51
|
Tevlek A, Topuz B, Akbay E, Aydin HM. Surface channel patterned and endothelialized poly(glycerol sebacate) based elastomers. J Biomater Appl 2022; 37:287-302. [DOI: 10.1177/08853282221085798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prevascularization of tissue equivalents is critical for fulfilling the need for sufficient vascular organization for nutrient and gas transport. Hence, endothelial cell culture on biomaterials is of great importance for researchers. Numerous alternate strategies have been suggested in this sense, with cell-based methods being the most commonly employed. In this study, poly (glycerol sebacate) (PGS) elastomers with varying crosslinking ratios were synthesized and their surfaces were patterned with channels by using laser ablation technique. In order to determine an ideal material for cell culture studies, the elastomers were subsequently mechanically, chemically, and biologically characterized. Following that, human umbilical vein endothelial cells (HUVECs) were seeded into the channels established on the PGS membranes and cultured under various culture conditions to establish the optimal culture parameters. Lastly, the endothelial cell responses to the synthesized PGS elastomers were evaluated. Remarkable cell proliferation and impressive cellular organizations were noticed on the constructs created as part of the investigation. On the concrete output of this research, arrangements in various geometries can be created by laser ablation method and the effects of various molecules, drugs or agents on endothelial cells can be evaluated. The platforms produced can be employed as an intermediate biomaterial layer containing endothelial cells for vascularization of tissue-engineered structures, particularly in layer-by-layer tissue engineering approaches.
Collapse
Affiliation(s)
- Atakan Tevlek
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Bengisu Topuz
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Esin Akbay
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
- Centre for Bioengineering, Hacettepe University, Ankara, Turkey§Current Affiliation: METU MEMS Center, Ankara, Turkey
| |
Collapse
|
52
|
Arutyunyan I, Elchaninov A, Sukhikh G, Fatkhudinov T. Cryopreservation of Tissue-Engineered Scaffold-Based Constructs: from Concept to Reality. Stem Cell Rev Rep 2022; 18:1234-1252. [PMID: 34761366 DOI: 10.1007/s12015-021-10299-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Creation of scaffold-based tissue-engineered constructs (SB TECs) is costly and requires coordinated qualified efforts. Cryopreservation enables longer shelf-life for SB TECs while enormously enhancing their availability as medical products. Regenerative treatment with cryopreserved SB TECs prepared in advance (possibly prêt-à-porter) can be started straight away on demand. Animal studies and clinical trials indicate similar levels of safety for cryopreserved and freshly prepared SB TECs. Although cryopreservation of such constructs is more difficult than that of cell suspensions or tissues, years of research have proved the principal possibility of using ready-to-transplant SB TECs after prolonged cryostorage. Cryopreservation efficiency depends not only on the sheer viability of adherent cells on scaffolds after thawing, but largely on the retention of proliferative and functional properties by the cells, as well as physical and mechanical properties by the scaffolds. Cryopreservation protocols require careful optimization, as their efficiency depends on multiple parameters including cryosensitivity of cells, chemistry and architecture of scaffolds, conditions of cell culture before freezing, cryoprotectant formulations, etc. In this review we discuss recent achievements in SB TEC cryopreservation as a major boost for the field of tissue engineering and biobanking.
Collapse
Affiliation(s)
- Irina Arutyunyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Human Morphology, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Human Morphology, Moscow, Russia.
- Department of Histology, Cytology and Embryology, Peoples' Friendship University of Russia (RUDN University, 6, Miklukho-Maklaya Street, 117198, Moscow, Russia.
