener AH, Hekking PP, Bansal AT, Maitland-van der Zee AH, Wang Y, Weda H, Knobel HH, Vink TJ, Rattray NJ, D'Amico A, Pennazza G, Santonico M, Lefaudeux D, De Meulder B, Auffray C, Bakke PS, Caruso M, Chanez P, Chung KF, Corfield J, Dahlén SE, Djukanovic R, Geiser T, Horvath I, Krug N, Musial J, Sun K, Riley JH, Shaw DE, Sandström T, Sousa AR, Montuschi P, Fowler SJ, Sterk PJ. Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in patients with severe asthma. J Allergy Clin Immunol 2018; 143:1811-1820.e7. [PMID: 30529449 DOI: 10.1016/j.jaci.2018.10.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/04/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Severe asthma is a heterogeneous condition, as shown by independent cluster analyses based on demographic, clinical, and inflammatory characteristics. A next step is to identify molecularly driven phenotypes using "omics" technologies. Molecular fingerprints of exhaled breath are associated with inflammation and can qualify as noninvasive assessment of severe asthma phenotypes. OBJECTIVES We aimed (1) to identify severe asthma phenotypes using exhaled metabolomic fingerprints obtained from a composite of electronic noses (eNoses) and (2) to assess the stability of eNose-derived phenotypes in relation to within-patient clinical and inflammatory changes. METHODS In this longitudinal multicenter study exhaled breath samples were taken from an unselected subset of adults with severe asthma from the U-BIOPRED cohort. Exhaled metabolites were analyzed centrally by using an assembly of eNoses. Unsupervised Ward clustering enhanced by similarity profile analysis together with K-means clustering was performed. For internal validation, partitioning around medoids and topological data analysis were applied. Samples at 12 to 18 months of prospective follow-up were used to assess longitudinal within-patient stability. RESULTS Data were available for 78 subjects (age, 55 years [interquartile range, 45-64 years]; 41% male). Three eNose-driven clusters (n = 26/33/19) were revealed, showing differences in circulating eosinophil (P = .045) and neutrophil (P = .017) percentages and ratios of patients using oral corticosteroids (P = .035). Longitudinal within-patient cluster stability was associated with changes in sputum eosinophil percentages (P = .045). CONCLUSIONS We have identified and followed up exhaled molecular phenotypes of severe asthma, which were associated with changing inflammatory profile and oral steroid use. This suggests that breath analysis can contribute to the management of severe asthma.
Collapse
Affiliation(s)
- Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ariane H Wagener
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter-Paul Hekking
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aruna T Bansal
- Acclarogen, St John's Innovation Centre, Cambridge, United Kingdom
| | | | | | - Hans Weda
- Philips Research, Eindhoven, The Netherlands
| | | | | | - Nicholas J Rattray
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Conn
| | - Arnaldo D'Amico
- Department of Electronic Engineering, University of Rome "Tor Vergata," Rome, Italy
| | - Giorgio Pennazza
- Center for Integrated Research-CIR, Unit for Electronics for Sensor Systems, Campus Bio-Medico U, Rome, Italy
| | - Marco Santonico
- Center for Integrated Research-CIR, Unit for Electronics for Sensor Systems, Campus Bio-Medico U, Rome, Italy
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Per S Bakke
- Institute of Medicine, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Clinical and Experimental Medicine Hospital University, University of Catania, Catania, Italy
| | - Pascal Chanez
- Département des Maladies Respiratoires APHM,U1067 INSERM, Aix Marseille Université Marseille, Marseille, Italy
| | - Kian F Chung
- National Heart and Lung Institute, Imperial College, London, UK Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Julie Corfield
- AstraZeneca R&D, Mölndal, Sweden; Areteva R&D, Nottingham, United Kingdom
| | - Sven-Erik Dahlén
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Thomas Geiser
- the Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
| | - Ildiko Horvath
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Nobert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine Hannover, Hannover, Germany
| | - Jacek Musial
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Kai Sun
- Data Science Institute, South Kensington Campus, Imperial College Londont, London, United Kingdom
| | - John H Riley
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Dominic E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Department of Medicine, Respiratory Medicine Unit, Umeå University, Umeå, Sweden
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Stephen J Fowler
- Respiratory Research Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Healthy Science Centre, and NIHR Translational Research Faculty in Respiratory Medicine, University Hospital of South Manchester, Manchester, United Kingdom; Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
71
|
