51
|
Papadimitriou L, Manganas P, Ranella A, Stratakis E. Biofabrication for neural tissue engineering applications. Mater Today Bio 2020; 6:100043. [PMID: 32190832 PMCID: PMC7068131 DOI: 10.1016/j.mtbio.2020.100043] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Unlike other tissue types, the nervous tissue extends to a wide and complex environment that provides a plurality of different biochemical and topological stimuli, which in turn defines the advanced functions of that tissue. As a consequence of such complexity, the traditional transplantation therapeutic methods are quite ineffective; therefore, the restoration of peripheral and central nervous system injuries has been a continuous scientific challenge. Tissue engineering and regenerative medicine in the nervous system have provided new alternative medical approaches. These methods use external biomaterial supports, known as scaffolds, to create platforms for the cells to migrate to the injury site and repair the tissue. The challenge in neural tissue engineering (NTE) remains the fabrication of scaffolds with precisely controlled, tunable topography, biochemical cues, and surface energy, capable of directing and controlling the function of neuronal cells toward the recovery from neurological disorders and injuries. At the same time, it has been shown that NTE provides the potential to model neurological diseases in vitro, mainly via lab-on-a-chip systems, especially in cases for which it is difficult to obtain suitable animal models. As a consequence of the intense research activity in the field, a variety of synthetic approaches and 3D fabrication methods have been developed for the fabrication of NTE scaffolds, including soft lithography and self-assembly, as well as subtractive (top-down) and additive (bottom-up) manufacturing. This article aims at reviewing the existing research effort in the rapidly growing field related to the development of biomaterial scaffolds and lab-on-a-chip systems for NTE applications. Besides presenting recent advances achieved by NTE strategies, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field.
Collapse
Affiliation(s)
- L. Papadimitriou
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - P. Manganas
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - A. Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - E. Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
- Physics Department, University of Crete, Heraklion, 71003, Crete, Greece
| |
Collapse
|
52
|
3D bioprinting applications in neural tissue engineering for spinal cord injury repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110741. [PMID: 32204049 DOI: 10.1016/j.msec.2020.110741] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) is a disease of the central nervous system (CNS) that has not yet been treated successfully. In the United States, almost 450,000 people suffer from SCI. Despite the development of many clinical treatments, therapeutics are still at an early stage for a successful bridging of damaged nerve spaces and complete recovery of nerve functions. Biomimetic 3D scaffolds have been an effective option in repairing the damaged nervous system. 3D scaffolds allow improved host tissue engraftment and new tissue development by supplying physical support to ease cell function. Recently, 3D bioprinting techniques that may easily regulate the dimension and shape of the 3D tissue scaffold and are capable of producing scaffolds with cells have attracted attention. Production of biologically more complex microstructures can be achieved by using 3D bioprinting technology. Particularly in vitro modeling of CNS tissues for in vivo transplantation is critical in the treatment of SCI. Considering the potential impact of 3D bioprinting technology on neural studies, this review focus on 3D bioprinting methods, bio-inks, and cells widely used in neural tissue engineering and the latest technological applications of bioprinting of nerve tissues for the repair of SCI are discussed.
Collapse
|
53
|
Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine MC. 3D Printed Neural Regeneration Devices. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [PMID: 32038121 PMCID: PMC7007064 DOI: 10.1002/adfm.201906237] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 05/16/2023]
Abstract
Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices could provide next-generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing-based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform could ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.
Collapse
Affiliation(s)
- Daeha Joung
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicolas S Lavoie
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shuang-Zhuang Guo
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Sung Hyun Park
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ann M Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
54
|
Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020; 226:119536. [DOI: 10.1016/j.biomaterials.2019.119536] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022]
|
55
|
A Hepatic Scaffold from Decellularized Liver Tissue: Food for Thought. Biomolecules 2019; 9:biom9120813. [PMID: 31810291 PMCID: PMC6995515 DOI: 10.3390/biom9120813] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Allogeneic liver transplantation is still deemed the gold standard solution for end-stage organ failure; however, donor organ shortages have led to extended waiting lists for organ transplants. In order to overcome the lack of donors, the development of new therapeutic options is mandatory. In the last several years, organ bioengineering has been extensively explored to provide transplantable tissues or whole organs with the final goal of creating a three-dimensional growth microenvironment mimicking the native structure. It has been frequently reported that an extracellular matrix-based scaffold offers a structural support and important biological molecules that could help cellular proliferation during the recellularization process. The aim of the present review is to underline the recent developments in cell-on-scaffold technology for liver bioengineering, taking into account: (1) biological and synthetic scaffolds; (2) animal and human tissue decellularization; (3) scaffold recellularization; (4) 3D bioprinting; and (5) organoid technology. Future possible clinical applications in regenerative medicine for liver tissue engineering and for drug testing were underlined and dissected.
Collapse
|
56
|
Angelats Lobo D, Ginestra P. Cell Bioprinting: The 3D-Bioplotter™ Case. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4005. [PMID: 31810326 PMCID: PMC6926889 DOI: 10.3390/ma12234005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with 3D bioprinters, such as the 3D-Bioplotter™. The 3D-Bioplotter™ has been used in the pre-clinical field since 2000 and could allow the printing of more than one material at the same time, and therefore to increase the complexity of the 3D structure manufactured. It is also very precise with maximum flexibility and a user-friendly and stable software that allows the optimization of the bioprinting process on the technological point of view. Different applications have resulted from the research on this field, mainly focused on regenerative medicine, but the lack of information and/or the possible misunderstandings between papers makes the reproducibility of the tests difficult. Nowadays, the 3D Bioprinting is evolving into another technology called 4D Bioprinting, which promises to be the next step in the bioprinting field and might promote great applications in the future.
Collapse
Affiliation(s)
- David Angelats Lobo
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy;
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003 Girona, Spain
| | - Paola Ginestra
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy;
| |
Collapse
|
57
|
A mechanically robust thixotropic collagen and hyaluronic acid bioink supplemented with gelatin nanoparticles. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bprint.2019.e00058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
58
|
Li X, Zhou D, Jin Z, Chen H, Wang X, Zhang X, Xu T. A coaxially extruded heterogeneous core- shell fiber with Schwann cells and neural stem cells. Regen Biomater 2019; 7:131-139. [PMID: 32296532 PMCID: PMC7147360 DOI: 10.1093/rb/rbz037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/05/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
Cellular therapies play a critical role in the treatment of spinal cord injury (SCI). Compared with cell-seeded conduits, fully cellular grafts have more similarities with autografts, and thus might result in better regeneration effects. In this study, we fabricated Schwann cell (SC)-neural stem cell (NSC) core–shell alginate hydrogel fibers in a coaxial extrusion manner. The rat SC line RSC96 and mouse NSC line NE-4C were used in this experiment. Fully cellular components were achieved in the core portion and the relative spatial positions of these two cells partially mimic the construction of nerve fibers in vivo. SCs were demonstrated to express more genes of neurotrophic factors in alginate shell. Enhanced proliferation and differentiation tendency of NSCs was observed when they were co-cultured with SCs. This model has strong potential for application in SCI repair.
