51
|
Cheng Y, Liu Y, Liba BD, Ghodssi R, Rubloff GW, Bentley WE, Payne GF. Biofabricating the Bio-Device Interface Using Biological Materials and Mechanisms. Biofabrication 2013. [DOI: 10.1016/b978-1-4557-2852-7.00012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A. Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 2013; 1:4878-4908. [DOI: 10.1039/c3tb20881h] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
53
|
Gupta A, Terrell JL, Fernandes R, Dowling MB, Payne GF, Raghavan SR, Bentley WE. Encapsulated fusion protein confers “sense and respond” activity to chitosan-alginate capsules to manipulate bacterial quorum sensing. Biotechnol Bioeng 2012; 110:552-62. [DOI: 10.1002/bit.24711] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 01/03/2023]
|
54
|
Zhang YL, Chen QD, Jin Z, Kim E, Sun HB. Biomimetic graphene films and their properties. NANOSCALE 2012; 4:4858-4869. [PMID: 22767301 DOI: 10.1039/c2nr30813d] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biomimetic fabrication has long been considered a short cut to the rational design and production of artificial materials or devices that possess fascinating properties, just like natural creatures. Considering the fact that graphene exhibits a lot of exceptional properties in a wide range of scientific fields, biomimetic fabrication of graphene multiscale structures, denoted as biomimetic graphene, is of great interest in both fundamental research and industrial applications. Especially, the combination of graphene with biomimetic structures would realize structural and functional integrity, and thus bring a new opportunity of developing novel graphene-based devices with remarkable performance. In this feature article, we highlight the recent advances in biomimetic graphene films and their structure-defined properties. Functionalized graphene films with multiscale structures inspired from a wide range of biomaterials including rose petals, butterfly wings, nacre and honeycomb have been collected and presented. Moreover, both current challenges and future perspectives of biomimetic graphene are discussed. Although research of the so-called "biomimetic graphene" is still at an early stage, it might become a "hot topic" in the near future.
Collapse
Affiliation(s)
- Yong-Lai Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | | | | | | | | |
Collapse
|
55
|
Gordonov T, Liba B, Terrell JL, Cheng Y, Luo X, Payne GF, Bentley WE. Bridging the bio-electronic interface with biofabrication. J Vis Exp 2012:e4231. [PMID: 22710498 DOI: 10.3791/4231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Advancements in lab-on-a-chip technology promise to revolutionize both research and medicine through lower costs, better sensitivity, portability, and higher throughput. The incorporation of biological components onto biological microelectromechanical systems (bioMEMS) has shown great potential for achieving these goals. Microfabricated electronic chips allow for micrometer-scale features as well as an electrical connection for sensing and actuation. Functional biological components give the system the capacity for specific detection of analytes, enzymatic functions, and whole-cell capabilities. Standard microfabrication processes and bio-analytical techniques have been successfully utilized for decades in the computer and biological industries, respectively. Their combination and interfacing in a lab-on-a-chip environment, however, brings forth new challenges. There is a call for techniques that can build an interface between the electrode and biological component that is mild and is easy to fabricate and pattern. Biofabrication, described here, is one such approach that has shown great promise for its easy-to-assemble incorporation of biological components with versatility in the on-chip functions that are enabled. Biofabrication uses biological materials and biological mechanisms (self-assembly, enzymatic assembly) for bottom-up hierarchical assembly. While our labs have demonstrated these concepts in many formats, here we demonstrate the assembly process based on electrodeposition followed by multiple applications of signal-based interactions. The assembly process consists of the electrodeposition of biocompatible stimuli-responsive polymer films on electrodes and their subsequent functionalization with biological components such as DNA, enzymes, or live cells. Electrodeposition takes advantage of the pH gradient created at the surface of a biased electrode from the electrolysis of water. Chitosan and alginate are stimuli-responsive biological polymers that can be triggered to self-assemble into hydrogel films in response to imposed electrical signals. The thickness of these hydrogels is determined by the extent to which the pH gradient extends from the electrode. This can be modified using varying current densities and deposition times. This protocol will describe how chitosan films are deposited and functionalized by covalently attaching biological components to the abundant primary amine groups present on the film through either enzymatic or electrochemical methods. Alginate films and their entrapment of live cells will also be addressed. Finally, the utility of biofabrication is demonstrated through examples of signal-based interaction, including chemical-to-electrical, cell-to-cell, and also enzyme-to-cell signal transmission. Both the electrodeposition and functionalization can be performed under near-physiological conditions without the need for reagents and thus spare labile biological components from harsh conditions. Additionally, both chitosan and alginate have long been used for biologically-relevant purposes. Overall, biofabrication, a rapid technique that can be simply performed on a benchtop, can be used for creating micron scale patterns of functional biological components on electrodes and can be used for a variety of lab-on-a-chip applications.
Collapse
Affiliation(s)
- Tanya Gordonov
- Fischell Department of Bioengineering, University of Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Luo X, Wu HC, Tsao CY, Cheng Y, Betz J, Payne GF, Rubloff GW, Bentley WE. Biofabrication of stratified biofilm mimics for observation and control of bacterial signaling. Biomaterials 2012; 33:5136-43. [PMID: 22507453 DOI: 10.1016/j.biomaterials.2012.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/10/2012] [Indexed: 01/28/2023]
Abstract
Signaling between cells guides biological phenotype. Communications between individual cells, clusters of cells and populations exist in complex networks that, in sum, guide behavior. There are few experimental approaches that enable high content interrogation of individual and multicellular behaviors at length and time scales commensurate with the signal molecules and cells themselves. Here we present "biofabrication" in microfluidics as one approach that enables in-situ organization of living cells in microenvironments with spatiotemporal control and programmability. We construct bacterial biofilm mimics that offer detailed understanding and subsequent control of population-based quorum sensing (QS) behaviors in a manner decoupled from cell number. Our approach reveals signaling patterns among bacterial cells within a single biofilm as well as behaviors that are coordinated between two communicating biofilms. We envision versatile use of this biofabrication strategy for cell-cell interaction studies and small molecule drug discovery.