Gupta A, Singh TS, Yadava RDS. MEMS sensor array-based electronic nose for breath analysis-a simulation study. J Breath Res 2018; 13:016003. [PMID: 30045999 DOI: 10.1088/1752-7163/aad5f1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The paper presents a simulation study of breath analysis based on theoretical models of microelectromechanical structure (MEMS) cantilever sensor array. The purpose of this study is to suggest a methodology for the development of MEMS electronic nose (e-nose) for monitoring disease-specific volatiles in exhaled breath. Oxidative stress and diabetes are taken as case studies for the assessment of e-nose designs. The detection of ethane for general oxidative stress, isoprene for hypoxia, and acetone for diabetes are considered for targeted detection. A number of volatiles concurrently present in the exhaled breath are taken as interferents. The MEMS cantilevers are coated with volatile-selective polymers and are analyzed in both the static and dynamic modes. The sensor array is defined by polymer selections based on three data mining methods: principal component analysis (PCA), fuzzy c-means clustering (FCM), and fuzzy subtractive clustering (FSC). This utilizes vapor/polymer partition coefficients as a database. Analyses are carried out to find optimal combinations of the polymer selection method and cantilever sensing mode. Virtual breath analysis experiments are analyzed by PCA for target discrimination. It is found that no single combination works best in all conditions. The acetone (diabetes) detection is best in both sensing modes with the polymers selected by FSC; the isoprene (hypoxia) is detectable only in static sensing mode with polymers selected by FCM clustering; and the ethane (oxidative stress) detection is possible by all sensing modes and polymer selections, provided the breath samples are preconcentrated. This study suggests that it is difficult to realize a single general-purpose MEMS breath analyzer. The dedicated analyzers for specific disease indications can however be made with an optimal combination of sensing mode and polymer coatings.
Collapse
Affiliation(s)
- Anurag Gupta
- Sensors & Signal Processing Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
72
|
Wallace MAG, Pleil JD. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal Chim Acta 2018; 1024:18-38. [PMID: 29776545 PMCID: PMC6082128 DOI: 10.1016/j.aca.2018.01.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
Human breath, along with urine and blood, has long been one of the three major biological media for assessing human health and environmental exposure. In fact, the detection of odor on human breath, as described by Hippocrates in 400 BC, is considered the first analytical health assessment tool. Although less common in comparison to contemporary bio-fluids analyses, breath has become an attractive diagnostic medium as sampling is non-invasive, unlimited in timing and volume, and does not require clinical personnel. Exhaled breath, exhaled breath condensate (EBC), and exhaled breath aerosol (EBA) are different types of breath matrices used to assess human health and disease state. Over the past 20 years, breath research has made many advances in assessing health state, overcoming many of its initial challenges related to sampling and analysis. The wide variety of sampling techniques and collection devices that have been developed for these media are discussed herein. The different types of sensors and mass spectrometry instruments currently available for breath analysis are evaluated as well as emerging breath research topics, such as cytokines, security and airport surveillance, cellular respiration, and canine olfaction.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| | - Joachim D Pleil
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
73
|
Dragonieri S, Quaranta VN, Carratu P, Ranieri T, Resta O. Exhaled breath profiling by electronic nose enabled discrimination of allergic rhinitis and extrinsic asthma. Biomarkers 2018; 24:70-75. [PMID: 30074408 DOI: 10.1080/1354750x.2018.1508307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To assess whether an e-nose could discriminate between subjects affected by allergic rhinitis with and without concomitant extrinsic asthma, as well as from healthy controls, in terms of exhaled VOC-profile. METHODS Fourteen patients with Extrinsic Asthma and Allergic Rhinitis (AAR), 14 patients with Allergic Rhinitis without asthma (AR) and 14 healthy controls (HC) participated in a cross-sectional study. Exhaled breath was collected by a standardized method and sampled by an e-nose (Cyranose 320). Raw data were reduced by Principal component analysis and analyzed by canonical discriminant analysis. Cross-validation accuracy (CVA) and Receiver Operating Characteristic(ROC)-curves were calculated. External validation in newly recruited patients (7 AAR, 7 AR and 7 HC) was tested using the previous training model. RESULTS Breathprints of patients with AR clustered from those with AAR (CVA = 85.7%), as well as HC (CVA = 82.1%). Breathprints from AAR were also separated from those of HC (CVA = 75.0%). External validation confirmed the above findings. CONCLUSIONS An e-nose can discriminate exhaled breath from subjects with allergic rhinitis with and without extrinsic asthma, which represent two different diseases with partly overlapping features. This supports the view of using breath profiling to diagnose asthma also in patients with allergic rhinitis.