Collapse
Affiliation(s)
- Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhizhong Jin
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang 110122, People's Republic of China
| | - Hongqing Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xuanzhi Wang
- Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College, Wuhu 241001, People's Republic of China
| | - Xinzhi Zhang
- East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China.,Medprin Regenerative Medical Technologies Co., Ltd, Shenzhen 518102, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Precision Medicine and Healthcare, Tsinghua Berkeley Shenzhen Institute, Shenzhen 518055, People's Republic of China
| |
Collapse
|
59
|
Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater 2019; 95:32-49. [PMID: 30639351 PMCID: PMC6625952 DOI: 10.1016/j.actbio.2019.01.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Despite the numerous lives that have been saved since the first successful procedure in 1954, organ transplant has several shortcomings which prevent it from becoming a more comprehensive solution for medical care than it is today. There is a considerable shortage of organ donors, leading to patient death in many cases. In addition, patients require lifelong immunosuppression to prevent graft rejection postoperatively. With such issues in mind, recent research has focused on possible solutions for the lack of access to donor organs and rejections, with the possibility of using the patient's own cells and tissues for treatment showing enormous potential. Three-dimensional (3D) bioprinting is a rapidly emerging technology, which holds great promise for fabrication of functional tissues and organs. Bioprinting offers the means of utilizing a patient's cells to design and fabricate constructs for replacement of diseased tissues and organs. It enables the precise positioning of cells and biologics in an automated and high throughput manner. Several studies have shown the promise of 3D bioprinting. However, many problems must be overcome before the generation of functional tissues with biologically-relevant scale is possible. Specific focus on the functionality of bioprinted tissues is required prior to clinical translation. In this perspective, this paper discusses the challenges of functionalization of bioprinted tissue under eight dimensions: biomimicry, cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and strives to inform the reader with directions in bioprinting complex and volumetric tissues. STATEMENT OF SIGNIFICANCE: With thousands of patients dying each year waiting for an organ transplant, bioprinted tissues and organs show the potential to eliminate this ever-increasing organ shortage crisis. However, this potential can only be realized by better understanding the functionality of the organ and developing the ability to translate this to the bioprinting methodologies. Considering the rate at which the field is currently expanding, it is reasonable to expect bioprinting to become an integral component of regenerative medicine. For this purpose, this paper discusses several factors that are critical for printing functional tissues including cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and inform the reader with future directions in bioprinting complex and volumetric tissues.
Collapse
Affiliation(s)
- Ashley N Leberfinger
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Shantanab Dinda
- Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yang Wu
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Srinivas V Koduru
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Veli Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Ceyhan Engineering Faculty, Cukurova University, Ceyhan, Adana 01950, Turkey
| | - Dino J Ravnic
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
60
|
Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front Bioeng Biotechnol 2019; 7:164. [PMID: 31338366 PMCID: PMC6629835 DOI: 10.3389/fbioe.2019.00164] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional (3D) and Four-dimensional (4D) printing emerged as the next generation of fabrication techniques, spanning across various research areas, such as engineering, chemistry, biology, computer science, and materials science. Three-dimensional printing enables the fabrication of complex forms with high precision, through a layer-by-layer addition of different materials. Use of intelligent materials which change shape or color, produce an electrical current, become bioactive, or perform an intended function in response to an external stimulus, paves the way for the production of dynamic 3D structures, which is now called 4D printing. 3D and 4D printing techniques have great potential in the production of scaffolds to be applied in tissue engineering, especially in constructing patient specific scaffolds. Furthermore, physical and chemical guidance cues can be printed with these methods to improve the extent and rate of targeted tissue regeneration. This review presents a comprehensive survey of 3D and 4D printing methods, and the advantage of their use in tissue regeneration over other scaffold production approaches.
Collapse
Affiliation(s)
- Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - Tugba Dursun Usal
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ayse Selcen Alagoz
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| | - Deniz Yucel
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Department of Histology and Embryology, School of Medicine, Acıbadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Nesrin Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Medical Engineering, School of Engineering, Acıbadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
61
|
O’Connell CD, Onofrillo C, Duchi S, Li X, Zhang Y, Tian P, Lu L, Trengove A, Quigley A, Gambhir S, Khansari A, Mladenovska T, O’Connor A, Di Bella C, Choong PF, Wallace GG. Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacryloyl, hyaluronic acid and hyaluronic acid methacryloyl. Biofabrication 2019; 11:035003. [DOI: 10.1088/1758-5090/ab0b7c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
62
|
Sigaux N, Pourchet L, Breton P, Brosset S, Louvrier A, Marquette CA. 3D Bioprinting:principles, fantasies and prospects. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2019; 120:128-132. [DOI: 10.1016/j.jormas.2018.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
|
63
|
Dixon AR, Jariwala SH, Bilis Z, Loverde JR, Pasquina PF, Alvarez LM. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials 2018; 186:44-63. [DOI: 10.1016/j.biomaterials.2018.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
|
64
|
Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol 2018; 171:125-150. [DOI: 10.1016/j.pneurobio.2018.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
|
65
|
Integration of 3D printing with dosage forms: A new perspective for modern healthcare. Biomed Pharmacother 2018; 107:146-154. [DOI: 10.1016/j.biopha.2018.07.167] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 02/02/2023] Open
|
66
|
Sarker M, Naghieh S, Sharma N, Chen X. 3D biofabrication of vascular networks for tissue regeneration: A report on recent advances. J Pharm Anal 2018; 8:277-296. [PMID: 30345141 PMCID: PMC6190507 DOI: 10.1016/j.jpha.2018.08.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/19/2022] Open
Abstract
Rapid progress in tissue engineering research in past decades has opened up vast possibilities to tackle the challenges of generating tissues or organs that mimic native structures. The success of tissue engineered constructs largely depends on the incorporation of a stable vascular network that eventually anastomoses with the host vasculature to support the various biological functions of embedded cells. In recent years, significant progress has been achieved with respect to extrusion, laser, micro-molding, and electrospinning-based techniques that allow the fabrication of any geometry in a layer-by-layer fashion. Moreover, decellularized matrix, self-assembled structures, and cell sheets have been explored to replace the biopolymers needed for scaffold fabrication. While the techniques have evolved to create specific tissues or organs with outstanding geometric precision, formation of interconnected, functional, and perfused vascular networks remains a challenge. This article briefly reviews recent progress in 3D fabrication approaches used to fabricate vascular networks with incorporated cells, angiogenic factors, proteins, and/or peptides. The influence of the fabricated network on blood vessel formation, and the various features, merits, and shortcomings of the various fabrication techniques are discussed and summarized.