Collapse
Affiliation(s)
- Xiaolong Luo
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Gray KM, Liba BD, Wang Y, Cheng Y, Rubloff GW, Bentley WE, Montembault A, Royaud I, David L, Payne GF. Electrodeposition of a biopolymeric hydrogel: potential for one-step protein electroaddressing. Biomacromolecules 2012; 13:1181-9. [PMID: 22414205 DOI: 10.1021/bm3001155] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The electrodeposition of hydrogels provides a programmable means to assemble soft matter for various technological applications. We report an anodic method to deposit hydrogel films of the aminopolysaccharide chitosan. Evidence suggests the deposition mechanism involves the electrolysis of chloride to generate reactive chlorine species (e.g., HOCl) that partially oxidize chitosan to generate aldehydes that can couple covalently with amines (presumably through Schiff base linkages). Chitosan's anodic deposition is controllable spatially and temporally. Consistent with a covalent cross-linking mechanism, the deposited chitosan undergoes repeated swelling/deswelling in response to pH changes. Consistent with a covalent conjugation mechanism, proteins could be codeposited and retained within the chitosan film even after detergent washing. As a proof-of-concept, we electroaddressed glucose oxidase to a side-wall electrode of a microfabricated fluidic channel and demonstrated this enzyme could perform electrochemical biosensing functions. Thus, anodic chitosan deposition provides a reagentless, single-step method to electroaddress a stimuli-responsive and biofunctionalized hydrogel film.
Collapse
Affiliation(s)
- Kelsey M Gray
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Affiliation(s)
- Emil Paleček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| | - Martin Bartošík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| |
Collapse
|
59
|
Terrell JL, Gordonov T, Cheng Y, Wu HC, Sampey D, Luo X, Tsao CY, Ghodssi R, Rubloff GW, Payne GF, Bentley WE. Integrated biofabrication for electro-addressed in-film bioprocessing. Biotechnol J 2012; 7:428-39. [DOI: 10.1002/biot.201100181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/14/2011] [Accepted: 12/22/2011] [Indexed: 01/17/2023]
|
60
|
Babauta J, Renslow R, Lewandowski Z, Beyenal H. Electrochemically active biofilms: facts and fiction. A review. BIOFOULING 2012; 28:789-812. [PMID: 22856464 PMCID: PMC4242416 DOI: 10.1080/08927014.2012.710324] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelectrochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices.
Collapse
Affiliation(s)
- Jerome Babauta
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Ryan Renslow
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | | | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
61
|
Muzzarelli RA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.09.063] [Citation(s) in RCA: 524] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
62
|
Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD. Top 10 plant viruses in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2011; 12:938-54. [PMID: 22017770 PMCID: PMC6640423 DOI: 10.1111/j.1364-3703.2011.00752.x] [Citation(s) in RCA: 622] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Huang SH, Hsueh HJ, Jiang YL. Light-addressable electrodeposition of cell-encapsulated alginate hydrogels for a cellular microarray using a digital micromirror device. BIOMICROFLUIDICS 2011; 5:34109-3410910. [PMID: 22685500 PMCID: PMC3368836 DOI: 10.1063/1.3620420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/13/2011] [Indexed: 06/01/2023]
Abstract
This paper describes a light-addressable electrolytic system used to perform an electrodeposition of calcium alginate hydrogels using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-anode to electrolytically produce protons, which can lead to a decreased pH gradient. The low pH generated at the anode can locally release calcium ions from insoluble calcium carbonate (CaCO(3)) to cause gelation of calcium alginate through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressable electrodeposition of calcium alginate hydrogels with different shapes and sizes, as well as multiplexed micropatterning was performed. The effects of the concentration of the alginate and CaCO(3) solutions on the dimensional resolution of alginate hydrogel formation were experimentally examined. A 3 × 3 array of cell-encapsulated alginate hydrogels was also successfully demonstrated through light-addressable electrodeposition. Our proposed method provides a programmable method for the spatiotemporally controllable assembly of cell populations into cellular microarrays and could have a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery.
Collapse
|
64
|
Liu Y, Cheng Y, Wu HC, Kim E, Ulijn RV, Rubloff GW, Bentley WE, Payne GF. Electroaddressing agarose using Fmoc-phenylalanine as a temporary scaffold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7380-7384. [PMID: 21598916 DOI: 10.1021/la201541c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Electroaddressing, the use of imposed electrical stimuli to guide assembly, is attractive because electrical stimuli can be conveniently applied with high spatial and temporal resolution. Several electroaddressing mechanisms have been reported in which electrode-induced pH gradients trigger stimuli-responsive materials to undergo localized sol-gel transitions to form hydrogel matrices. A common feature of existing hydrogel electrodeposition mechanisms is that the deposited matrix retains residual charged, acidic, or basic (macro)molecules. Here, we report that pH-responsive fluorenyl-9-methoxycarbonyl-phenylalanine (Fmoc-Phe) can be used to codeposit the neutral and thermally responsive polysaccharide agarose. Upon cooling, an agarose network is generated and Fmoc-Phe can be removed. The Fmoc-Phe-mediated codeposition of agarose is simple, rapid, spatially selective, and allows for the electroaddressing of a bioactive matrix.
Collapse
Affiliation(s)
- Yi Liu
- Center for Biosystems Research, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|