Collapse
Affiliation(s)
| | | | | | - Teresa Ranieri
- a Respiratory Diseases, University of Bari , Bari , Italy
| | - Onofrio Resta
- a Respiratory Diseases, University of Bari , Bari , Italy
| |
Collapse
|
74
|
Oakley-Girvan I, Davis SW. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review. Cancer Biomark 2018; 21:29-39. [PMID: 29060925 DOI: 10.3233/cbm-170177] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Detecting volatile organic compounds (VOCs) could provide a rapid, noninvasive, and inexpensive screening tool for detecting cancer. OBJECTIVE In this systematic review, we identified specific exhaled breath VOCs correlated with lung, colorectal, and breast cancer. METHODS We identified relevant studies published in 2015 and 2016 by searching Pubmed and Web of Science. The protocol for this systematic review was registered in PROSPERO and the PRISMA guidelines were used in reporting. VOCs and performance data were extracted. RESULTS Three hundred and thirty three records were identified and 43 papers were included in the review, of which 20 were review articles themselves. We identified 17 studies that listed the VOCs with at least a subset of statistics on detection cutoff levels, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and gradient. CONCLUSIONS Breath analysis for cancer screening and early detection shows promise, because samples can be collected easily, safely, and frequently. While gas chromatography-mass spectrometry is considered the gold standard for identifying specific VOCs, breath analysis has moved into analyzing patterns of VOCs using a variety of different multiple sensor techniques, such as eNoses and nanomaterials. Further development of VOCs for early cancer detection requires clinical trials with standardized breath sampling methods.
Collapse
|
75
|
Abstract
The electronic nose (e-nose) is a promising technology as a useful addition to the currently available modalities to achieve lung cancer diagnosis. The e-nose can assess the volatile organic compounds detected in the breath and derived from the cellular metabolism. Volatile organic compounds can be analyzed to identify the individual chemical elements as well as their pattern of expression to reproduce a sensorial combination similar to a fingerprint (breathprint). The e-nose can be used alone, mimicking the combinatorial selectivity of the human olfactory system, or as part of a multisensorial platform. This review analyzes the progress made by investigators interested in this technology as well as the perspectives for its future utilization.
Collapse
|
76
|
de Vries R, Dagelet YWF, Spoor P, Snoey E, Jak PMC, Brinkman P, Dijkers E, Bootsma SK, Elskamp F, de Jongh FHC, Haarman EG, In 't Veen JCCM, Maitland-van der Zee AH, Sterk PJ. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. Eur Respir J 2018; 51:51/1/1701817. [PMID: 29326334 DOI: 10.1183/13993003.01817-2017] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/01/2017] [Indexed: 01/10/2023]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are complex and overlapping diseases that include inflammatory phenotypes. Novel anti-eosinophilic/anti-neutrophilic strategies demand rapid inflammatory phenotyping, which might be accessible from exhaled breath.Our objective was to capture clinical/inflammatory phenotypes in patients with chronic airway disease using an electronic nose (eNose) in a training and validation set.This was a multicentre cross-sectional study in which exhaled breath from asthma and COPD patients (n=435; training n=321 and validation n=114) was analysed using eNose technology. Data analysis involved signal processing and statistics based on principal component analysis followed by unsupervised cluster analysis and supervised linear regression.Clustering based on eNose resulted in five significant combined asthma and COPD clusters that differed regarding ethnicity (p=0.01), systemic eosinophilia (p=0.02) and neutrophilia (p=0.03), body mass index (p=0.04), exhaled nitric oxide fraction (p<0.01), atopy (p<0.01) and exacerbation rate (p<0.01). Significant regression models were found for the prediction of eosinophilic (R2=0.581) and neutrophilic (R2=0.409) blood counts based on eNose. Similar clusters and regression results were obtained in the validation set.Phenotyping a combined sample of asthma and COPD patients using eNose provides validated clusters that are not determined by diagnosis, but rather by clinical/inflammatory characteristics. eNose identified systemic neutrophilia and/or eosinophilia in a dose-dependent manner.