Collapse
Affiliation(s)
- M.D. Sarker
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - N.K. Sharma
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
67
|
Ye K, Kaplan DL, Bao G, Bettinger C, Forgacs G, Dong C, Khademhosseini A, Ke Y, Leong K, Sambanis A, Sun W, Yin P. Advanced Cell and Tissue Biomanufacturing. ACS Biomater Sci Eng 2018; 4:2292-2307. [PMID: 33435095 DOI: 10.1021/acsbiomaterials.8b00650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This position paper assesses state-of-the-art advanced biomanufacturing and identifies paths forward to advance this emerging field in biotechnology and biomedical engineering, including new research opportunities and translational and corporate activities. The vision for the field is to see advanced biomanufacturing emerge as a discipline in academic and industrial communities as well as a technological opportunity to spur research and industry growth. To navigate this vision, the paths to move forward and to identify major barriers were a focal point of discussions at a National Science Foundation-sponsored workshop focused on the topic. Some of the major needs include but are not limited to the integration of specific scientific and engineering disciplines and guidance from regulatory agencies, infrastructure requirements, and strategies for reliable systems integration. Some of the recommendations, major targets, and opportunities were also outlined, including some "grand challenges" to spur interest and progress in the field based on the participants at the workshop. Many of these recommendations have been expanded, materialized, and adopted by the field. For instance, the formation of an initial collaboration network in the community was established. This report provides suggestions for the opportunities and challenges to help move the field of advanced biomanufacturing forward. The field is in the early stages of effecting science and technology in biomanufacturing with a bright and important future impact evident based on the rapid scientific advances in recent years and industry progress.
Collapse
Affiliation(s)
- Kaiming Ye
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, United States
| | - David L Kaplan
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Gang Bao
- Department of Bioengineering, School of Engineering, Rice University, Houston, Texas 77005, United States
| | - Christopher Bettinger
- Department of Materials Science and Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gabor Forgacs
- Department of Bioengineering, College of Engineering, University of Missouri, Columbia, Missouri 65211, United States.,Modern Meadow, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Cheng Dong
- Department of Biomedical Engineering, College of Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Yonggang Ke
- Department of Biomedical Engineering, College of Engineering, Georgia Tech, Atlanta, Georgia 30332, United States
| | - Kam Leong
- Department of Biomedical Engineering, School of Engineering and Applied Science, Columbia University, New York City, New York 10027, United States
| | | | - Wei Sun
- Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Peng Yin
- Department of Systems Biology, Harvard Medical School, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
68
|
Ng HY, Lee KXA, Kuo CN, Shen YF. Bioprinting of artificial blood vessels. Int J Bioprint 2018; 4:140. [PMID: 33102918 PMCID: PMC7582013 DOI: 10.18063/ijb.v4i2.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Vascular networks have an important role to play in transporting nutrients, oxygen, metabolic wastes and maintenance of homeostasis. Bioprinting is a promising technology as it is able to fabricate complex, specific multi-cellular constructs with precision. In addition, current technology allows precise depositions of individual cells, growth factors and biochemical signals to enhance vascular growth. Fabrication of vascularized constructs has remained as a main challenge till date but it is deemed as an important stepping stone to bring organ engineering to a higher level. However, with the ever advancing bioprinting technology and knowledge of biomaterials, it is expected that bioprinting can be a viable solution for this problem. This article presents an overview of the biofabrication of vascular and vascularized constructs, the different techniques used in vascular engineering such as extrusion-based, droplet-based and laser-based bioprinting techniques, and the future prospects of bioprinting of artificial blood vessels.
Collapse
Affiliation(s)
- Hooi Yee Ng
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung City, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Kai-Xing Alvin Lee
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung City, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Che-Nan Kuo
- 3D Printing Medical Research Institute, Asia University, Taichung City, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
| | - Yu-Fang Shen
- 3D Printing Medical Research Institute, Asia University, Taichung City, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
| |
Collapse
|
69
|
Ma J, Wang Y, Liu J. Bioprinting of 3D tissues/organs combined with microfluidics. RSC Adv 2018; 8:21712-21727. [PMID: 35541704 PMCID: PMC9081268 DOI: 10.1039/c8ra03022g] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022] Open
Abstract
Accompanied by the increasing demand for organ transplants and personalized medicine, recent years have witnessed great developments in the regeneration of tissues/organs, which has benefited from various manufacturing technologies, especially 3D bioprinting. In 3D bioprinting, according to the morphogenesis, cellular microenvironment, and biological functions of the native tissues/organs, cells and biomaterials are printed by layer-by-layer assembly to form 3D bio-functional units. However, there are still substantial differences between existing 3D printed constructs and actual tissues and organs, especially in microscale structures such as vascular networks. By manipulating controllable fluids carrying biomolecules, cells, organisms, or chemical agents, microfluidic techniques aim to integrate biological or chemical functional units into a chip. With its features of biocompatibility, flexible manipulation, and scale integration on the micro/nanoscale, microfluidics has been a tool that has enabled the generation of micro-tissues/organs with precise configurations. With the inspiration of these two technologies, there have been efforts to fabricate functional living tissues and artificial organs with complex structures via a combination of 3D bioprinting and microfluidics, which may lead to unexpected effects. In this review, we discuss advances in microfluidics-assisted bioprinting in the engineering of tissues/organs and provide future perspectives for this combination in the generation of highly biomimetic tissues and organs in vitro.