Collapse
Affiliation(s)
- Rianne de Vries
- Dept of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Yennece W F Dagelet
- Dept of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Pien Spoor
- Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Erik Snoey
- Dept of Pulmonology, Franciscus Gasthuis, Rotterdam, The Netherlands
| | - Patrick M C Jak
- Dept of Pediatric Pulmonology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Brinkman
- Dept of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Erica Dijkers
- Dept of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | - Frans H C de Jongh
- Dept of Pulmonary Function, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Eric G Haarman
- Dept of Pediatric Pulmonology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
77
|
Fowler SJ. Breath analysis for label-free characterisation of airways disease. Eur Respir J 2018; 51:51/1/1702586. [DOI: 10.1183/13993003.02586-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/12/2023]
|
78
|
Bos LDJ. Diagnosis of acute respiratory distress syndrome by exhaled breath analysis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:33. [PMID: 29430450 DOI: 10.21037/atm.2018.01.17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The acute respiratory distress syndrome (ARDS) is a complication of critical illness that is characterized by acute onset, protein rich, pulmonary edema. There is no treatment for ARDS, other than the reduction of additional ventilator induced lung injury. Prediction or earlier recognition of ARDS could result in preventive measurements and might decrease mortality and morbidity. Exhaled breath contains volatile organic compounds (VOCs), a collection of hundreds of small molecules linked to several physiological and pathophysiological processes. Analysis of exhaled breath through gas-chromatography and mass-spectrometry (GC-MS) has resulted in an accurate diagnosis of ARDS in several studies. Most identified markers are linked to lipid peroxidation. Octane is one of the few markers that was validated as a marker of ARDS and is pathophysiologically likely to be increased in ARDS. None of the currently studied breath analysis methods is directly applicable in clinical practice. Two steps have to be taken before any breath test can be allowed into the intensive care unit. External validation in a multi-center study is a prerequisite for any of the candidate breath markers and the breath test should outperform clinical prediction scores. Second, the technology for breath analysis should be adapted so that it is available at a decentralized lab inside the intensive care unit and can be operated by trained nurses, in order to reduce the analysis time. In conclusion, exhaled analysis might be used for the early diagnosis and prediction of ARDS in the near future but several obstacles have to be taken in the coming years. Most of the candidate markers can be linked to lipid peroxidation. Only octane has been validated in a temporal external validation cohort and is, at this moment, the top-ranking breath biomarker for ARDS.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Department of Respiratory Medicine, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.,Department of Intensive Care, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
79
|
Neerincx AH, Vijverberg SJH, Bos LDJ, Brinkman P, van der Schee MP, de Vries R, Sterk PJ, Maitland-van der Zee AH. Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr Pulmonol 2017; 52:1616-1627. [PMID: 29082668 DOI: 10.1002/ppul.23785] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
Asthma is the most common chronic disease in children, and is characterized by airway inflammation, bronchial hyperresponsiveness, and airflow obstruction. Asthma diagnosis, phenotyping, and monitoring are still challenging with currently available methods, such as spirometry, FE NO or sputum analysis. The analysis of volatile organic compounds (VOCs) in exhaled breath could be an interesting non-invasive approach, but has not yet reached clinical practice. This review describes the current status of breath analysis in the diagnosis and monitoring of pediatric asthma. Furthermore, features of an ideal breath test, different breath analysis techniques, and important methodological issues are discussed. Although only a (small) number of studies have been performed in pediatric asthma, of which the majority is focusing on asthma diagnosis, these studies show moderate to good prediction accuracy (80-100%, with models including 6-28 VOCs), thereby qualifying breathomics for future application. However, standardization of procedures, longitudinal studies, as well as external validation are needed in order to further develop breathomics into clinical tools. Such a non-invasive tool may be the next step toward stratified and personalized medicine in pediatric respiratory disease.
Collapse
Affiliation(s)
- Anne H Neerincx
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Marc P van der Schee
- Department of Paediatric Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Rianne de Vries
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | | |
Collapse
|
80
|
Brinkman P, van de Pol MA, Gerritsen MG, Bos LD, Dekker T, Smids BS, Sinha A, Majoor CJ, Sneeboer MM, Knobel HH, Vink TJ, de Jongh FH, Lutter R, Sterk PJ, Fens N. Exhaled breath profiles in the monitoring of loss of control and clinical recovery in asthma. Clin Exp Allergy 2017. [PMID: 28626990 DOI: 10.1111/cea.12965] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Asthma is a chronic inflammatory airway disease, associated with episodes of exacerbations. Therapy with inhaled corticosteroids (ICS) targets airway inflammation, which aims to maintain and restore asthma control. Clinical features are only modestly associated with airways inflammation. Therefore, we hypothesized that exhaled volatile metabolites identify longitudinal changes between clinically stable episodes and loss of asthma control. OBJECTIVES To determine whether exhaled volatile organic compounds (VOCs) as measured by gas-chromatography/mass-spectrometry (GC/MS) and electronic nose (eNose) technology discriminate between clinically stable and unstable episodes of asthma. METHODS Twenty-three patients with (partly) controlled mild to moderate persistent asthma using ICS were included in this prospective steroid withdrawal study. Exhaled metabolites were measured at baseline, during loss of control and after recovery. Standardized sampling of exhaled air was performed, after which samples were analysed by GC/MS and eNose. Univariate analysis of covariance (ANCOVA), followed by multivariate principal component analysis (PCA) was used to reduce data dimensionality. Next paired t tests were utilized to analyse within-subject breath profile differences at the different time-points. Finally, associations between exhaled metabolites and sputum inflammation markers were examined. RESULTS Breath profiles by eNose showed 95% (21/22) correct classification for baseline vs loss of control and 86% (19/22) for loss of control vs recovery. Breath profiles using GC/MS showed accuracies of 68% (14/22) and 77% (17/22) for baseline vs loss of control and loss of control vs recovery, respectively. Significant associations between exhaled metabolites captured by GC/MS and sputum eosinophils were found (Pearson r≥.46, P<.01). CONCLUSIONS & CLINICAL RELEVANCE Loss of asthma control can be discriminated from clinically stable episodes by longitudinal monitoring of exhaled metabolites measured by GC/MS and particularly eNose. Part of the uncovered biomarkers was associated with sputum eosinophils. These findings provide proof of principle for monitoring and identification of loss of asthma control by breathomics.
Collapse
Affiliation(s)
- P Brinkman
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - M A van de Pol
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - M G Gerritsen
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - L D Bos
- Department of Intensive Care, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - T Dekker
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - B S Smids
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - A Sinha
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - C J Majoor
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - M M Sneeboer
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - H H Knobel
- Philips Research, Eindhoven, The Netherlands
| | - T J Vink
- Philips Research, Eindhoven, The Netherlands
| | - F H de Jongh
- Department of Pulmonary Function, Medisch Spectrum Twente, Enschede, The Netherlands
| | - R Lutter
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - P J Sterk
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - N Fens
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
81
|
Högman M. Innovative exhaled breath analysis with old breathing manoeuvres-is there a problem or an advantage? J Breath Res 2017; 11:031001. [PMID: 28660856 DOI: 10.1088/1752-7163/aa720b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As the field of exhaled breath research is expanding, the question that arises is can the old usual method of spirometry be used in all cases? The answer is yes for some analysation methods and definitely not for others: it all depends on the result you are looking for. Exhaled breath condensate collection can be accomplished with silent tidal breathing, but not in the analysation of the amount of exhaled particles, as they become very low during tidal breathing. There are gases that are exhalation flow dependent, e.g. nitric oxide, acetone and ethanol, that require a special breathing manoeuvre with flow control. Physiological changes of the lung, i.e. inhalation to total lung capacity or forced exhalation such as during spirometry, will affect the result of exhaled biomarkers. The standardisation of exhaled breath requires further development, and there are many aspects to consider.
Collapse
Affiliation(s)
- Marieann Högman
- Dept. of Medical Sciences, Respiratory, Allergy & Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
82
|
Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, Antus B, Baraldi E, Bikov A, Boots AW, Bos LD, Brinkman P, Bucca C, Carpagnano GE, Corradi M, Cristescu S, de Jongste JC, Dinh-Xuan AT, Dompeling E, Fens N, Fowler S, Hohlfeld JM, Holz O, Jöbsis Q, Van De Kant K, Knobel HH, Kostikas K, Lehtimäki L, Lundberg J, Montuschi P, Van Muylem A, Pennazza G, Reinhold P, Ricciardolo FLM, Rosias P, Santonico M, van der Schee MP, van Schooten FJ, Spanevello A, Tonia T, Vink TJ. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 2017; 49:49/4/1600965. [PMID: 28446552 DOI: 10.1183/13993003.00965-2016] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Breath tests cover the fraction of nitric oxide in expired gas (FeNO), volatile organic compounds (VOCs), variables in exhaled breath condensate (EBC) and other measurements. For EBC and for FeNO, official recommendations for standardised procedures are more than 10 years old and there is none for exhaled VOCs and particles. The aim of this document is to provide technical standards and recommendations for sample collection and analytic approaches and to highlight future research priorities in the field. For EBC and FeNO, new developments and advances in technology have been evaluated in the current document. This report is not intended to provide clinical guidance on disease diagnosis and management.Clinicians and researchers with expertise in exhaled biomarkers were invited to participate. Published studies regarding methodology of breath tests were selected, discussed and evaluated in a consensus-based manner by the Task Force members.Recommendations for standardisation of sampling, analysing and reporting of data and suggestions for research to cover gaps in the evidence have been created and summarised.Application of breath biomarker measurement in a standardised manner will provide comparable results, thereby facilitating the potential use of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Ildiko Horváth
- Dept of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | | | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieann Högman
- Centre for Research & Development, Uppsala University/Gävleborg County Council, Gävle, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska Academy and University Hospital, Goteborg, Sweden
| | - Anton Amann
- Innsbruck Medical University, Innsbruck, Austria
| | - Balazs Antus
- Dept of Pathophysiology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Andras Bikov
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Agnes W Boots
- Dept of Pharmacology and Toxicology, University of Maastricht, Maastricht, The Netherlands
| | - Lieuwe D Bos
- Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Brinkman
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Caterina Bucca
- Biomedical Sciences and Human Oncology, Universita' di Torino, Turin, Italy
| | | | | | - Simona Cristescu