Collapse
Affiliation(s)
- Jingyun Ma
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China +86-411-83635963-2170
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Yachen Wang
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China +86-411-83635963-2170
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Jing Liu
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China +86-411-83635963-2170
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China
| |
Collapse
|
70
|
Kogelenberg SV, Yue Z, Dinoro JN, Baker CS, Wallace GG. Three-Dimensional Printing and Cell Therapy for Wound Repair. Adv Wound Care (New Rochelle) 2018; 7:145-155. [PMID: 29755850 DOI: 10.1089/wound.2017.0752] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/29/2017] [Indexed: 12/16/2022] Open
Abstract
Significance: Skin tissue damage is a major challenge and a burden on healthcare systems, from burns and other trauma to diabetes and vascular disease. Although the biological complexities are relatively well understood, appropriate repair mechanisms are scarce. Three-dimensional bioprinting is a layer-based approach to regenerative medicine, whereby cells and cell-based materials can be dispensed in fine spatial arrangements to mimic native tissue. Recent Advances: Various bioprinting techniques have been employed in wound repair-based skin tissue engineering, from laser-induced forward transfer to extrusion-based methods, and with the investigation of the benefits and shortcomings of each, with emphasis on biological compatibility and cell proliferation, migration, and vitality. Critical issues: Development of appropriate biological inks and the vascularization of newly developed tissues remain a challenge within the field of skin tissue engineering. Future Directions: Progress within bioprinting requires close interactions between material scientists, tissue engineers, and clinicians. Microvascularization, integration of multiple cell types, and skin appendages will be essential for creation of complex skin tissue constructs.
Collapse
Affiliation(s)
- Sylvia van Kogelenberg
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
- Department of Orthopaedics, University of Utrecht, Utrecht, The Netherlands
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
| | - Jeremy N. Dinoro
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
| | - Christopher S. Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Melbourne, Australia
- Department of Medicine (Dermatology), University of Melbourne, Melbourne, Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
| |
Collapse
|
71
|
Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci 2018; 6:915-946. [PMID: 29492503 PMCID: PMC6439477 DOI: 10.1039/c7bm00765e] [Citation(s) in RCA: 705] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioprinting is an emerging technology with various applications in making functional tissue constructs to replace injured or diseased tissues. It is a relatively new approach that provides high reproducibility and precise control over the fabricated constructs in an automated manner, potentially enabling high-throughput production. During the bioprinting process, a solution of a biomaterial or a mixture of several biomaterials in the hydrogel form, usually encapsulating the desired cell types, termed the bioink, is used for creating tissue constructs. This bioink can be cross-linked or stabilized during or immediately after bioprinting to generate the final shape, structure, and architecture of the designed construct. Bioinks may be made from natural or synthetic biomaterials alone, or a combination of the two as hybrid materials. In certain cases, cell aggregates without any additional biomaterials can also be adopted for use as a bioink for bioprinting processes. An ideal bioink should possess proper mechanical, rheological, and biological properties of the target tissues, which are essential to ensure correct functionality of the bioprinted tissues and organs. In this review, we provide an in-depth discussion of the different bioinks currently employed for bioprinting, and outline some future perspectives in their further development.
Collapse
Affiliation(s)
- P Selcan Gungor-Ozkerim
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
72
|
Biazar E, Najafi S M, Heidari K S, Yazdankhah M, Rafiei A, Biazar D. 3D bio-printing technology for body tissues and organs regeneration. J Med Eng Technol 2018; 42:187-202. [PMID: 29671367 DOI: 10.1080/03091902.2018.1457094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the last decade, the use of new technologies in the reconstruction of body tissues has greatly developed. Utilising stem cell technology, nanotechnology and scaffolding design has created new opportunities in tissue regeneration. The use of accurate engineering design in the creation of scaffolds, including 3D printers, has been widely considered. Three-dimensional printers, especially high precision bio-printers, have opened up a new way in the design of 3D tissue engineering scaffolds. In this article, a review of the latest applications of this technology in this promising area has been addressed.
Collapse
Affiliation(s)
- Esmaeil Biazar
- a Department of Biomaterials Engineering, Tonekabon Branch , Islamic Azad University , Tonekabon , Iran
| | - Masoumeh Najafi S
- b Department of Biomaterials Engineering , Maziar University , Noor , Iran
| | - Saeed Heidari K
- c Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,d Proteomics Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Meysam Yazdankhah
- e Department of Ophthalmology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Ataollah Rafiei
- f Department of Computer Engineering, Lahijan Branch , Islamic Azad University , Lahijan , Iran
| | - Dariush Biazar
- g Department of Electrical Engineering, Ramsar Branch , Islamic Azad University , Ramsar , Iran
| |
Collapse
|
73
|
Wieringa PA, Gonçalves de Pinho AR, Micera S, Wezel RJA, Moroni L. Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies. Adv Healthc Mater 2018; 7:e1701164. [PMID: 29349931 DOI: 10.1002/adhm.201701164] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/13/2017] [Indexed: 12/19/2022]
Abstract
Biofabrication techniques have endeavored to improve the regeneration of the peripheral nervous system (PNS), but nothing has surpassed the performance of current clinical practices. However, these current approaches have intrinsic limitations that compromise patient care. The "gold standard" autograft provides the best outcomes but requires suitable donor material, while implantable hollow nerve guide conduits (NGCs) can only repair small nerve defects. This review places emphasis on approaches that create structural cues within a hollow NGC lumen in order to match or exceed the regenerative performance of the autograft. An overview of the PNS and nerve regeneration is provided. This is followed by an assessment of reported devices, divided into three major categories: isotropic hydrogel fillers, acting as unstructured interluminal support for regenerating nerves; fibrous interluminal fillers, presenting neurites with topographical guidance within the lumen; and patterned interluminal scaffolds, providing 3D support for nerve growth via structures that mimic native PNS tissue. Also presented is a critical framework to evaluate the impact of reported outcomes. While a universal and versatile nerve repair strategy remains elusive, outlined here is a roadmap of past, present, and emerging fabrication techniques to inform and motivate new developments in the field of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Paul A. Wieringa
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht University Universiteitssingel 40 Maastricht 6229 ER The Netherlands
| | - Ana Rita Gonçalves de Pinho
- Tissue Regeneration DepartmentMIRA InstituteUniversity of Twente Drienerlolaan 5 Enschede 7522 NB The Netherlands
| | - Silvestro Micera
- BioRobotics InstituteScuola Superiore Sant'Anna Viale Rinaldo Piaggio 34 Pontedera 56025 Italy
- Translational Neural Engineering LaboratoryEcole Polytechnique Federale de Lausanne Ch. des Mines 9 Geneva CH‐1202 Switzerland
| | - Richard J. A. Wezel
- BiophysicsDonders Institute for BrainCognition and BehaviourRadboud University Kapittelweg 29 Nijmegen 6525 EN The Netherlands
- Biomedical Signals and SystemsMIRA InstituteUniversity of Twente Drienerlolaan 5 Enschede 7522 NB The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht University Universiteitssingel 40 Maastricht 6229 ER The Netherlands
| |
Collapse
|
74
|
Hospodiuk M, Dey M, Ayan B, Sosnoski D, Moncal KK, Wu Y, Ozbolat IT. Sprouting angiogenesis in engineered pseudo islets. Biofabrication 2018; 10:035003. [PMID: 29451122 DOI: 10.1088/1758-5090/aab002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite the recent achievements in cell-based therapies for curing type-1 diabetes (T1D), capillarization in beta (β)-cell clusters is still a major roadblock as it is essential for long-term viability and function of β-cells in vivo. In this research, we report sprouting angiogenesis in engineered pseudo islets (EPIs) made of mouse insulinoma βTC3 cells and rat heart microvascular endothelial cells (RHMVECs). Upon culturing in three-dimensional (3D) constructs under angiogenic conditions, EPIs sprouted extensive capillaries into the surrounding matrix. Ultra-morphological analysis through histological sections also revealed presence of capillarization within EPIs. EPIs cultured in 3D constructs maintained their viability and functionality over time while non-vascularized EPIs, without the presence of RHMVECs, could not retain their viability nor functionality. Here we demonstrate angiogenesis in engineered islets, where patient specific stem cell-derived human beta cells can be combined with microvascular endothelial cells in the near future for long-term graft survival in T1D patients.