- Dept of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Johan C de Jongste
- Dept of Pediatrics/Respiratory Medicine, Erasmus MC-Sophia Childrens' Hospital, Rotterdam, The Netherlands
| | | | - Edward Dompeling
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Niki Fens
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen Fowler
- Respiratory Research Group, University of Manchester Wythenshawe Hospital, Manchester, UK
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Medizinische Hochschule Hannover, Hannover, Germany
| | - Olaf Holz
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Quirijn Jöbsis
- Department of Paediatric Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Kim Van De Kant
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hugo H Knobel
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| | | | | | - Jon Lundberg
- Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | - Alain Van Muylem
- Hopital Erasme Cliniques Universitaires de Bruxelles, Bruxelles, Belgium
| | - Giorgio Pennazza
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich Loeffler Institut, Jena, Germany
| | - Fabio L M Ricciardolo
- Clinic of Respiratory Disease, Dept of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Philippe Rosias
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Pediatrics, Maasland Hospital, Sittard, The Netherlands
| | - Marco Santonico
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Marc P van der Schee
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Thomy Tonia
- European Respiratory Society, Lausanne, Switzerland
| | - Teunis J Vink
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| |
Collapse
|
83
|
Leopold JH, Bos LDJ, Colombo C, Sterk PJ, Schultz MJ, Abu-Hanna A. Non-invasive breath monitoring with eNose does not improve glucose diagnostics in critically ill patients in comparison to continuous glucose monitoring in blood. J Breath Res 2017; 11:026002. [PMID: 28260695 DOI: 10.1088/1752-7163/aa6488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Continuous glucose monitoring (CGM) can be beneficial in critically ill patients. Current CGM devices rely on subcutaneous or blood plasma glucose measurements and consequently there is an increased risk of infections and the possibility of loss of blood with each measurement. A potential method to continuously and non-invasively measure blood glucose levels is using exhaled breath. A correlation between blood glucose levels and volatile organic compounds (VOCs) in the exhaled breath was already reported. VOCs can be analyzed continuously using a so-called electronic nose (eNose). We hypothesize that continuous exhaled breath analysis using an eNose can be used to accurately predict blood glucose levels in intubated, mechanically ventilated ICU-patients. Mechanically ventilated patients whose blood glucose concentration was monitored with a CGM device were eligible. An eNose with four metal oxide sensors was used to continuously measure changes in exhaled breath. After pre-processing the data, several regression models were trained, consisting of: (1) only eNose sensor values; (2) only the 1st and 2nd principal components (PC) of eNose values; (3) eNose sensor values and last known blood glucose value as random effect; (4) 1st and 2nd PC of eNose sensor values and CGM value of one minute ago as fixed effect; (5) CGM value of one minute ago as fixed effect. Model performance was measured using the R 2 value, the akaike information criterion and the Clarke error grid. Twenty-three patients were included in the study and 1165 hours of measurements were collected. Performance was low in models 1, 2 and 3 with a mean R 2 of 0.07 [95%-CI: 0.00-0.28], 0.10 [95%-CI: 0.00-0.40] and 0.30 [0.02-0.79], respectively. Performance in models 4 and 5 was better with a mean R 2 of 0.77 [0.02-1.00]. Subsequently, eNose data in model 4 had no added value over using CGM only in model 5. Continuous exhaled breath analysis using this eNose cannot be used to accurately predict blood glucose levels in intubated, mechanically ventilated ICU-patients.
Collapse
Affiliation(s)
- Jan Hendrik Leopold
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
84
|
Dragonieri S, Pennazza G, Carratu P, Resta O. Electronic Nose Technology in Respiratory Diseases. Lung 2017; 195:157-165. [PMID: 28238110 DOI: 10.1007/s00408-017-9987-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
Electronic noses (e-noses) are based on arrays of different sensor types that respond to specific features of an odorant molecule, mostly volatile organic compounds (VOCs). Differently from gas chromatography and mass spectrometry, e-noses can distinguish VOCs spectrum by pattern recognition. E-nose technology has successfully been used in commercial applications, including military, environmental, and food industry. Human-exhaled breath contains a mixture of over 3000 VOCs, which offers the postulate that e-nose technology can have medical applications. Based on the above hypothesis, an increasing number of studies have shown that breath profiling by e-nose could play a role in the diagnosis and/or screening of various respiratory and systemic diseases. The aim of the present study was to review the principal literature on the application of e-nose technology in respiratory diseases.