Collapse
Affiliation(s)
- Monika Hospodiuk
- The Huck Institutes of the Life Sciences, Penn State University, State College, PA 16801, United States of America. Department of Agriculture and Biological Engineering, Penn State University, State College, PA 16801, United States of America
| | | | | | | | | | | | | |
Collapse
|
75
|
Santoro M, Navarro J, Fisher JP. Micro- and Macrobioprinting: Current Trends in Tissue Modeling and Organ Fabrication. SMALL METHODS 2018; 2:1700318. [PMID: 30397639 PMCID: PMC6214196 DOI: 10.1002/smtd.201700318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The recapitulation of human anatomy and physiology is critical for organ regeneration. Due to this fundamental requirement, bioprinting holds great promise in tissue engineering and regenerative medicine due to the possibility of fabricating complex scaffolds that host cells and biochemical cues in a physiologically relevant fashion. The ever-growing research in this field has been proceeding along two different, yet complementary, routes: on the one hand, the development of bioprinting to fabricate large tissue surrogates for transplantation purposes in vivo (macrobioprinting), and on the other the spread of bioprinting-based miniaturized systems to model the tissue microenvironment in vitro (microbioprinting). The latest advances in both macro- and microbioprinting are reviewed, emphasizing their impact on specific areas of tissue engineering. Additionally, a critical comparison of macro- versus microbioprinting is presented together with advantages and limitations of each approach. Ultimately, findings obtained both at the macro-and microscale are expected to provide a deeper insight in tissue biology and offer clinically relevant solutions for organ regeneration.
Collapse
Affiliation(s)
- Marco Santoro
- Fischell Department of Bioengineering University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD 20742, USA
- Center for Engineering Complex Tissues, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | - Javier Navarro
- Fischell Department of Bioengineering University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD 20742, USA
- Center for Engineering Complex Tissues, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | - John P Fisher
- Fischell Department of Bioengineering University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD 20742, USA
- Center for Engineering Complex Tissues, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| |
Collapse
|
76
|
Abstract
Biofabrication of tissue analogues is aspiring to become a disruptive technology capable to solve standing biomedical problems, from generation of improved tissue models for drug testing to alleviation of the shortage of organs for transplantation. Arguably, the most powerful tool of this revolution is bioprinting, understood as the assembling of cells with biomaterials in three‐dimensional structures. It is less appreciated, however, that bioprinting is not a uniform methodology, but comprises a variety of approaches. These can be broadly classified in two categories, based on the use or not of supporting biomaterials (known as “scaffolds,” usually printable hydrogels also called “bioinks”). Importantly, several limitations of scaffold‐dependent bioprinting can be avoided by the “scaffold‐free” methods. In this overview, we comparatively present these approaches and highlight the rapidly evolving scaffold‐free bioprinting, as applied to cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Nicanor I Moldovan
- Departments of Biomedical Engineering and Ophthalmology, 3D Bioprinting Core, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
77
|
Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Strategic Design and Fabrication of Nerve Guidance Conduits for Peripheral Nerve Regeneration. Biotechnol J 2018; 13:e1700635. [PMID: 29396994 DOI: 10.1002/biot.201700635] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/25/2018] [Indexed: 12/23/2022]
Abstract
Nerve guidance conduits (NGCs) have been drawing considerable attention as an aid to promote regeneration of injured axons across damaged peripheral nerves. Ideally, NGCs should include physical and topographic axon guidance cues embedded as part of their composition. Over the past decades, much progress has been made in the development of NGCs that promote directional axonal regrowth so as to repair severed nerves. This paper briefly reviews the recent designs and fabrication techniques of NGCs for peripheral nerve regeneration. Studies associated with versatile design and preparation of NGCs fabricated with either conventional or rapid prototyping (RP) techniques have been examined and reviewed. The effect of topographic features of the filler material as well as porous structure of NGCs on axonal regeneration has also been examined from the previous studies. While such strategies as macroscale channels, lumen size, groove geometry, use of hydrogel/matrix, and unidirectional freeze-dried surface are seen to promote nerve regeneration, shortcomings such as axonal dispersion and wrong target reinnervation still remain unsolved. On this basis, future research directions are identified and discussed.
Collapse
Affiliation(s)
- Md Sarker
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - Adam D McInnes
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - David J Schreyer
- Department of Anatomy and Cell Biology College of Medicine University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada.,Department of Mechanical Engineering College of Engineering University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
78
|
Jian H, Wang M, Wang S, Wang A, Bai S. 3D bioprinting for cell culture and tissue fabrication. Biodes Manuf 2018. [DOI: 10.1007/s42242-018-0006-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
79
|
Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 2018; 107:261-275. [DOI: 10.1016/j.ijbiomac.2017.08.171] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023]
|
80
|
Martins JP, Ferreira MP, Ezazi NZ, Hirvonen JT, Santos HA, Thrivikraman G, França CM, Athirasala A, Tahayeri A, Bertassoni LE. 3D printing: prospects and challenges. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018:299-379. [DOI: 10.1016/b978-0-323-48063-5.00004-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
81
|
Gu BK, Choi DJ, Park SJ, Kim YJ, Kim CH. 3D Bioprinting Technologies for Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:15-28. [PMID: 30357616 DOI: 10.1007/978-981-13-0950-2_2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Three-dimensional (3D) printing (rapid prototyping or additive manufacturing) technologies have received significant attention in various fields over the past several decades. Tissue engineering applications of 3D bioprinting, in particular, have attracted the attention of many researchers. 3D scaffolds produced by the 3D bioprinting of biomaterials (bio-inks) enable the regeneration and restoration of various tissues and organs. These 3D bioprinting techniques are useful for fabricating scaffolds for biomedical and regenerative medicine and tissue engineering applications, permitting rapid manufacture with high-precision and control over size, porosity, and shape. In this review, we introduce a variety of tissue engineering applications to create bones, vascular, skin, cartilage, and neural structures using a variety of 3D bioprinting techniques.
Collapse
Affiliation(s)
- Bon Kang Gu
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Dong Jin Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Young-Jin Kim
- Department of Biomedical Engineering, Catholic University of Daegu, Gyeongsan, South Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.
| |
Collapse
|
82
|
Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck M. Bioprinting of tissue engineering scaffolds. J Tissue Eng 2018; 9:2041731418802090. [PMID: 30305886 PMCID: PMC6176532 DOI: 10.1177/2041731418802090] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022] Open
Abstract
Bioprinting is the process of creating three-dimensional structures consisting of biomaterials, cells, and biomolecules. The current additive manufacturing techniques, inkjet-, extrusion-, and laser-based, create hydrogel structures for cellular encapsulation and support. The requirements for each technique, as well as the technical challenges of printing living cells, are discussed and compared. This review encompasses the current research of bioprinting for tissue engineering and its potential for creating tissue-mimicking structures.
Collapse
Affiliation(s)
| | - Željka Perić Kačarević
- Department of Anatomy Histology,
Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine
and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Said Alkildani
- Department of Biomedical Engineering,
Faculty of Applied Medical Sciences, German Jordanian University, Amman,
Jordan
| | - Sujith Retnasingh
- Institute for Environmental Toxicology,
Martin-Luther-Universität Halle-Wittenberg and Faculty of Biomedical Engineering,
Anhalt University of Applied Science, Köthen, Germany
| | - Mike Barbeck
- botiss biomaterials, Berlin,
Germany
- Department of Oral and Maxillofacial
Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
83
|
Zhuang P, Sun AX, An J, Chua CK, Chew SY. 3D neural tissue models: From spheroids to bioprinting. Biomaterials 2017; 154:113-133. [PMID: 29120815 DOI: 10.1016/j.biomaterials.2017.10.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) in vitro neural tissue models provide a better recapitulation of in vivo cell-cell and cell-extracellular matrix interactions than conventional two-dimensional (2D) cultures. Therefore, the former is believed to have great potential for both mechanistic and translational studies. In this paper, we review the recent developments in 3D in vitro neural tissue models, with a particular focus on the emerging bioprinted tissue structures. We draw on specific examples to describe the merits and limitations of each model, in terms of different applications. Bioprinting offers a revolutionary approach for constructing repeatable and controllable 3D in vitro neural tissues with diverse cell types, complex microscale features and tissue level responses. Further advances in bioprinting research would likely consolidate existing models and generate complex neural tissue structures bearing higher fidelity, which is ultimately useful for probing disease-specific mechanisms, facilitating development of novel therapeutics and promoting neural regeneration.
Collapse
Affiliation(s)
- Pei Zhuang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Alfred Xuyang Sun
- Department of Neurology, National Neuroscience Institute, 20 College Road, Singapore 169856, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Chee Kai Chua
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
84
|
Zhao H, Yang F, Fu J, Gao Q, Liu A, Sun M, He Y. Printing@Clinic: From Medical Models to Organ Implants. ACS Biomater Sci Eng 2017; 3:3083-3097. [PMID: 33445353 DOI: 10.1021/acsbiomaterials.7b00542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | | | | | - An Liu
- Department
of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Miao Sun
- Department
of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital,
School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yong He
- State
Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054, Xi’an China
| |
Collapse
|
85
|
Huang J, Fu H, Li C, Dai J, Zhang Z. Recent advances in cell-laden 3D bioprinting: materials, technologies and applications. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2017-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fabrication of 3D scaffolds with patient-specific designs, high structural and component complexity, and rapid on-demand production at a low-cost by printing technique has attracted ever-increasing interests in tissue engineering. Cell-laden 3D bioprinting offers good prospects for future organ transplantation. Compared with nonbiological 3D printing, cell-laden 3D bioprinting involves more complex factors, including the choice of printing materials, the strategy of gelling, cell viability and technical challenges. Although cell-populated 3D bioprinting has so many complex factors, it has proven to be a useful and exciting tool with wide potential applications in regenerative medicine to generate a variety of transplantable tissues. In this review, we first overview the bioprinting materials, gelling strategies and some major applications of cell-laden 3D bioprinting, with main focus on the recent advances and current challenges of the field. Finally, we propose some future directions of the cell-populated 3D bioprinting in tissue engineering and regenerative medicine. [Formula: see text] In this review, we first overview the bioprinting materials, gelling strategies and some major applications of cell-populated 3D bioprinting, with main focus on the recent advances and current challenges of the field. Finally, we propose some future directions of the cell-laden 3D bioprinting in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Chong Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianwu Dai
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
86
|
3D printing for clinical application in otorhinolaryngology. Eur Arch Otorhinolaryngol 2017; 274:4079-4089. [DOI: 10.1007/s00405-017-4743-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
|
87
|
Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Transl Med 2017; 6:1940-1948. [PMID: 28836738 PMCID: PMC6430045 DOI: 10.1002/sctm.17-0148] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022] Open
Abstract
Bioprinting is a quickly progressing technology, which holds the potential to generate replacement tissues and organs. Stem cells offer several advantages over differentiated cells for use as starting materials, including the potential for autologous tissue and differentiation into multiple cell lines. The three most commonly used stem cells are embryonic, induced pluripotent, and adult stem cells. Cells are combined with various natural and synthetic materials to form bioinks, which are used to fabricate scaffold‐based or scaffold‐free constructs. Computer aided design technology is combined with various bioprinting modalities including droplet‐, extrusion‐, or laser‐based bioprinting to create tissue constructs. Each bioink and modality has its own advantages and disadvantages. Various materials and techniques are combined to maximize the benefits. Researchers have been successful in bioprinting cartilage, bone, cardiac, nervous, liver, and vascular tissues. However, a major limitation to clinical translation is building large‐scale vascularized constructs. Many challenges must be overcome before this technology is used routinely in a clinical setting. Stem Cells Translational Medicine2017;6:1940–1948
Collapse
Affiliation(s)
| | | | - Aman Dhawan
- Department of Orthopedic Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ibrahim T Ozbolat
- Department of Engineering Science and Mechanics, Pennsylvania, USA.,Department of Biomedical Engineering, Pennsylvania, USA.,Huck Institutes of the Life Sciences, Pennsylvania, USA.,Materials Research Institute, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
88
|
Huang Y, Zhang XF, Gao G, Yonezawa T, Cui X. 3D bioprinting and the current applications in tissue engineering. Biotechnol J 2017; 12. [PMID: 28675678 DOI: 10.1002/biot.201600734] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/01/2017] [Accepted: 05/23/2017] [Indexed: 12/24/2022]
Abstract
Bioprinting as an enabling technology for tissue engineering possesses the promises to fabricate highly mimicked tissue or organs with digital control. As one of the biofabrication approaches, bioprinting has the advantages of high throughput and precise control of both scaffold and cells. Therefore, this technology is not only ideal for translational medicine but also for basic research applications. Bioprinting has already been widely applied to construct functional tissues such as vasculature, muscle, cartilage, and bone. In this review, the authors introduce the most popular techniques currently applied in bioprinting, as well as the various bioprinting processes. In addition, the composition of bioink including scaffolds and cells are described. Furthermore, the most current applications in organ and tissue bioprinting are introduced. The authors also discuss the challenges we are currently facing and the great potential of bioprinting. This technology has the capacity not only in complex tissue structure fabrication based on the converted medical images, but also as an efficient tool for drug discovery and preclinical testing. One of the most promising future advances of bioprinting is to develop a standard medical device with the capacity of treating patients directly on the repairing site, which requires the development of automation and robotic technology, as well as our further understanding of biomaterials and stem cell biology to integrate various printing mechanisms for multi-phasic tissue engineering.