Collapse
Affiliation(s)
- Silvano Dragonieri
- Department of Respiratory Diseases, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Giorgio Pennazza
- Unit of Electronics for Sensor Systems, Center for Integrated Research, Campus Bio-Medico University, Rome, Italy
| | - Pierluigi Carratu
- Department of Respiratory Diseases, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Onofrio Resta
- Department of Respiratory Diseases, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
85
|
Beale DJ, Jones OAH, Karpe AV, Dayalan S, Oh DY, Kouremenos KA, Ahmed W, Palombo EA. A Review of Analytical Techniques and Their Application in Disease Diagnosis in Breathomics and Salivaomics Research. Int J Mol Sci 2016; 18:E24. [PMID: 28025547 PMCID: PMC5297659 DOI: 10.3390/ijms18010024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
The application of metabolomics to biological samples has been a key focus in systems biology research, which is aimed at the development of rapid diagnostic methods and the creation of personalized medicine. More recently, there has been a strong focus towards this approach applied to non-invasively acquired samples, such as saliva and exhaled breath. The analysis of these biological samples, in conjunction with other sample types and traditional diagnostic tests, has resulted in faster and more reliable characterization of a range of health disorders and diseases. As the sampling process involved in collecting exhaled breath and saliva is non-intrusive as well as comparatively low-cost and uses a series of widely accepted methods, it provides researchers with easy access to the metabolites secreted by the human body. Owing to its accuracy and rapid nature, metabolomic analysis of saliva and breath (known as salivaomics and breathomics, respectively) is a rapidly growing field and has shown potential to be effective in detecting and diagnosing the early stages of numerous diseases and infections in preclinical studies. This review discusses the various collection and analyses methods currently applied in two of the least used non-invasive sample types in metabolomics, specifically their application in salivaomics and breathomics research. Some of the salient research completed in this field to date is also assessed and discussed in order to provide a basis to advocate their use and possible future scientific directions.
Collapse
Affiliation(s)
- David J Beale
- Commonwealth Scientific & Industrial Research Organization (CSIRO), Land & Water, P.O. Box 2583, Brisbane, QLD 4001, Australia.
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science, School of Science, RMIT University, P.O. Box 2547, Melbourne, VIC 3001, Australia.
| | - Avinash V Karpe
- Commonwealth Scientific & Industrial Research Organization (CSIRO), Land & Water, P.O. Box 2583, Brisbane, QLD 4001, Australia.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia.
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010, Australia.
| | - Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.
- School of Applied and Biomedical Sciences, Federation University, Churchill, VIC 3350, Australia.
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010, Australia.
| | - Warish Ahmed
- Commonwealth Scientific & Industrial Research Organization (CSIRO), Land & Water, P.O. Box 2583, Brisbane, QLD 4001, Australia.
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia.
| |
Collapse
|
86
|
Bos LD, Sterk PJ, Fowler SJ. Breathomics in the setting of asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 2016; 138:970-976. [PMID: 27590400 DOI: 10.1016/j.jaci.2016.08.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/26/2022]
Abstract
Exhaled breath contains thousands of volatile organic compounds that reflect the metabolic process occurring in the host both locally in the airways and systemically. They also arise from the environment and airway microbiome. Comprehensive analysis of breath volatile organic compounds (breathomics) provides opportunities for noninvasive biomarker discovery and novel mechanistic insights. Applications in patients with obstructive lung diseases, such as asthma and chronic obstructive pulmonary disease, include not only diagnostics (especially in children and other challenging diagnostic areas) but also identification of clinical treatable traits, such as airway eosinophilia and risk of infection/exacerbation, that are not specific to diagnostic labels. Although many aspects of breath sampling and analysis are challenging, proof-of-concept studies with mass spectrometry and electronic nose technologies have provided independent studies with moderate-to-good diagnostic and phenotypic accuracies. The present review evaluates the data obtained by using breathomics in (1) predicting the inception of asthma or chronic obstructive pulmonary disease, (2) inflammatory phenotyping, (3) exacerbation prediction, and (4) treatment stratification. The current findings merit the current efforts of large multicenter studies using standardized sampling, shared analytic methods, and databases, including external validation cohorts. This will position this noninvasive technology in the clinical assessment and monitoring of chronic airways diseases.