Collapse
Affiliation(s)
- Ying Huang
- School of Chemistry, Chemical Engineering and Life Sciences, School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Rd, Wuhan, Hubei, China
| | - Xiao-Fei Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Rd, Wuhan, Hubei, China
| | - Guifang Gao
- School of Chemistry, Chemical Engineering and Life Sciences, School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Rd, Wuhan, Hubei, China
| | - Tomo Yonezawa
- Department of Pharmacology and Center for Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Xiaofeng Cui
- School of Chemistry, Chemical Engineering and Life Sciences, School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Rd, Wuhan, Hubei, China.,Technical University of Munich, Munich, Germany
| |
Collapse
|
89
|
|
90
|
Jessop ZM, Al-Sabah A, Gardiner MD, Combellack E, Hawkins K, Whitaker IS. 3D bioprinting for reconstructive surgery: Principles, applications and challenges. J Plast Reconstr Aesthet Surg 2017; 70:1155-1170. [PMID: 28734756 DOI: 10.1016/j.bjps.2017.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
Despite the increasing laboratory research in the growing field of 3D bioprinting, there are few reports of successful translation into surgical practice. This review outlines the principles of 3D bioprinting including software and hardware processes, biocompatible technological platforms and suitable bioinks. The advantages of 3D bioprinting over traditional tissue engineering techniques in assembling cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissue macro-, micro- and nanoarchitectures are discussed, together with an overview of current progress in bioprinting tissue types relevant for plastic and reconstructive surgery. If successful, this platform technology has the potential to biomanufacture autologous tissue for reconstruction, obviating the need for donor sites or immunosuppression. The biological, technological and regulatory challenges are highlighted, with strategies to overcome these challenges by using an integrated approach from the fields of engineering, biomaterial science, cell biology and reconstructive microsurgery.
Collapse
Affiliation(s)
- Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Ayesha Al-Sabah
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | | | - Emman Combellack
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Karl Hawkins
- Rheology Research Group, Swansea University Medical School, Swansea, UK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK.
| |
Collapse
|
91
|
Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: A comprehensive review on bioprintable materials. Biotechnol Adv 2017; 35:217-239. [PMID: 28057483 DOI: 10.1016/j.biotechadv.2016.12.006] [Citation(s) in RCA: 605] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/16/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
This paper discusses "bioink", bioprintable materials used in three dimensional (3D) bioprinting processes, where cells and other biologics are deposited in a spatially controlled pattern to fabricate living tissues and organs. It presents the first comprehensive review of existing bioink types including hydrogels, cell aggregates, microcarriers and decellularized matrix components used in extrusion-, droplet- and laser-based bioprinting processes. A detailed comparison of these bioink materials is conducted in terms of supporting bioprinting modalities and bioprintability, cell viability and proliferation, biomimicry, resolution, affordability, scalability, practicality, mechanical and structural integrity, bioprinting and post-bioprinting maturation times, tissue fusion and formation post-implantation, degradation characteristics, commercial availability, immune-compatibility, and application areas. The paper then discusses current limitations of bioink materials and presents the future prospects to the reader.
Collapse
Affiliation(s)
- Monika Hospodiuk
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Madhuri Dey
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Department of Chemistry, Penn State University, University Park, PA, 16802, USA
| | - Donna Sosnoski
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Materials Research Institute, Penn State University, University Park, PA 16802, USA; Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
92
|
Girard D, Laverdet B, Buhé V, Trouillas M, Ghazi K, Alexaline MM, Egles C, Misery L, Coulomb B, Lataillade JJ, Berthod F, Desmoulière A. Biotechnological Management of Skin Burn Injuries: Challenges and Perspectives in Wound Healing and Sensory Recovery. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:59-82. [DOI: 10.1089/ten.teb.2016.0195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dorothée Girard
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Betty Laverdet
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Virginie Buhé
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Marina Trouillas
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Kamélia Ghazi
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Maïa M. Alexaline
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Christophe Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Laurent Misery
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Bernard Coulomb
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Jean-Jacques Lataillade
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - François Berthod
- Centre LOEX de l'Université Laval, Centre de recherche du CHU de Québec and Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Alexis Desmoulière
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| |
Collapse
|
93
|
Ratheesh G, Venugopal JR, Chinappan A, Ezhilarasu H, Sadiq A, Ramakrishna S. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy. ACS Biomater Sci Eng 2017; 3:1175-1194. [PMID: 33440508 DOI: 10.1021/acsbiomaterials.6b00370] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in bioprinting technology have been used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. Organ printing and biofabrication provides great potential for the freeform fabrication of 3D living organs using cellular spheroids, biocomposite nanofibers, or bioinks as building blocks for regenerative therapy. Vascularization is often identified as a main technological barrier for building 3D organs in tissue engineering. 3D printing of living tissues starts with potential support of biomaterials to maintain structural integrity and degradation of certain time periods after printing of the scaffolds. Biofabrication is the production of complex living and nonliving biological products from raw materials such as cells, molecules, ECM, and biomaterials. Generally, two basic methods are used for the fabrication of scaffolds such as conventional/traditional fabrication processes and advance fabrication processes for engineering organs. A wide range of polymers and biomaterials are used for the fabrication of scaffolds in tissue engineering applications. 3D additive manufacturing is advancing day-by-day; however, there are various critical challenging factors used for fabricating 3D scaffolds. This review is aimed at understanding the various scaffold fabrication techniques, types of polymers and biomaterials used for the fabrication processes, various fields of applications, and different challenges faced in their fabrication of scaffolds in regenerative therapy.
Collapse
Affiliation(s)
- Greeshma Ratheesh
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Jayarama Reddy Venugopal
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Amutha Chinappan
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Hariharan Ezhilarasu
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Asif Sadiq
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.,Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| |
Collapse
|
94
|
Moldovan NI, Hibino N, Nakayama K. Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting<sup/>. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:237-244. [PMID: 27917703 DOI: 10.1089/ten.teb.2016.0322] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bioprinting is a technology with the prospect to change the way many diseases are treated, by replacing the damaged tissues with live de novo created biosimilar constructs. However, after more than a decade of incubation and many proofs of concept, the field is still in its infancy. The current stagnation is the consequence of its early success: the first bioprinters, and most of those that followed, were modified versions of the three-dimensional printers used in additive manufacturing, redesigned for layer-by-layer dispersion of biomaterials. In all variants (inkjet, microextrusion, or laser assisted), this approach is material ("scaffold") dependent and energy intensive, making it hardly compatible with some of the intended biological applications. Instead, the future of bioprinting may benefit from the use of gentler scaffold-free bioassembling methods. A substantial body of evidence has accumulated, indicating this is possible by use of preformed cell spheroids, which have been assembled in cartilage, bone, and cardiac muscle-like constructs. However, a commercial instrument capable to directly and precisely "print" spheroids has not been available until the invention of the microneedles-based ("Kenzan") spheroid assembling and the launching in Japan of a bioprinter based on this method. This robotic platform laces spheroids into predesigned contiguous structures with micron-level precision, using stainless steel microneedles ("kenzans") as temporary support. These constructs are further cultivated until the spheroids fuse into cellular aggregates and synthesize their own extracellular matrix, thus attaining the needed structural organization and robustness. This novel technology opens wide opportunities for bioengineering of tissues and organs.
Collapse
Affiliation(s)
- Nicanor I Moldovan
- 1 Department of Biomedical Engineering, Schools of Engineering and Medicine, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana.,2 Department of Ophthalmology, Schools of Engineering and Medicine, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Narutoshi Hibino
- 3 Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Koichi Nakayama
- 4 Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University , Japan
| |
Collapse
|
95
|
|
96
|
Cui H, Nowicki M, Fisher JP, Zhang LG. 3D Bioprinting for Organ Regeneration. Adv Healthc Mater 2017; 6:10.1002/adhm.201601118. [PMID: 27995751 PMCID: PMC5313259 DOI: 10.1002/adhm.201601118] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/26/2016] [Indexed: 12/19/2022]
Abstract
Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Margaret Nowicki
- Department of Biomedical Engineering, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - John P. Fisher
- Department of Bioengineering University of Maryland 3238 Jeong H. Kim Engineering Building College Park, MD 20742, USA
| | - Lijie Grace Zhang
- Department of Medicine, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| |
Collapse
|
97
|
Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 2017. [DOI: 10.1039/c7py00826k] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, interest in the field of three-dimensional (3D) bioprinting has increased enormously. This review describes all the currently used bio-printing inks, including polymeric hydrogels, polymer bead microcarriers, cell aggregates and extracellular matrix proteins.
Collapse
Affiliation(s)
- Ilze Donderwinkel
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- Department of Bio-organic Chemistry
| | - Jan C. M. van Hest
- Department of Bio-organic Chemistry
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
- Department of Chemical Engineering and Chemistry
| | - Neil R. Cameron
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- School of Engineering
| |
Collapse
|
98
|
Li C, Cheung TF, Fan VC, Sin KM, Wong CWY, Leung GKK. Applications of Three-Dimensional Printing in Surgery. Surg Innov 2016; 24:82-88. [PMID: 27913755 DOI: 10.1177/1553350616681889] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Three-dimensional (3D) printing is a rapidly advancing technology in the field of surgery. This article reviews its contemporary applications in 3 aspects of surgery, namely, surgical planning, implants and prostheses, and education and training. Three-dimensional printing technology can contribute to surgical planning by depicting precise personalized anatomy and thus a potential improvement in surgical outcome. For implants and prosthesis, the technology might overcome the limitations of conventional methods such as visual discrepancy from the recipient's body and unmatching anatomy. In addition, 3D printing technology could be integrated into medical school curriculum, supplementing the conventional cadaver-based education and training in anatomy and surgery. Future potential applications of 3D printing in surgery, mainly in the areas of skin, nerve, and vascular graft preparation as well as ear reconstruction, are also discussed. Numerous trials and studies are still ongoing. However, scientists and clinicians are still encountering some limitations of the technology including high cost, long processing time, unsatisfactory mechanical properties, and suboptimal accuracy. These limitations might potentially hamper the applications of this technology in daily clinical practice.
Collapse
Affiliation(s)
- Chi Li
- 1 The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Tsz Fung Cheung
- 1 The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Vei Chen Fan
- 1 The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kin Man Sin
- 1 The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | | | |
Collapse
|
99
|
Kim JH, Yoo JJ, Lee SJ. Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Eng Regen Med 2016; 13:647-662. [PMID: 30603446 DOI: 10.1007/s13770-016-0133-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting technologies have been developed to offer construction of biological tissue constructs that mimic the anatomical and functional features of native tissues or organs. These cutting-edge technologies could make it possible to precisely place multiple cell types and biomaterials in a single 3D tissue construct. Hence, 3D bioprinting is one of the most attractive and powerful tools to provide more anatomical and functional similarity of human tissues or organs in tissue engineering and regenerative medicine. In recent years, this 3D bioprinting continually shows promise for building complex soft tissue constructs through placement of cell-laden hydrogel-based bioinks in a layer-by-layer fashion. This review will discuss bioprinting technologies and their applications in soft tissue regeneration.
Collapse
Affiliation(s)
- Ji Hyun Kim
- 1Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - James J Yoo
- 1Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Sang Jin Lee
- 1Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
100
|
|