Collapse
Affiliation(s)
- Lieuwe D Bos
- Department of Respiratory Medicine and Department of Intensive Care Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - Peter J Sterk
- Department of Respiratory Medicine and Department of Intensive Care Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen J Fowler
- Centre for Respiratory Medicine and Allergy, University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
87
|
Factors Influencing Continuous Breath Signal in Intubated and Mechanically-Ventilated Intensive Care Unit Patients Measured by an Electronic Nose. SENSORS 2016; 16:s16081337. [PMID: 27556467 PMCID: PMC5017501 DOI: 10.3390/s16081337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/21/2023]
Abstract
Introduction: Continuous breath analysis by electronic nose (eNose) technology in the intensive care unit (ICU) may be useful in monitoring (patho) physiological changes. However, the application of breath monitoring in a non-controlled clinical setting introduces noise into the data. We hypothesized that the sensor signal is influenced by: (1) humidity in the side-stream; (2) patient-ventilator disconnections and the nebulization of medication; and (3) changes in ventilator settings and the amount of exhaled CO2. We aimed to explore whether the aforementioned factors introduce noise into the signal, and discuss several approaches to reduce this noise. Methods: Study in mechanically-ventilated ICU patients. Exhaled breath was monitored using a continuous eNose with metal oxide sensors. Linear (mixed) models were used to study hypothesized associations. Results: In total, 1251 h of eNose data were collected. First, the initial 15 min of the signal was discarded. There was a negative association between humidity and Sensor 1 (Fixed-effect β: −0.05 ± 0.002) and a positive association with Sensors 2–4 (Fixed-effect β: 0.12 ± 0.001); the signal was corrected for this noise. Outliers were most likely due to noise and therefore removed. Sensor values were positively associated with end-tidal CO2, tidal volume and the pressure variables. The signal was corrected for changes in these ventilator variables after which the associations disappeared. Conclusion: Variations in humidity, ventilator disconnections, nebulization of medication and changes of ventilator settings indeed influenced exhaled breath signals measured in ventilated patients by continuous eNose analysis. We discussed several approaches to reduce the effects of these noise inducing variables.
Collapse
|
88
|
Roche N. Adding biological markers to COPD categorisation schemes: a way towards more personalised care? Eur Respir J 2016; 47:1601-5. [DOI: 10.1183/13993003.00401-2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
|
89
|
Gasparri R, Santonico M, Valentini C, Sedda G, Borri A, Petrella F, Maisonneuve P, Pennazza G, D'Amico A, Di Natale C, Paolesse R, Spaggiari L. Volatile signature for the early diagnosis of lung cancer. J Breath Res 2016; 10:016007. [PMID: 26857451 DOI: 10.1088/1752-7155/10/1/016007] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exhaled breath contains hundreds of volatile organic compounds (VOCs). Several independent researchers point out that the breath of lung cancer patients shows a characteristic VOC-profile which can be considered as lung cancer signature and, thus, used for diagnosis. In this regard, the analysis of exhaled breath with gas sensor arrays is a potential non-invasive, relatively low-cost and easy technique for the early detection of lung cancer. This clinical study evaluated the gas sensor array response for the identification of the exhaled breath of lung cancer patients. This study involved 146 individuals: 70 with lung cancer confirmed by computerized tomography (CT) or positron emission tomography-(PET) imaging techniques and histology (biopsy) or with clinical suspect of lung cancer and 76 healthy controls. Their exhaled breath was measured with a gas sensor array composed of a matrix of eight quartz microbalances (QMBs), each functionalized with a different metalloporphyrin. The instrument produces, for each analyzed sample, a vector of signals encoding the breath (breathprint). Breathprints were analyzed with multivariate analysis in order to correlate the sensor signals to the disease. Breathprints of the lung cancer patients were differentiated from those of the healthy controls with a sensitivity of 81% and specificity of 91%. Similar values were obtained in patients with and without metabolic comorbidities, such as diabetes, obesity and dyslipidemia (sensitivity 85%, specificity 88% and sensitivity 76%, specificity 94%, respectively). The device showed a large sensitivity to lung cancer at stage I with respect to stage II/III/IV (92% and 58% respectively). The sensitivity for stage I did not change for patients with or without metabolic comorbidities (90%, 94%, respectively). Results show that this electronic nose can discriminate the exhaled breath of the lung cancer patients from those of the healthy controls. Moreover, the largest sensitivity is observed for the subgroup of patients with a lung cancer at stage I.
Collapse
Affiliation(s)
- Roberto Gasparri
- Division of Thoracic Surgery, European Institute of Oncology, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|