| |
Collapse
|
53
|
Yu JK, Liang JA, Franceschi WH, Huang Q, Pashakhanloo F, Sung E, Boyle PM, Trayanova NA. Assessment of arrhythmia mechanism and burden of the infarcted ventricles following remuscularization with pluripotent stem cell-derived cardiomyocyte patches using patient-derived models. Cardiovasc Res 2022; 118:1247-1261. [PMID: 33881518 PMCID: PMC8953447 DOI: 10.1093/cvr/cvab140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/14/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS Direct remuscularization with pluripotent stem cell-derived cardiomyocytes (PSC-CMs) seeks to address the onset of heart failure post-myocardial infarction (MI) by treating the persistent muscle deficiency that underlies it. However, direct remuscularization with PSC-CMs could potentially be arrhythmogenic. We investigated two possible mechanisms of arrhythmogenesis-focal vs. re-entrant-arising from direct remuscularization with PSC-CM patches in two personalized, human ventricular computer models of post-MI. Moreover, we developed a principled approach for evaluating arrhythmogenicity of direct remuscularization that factors in the VT propensity of the patient-specific post-MI fibrotic substrate and use it to investigate different conditions of patch remuscularization. METHODS AND RESULTS Two personalized, human ventricular models of post-MI (P1 and P2) were constructed from late gadolinium enhanced (LGE)-magnetic resonance images (MRIs). In each model, remuscularization with PSC-CM patches was simulated under different treatment conditions that included patch engraftment, patch myofibril orientation, remuscularization site, patch size (thickness and diameter), and patch maturation. To determine arrhythmogenicity of treatment conditions, VT burden of heart models was quantified prior to and after simulated remuscularization and compared. VT burden was quantified based on inducibility (i.e. weighted sum of pacing sites that induced) and severity (i.e. the number of distinct VT morphologies induced). Prior to remuscularization, VT burden was significant in P1 (0.275) and not in P2 (0.0, not VT inducible). We highlight that re-entrant VT mechanisms would dominate over focal mechanisms; spontaneous beats emerging from PSC-CM grafts were always a fraction of resting sinus rate. Moreover, incomplete patch engraftment can be particularly arrhythmogenic, giving rise to particularly aberrant electrical activation and conduction slowing across the PSC-CM patches along with elevated VT burden when compared with complete engraftment. Under conditions of complete patch engraftment, remuscularization was almost always arrhythmogenic in P2 but certain treatment conditions could be anti-arrhythmogenic in P1. Moreover, the remuscularization site was the most important factor affecting VT burden in both P1 and P2. Complete maturation of PSC-CM patches, both ionically and electrotonically, at the appropriate site could completely alleviate VT burden. CONCLUSION We identified that re-entrant VT would be the primary VT mechanism in patch remuscularization. To evaluate the arrhythmogenicity of remuscularization, we developed a principled approach that factors in the propensity of the patient-specific fibrotic substrate for VT. We showed that arrhythmogenicity is sensitive to the patient-specific fibrotic substrate and remuscularization site. We demonstrate that targeted remuscularization can be safe in the appropriate individual and holds the potential to non-destructively eliminate VT post-MI in addition to addressing muscle deficiency underlying heart failure progression.
Collapse
Affiliation(s)
- Joseph K Yu
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, 3400 N Charles Street, 216 Hackerman, Baltimore, MD, USA
| | - Jialiu A Liang
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
| | - William H Franceschi
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
| | - Qinwen Huang
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
| | - Farhad Pashakhanloo
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
| | - Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, 3400 N Charles Street, 216 Hackerman, Baltimore, MD, USA
| | - Patrick M Boyle
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, 3400 N Charles Street, 216 Hackerman, Baltimore, MD, USA
| |
Collapse
|
54
|
Enrico A, Voulgaris D, Östmans R, Sundaravadivel N, Moutaux L, Cordier A, Niklaus F, Herland A, Stemme G. 3D Microvascularized Tissue Models by Laser-Based Cavitation Molding of Collagen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109823. [PMID: 35029309 DOI: 10.1002/adma.202109823] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 06/14/2023]
Abstract
3D tissue models recapitulating human physiology are important for fundamental biomedical research, and they hold promise to become a new tool in drug development. An integrated and defined microvasculature in 3D tissue models is necessary for optimal cell functions. However, conventional bioprinting only allows the fabrication of hydrogel scaffolds containing vessel-like structures with large diameters (>100 µm) and simple geometries. Recent developments in laser photoablation enable the generation of this type of structure with higher resolution and complexity, but the photo-thermal process can compromise cell viability and hydrogel integrity. To address these limitations, the present work reports in situ 3D patterning of collagen hydrogels by femtosecond laser irradiation to create channels and cavities with diameters ranging from 20 to 60 µm. In this process, laser irradiation of the hydrogel generates cavitation gas bubbles that rearrange the collagen fibers, thereby creating stable microchannels. Such 3D channels can be formed in cell- and organoid-laden hydrogel without affecting the viability outside the lumen and can enable the formation of artificial microvasculature by the culture of endothelial cells and cell media perfusion. Thus, this method enables organs-on-a-chip and 3D tissue models featuring complex microvasculature.
Collapse
Affiliation(s)
- Alessandro Enrico
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, Stockholm, 100 44, Sweden
| | - Dimitrios Voulgaris
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, Stockholm, 100 44, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, 17177, Sweden
| | - Rebecca Östmans
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm, 100 44, Sweden
| | - Naveen Sundaravadivel
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, Stockholm, 100 44, Sweden
| | - Lucille Moutaux
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, Stockholm, 100 44, Sweden
| | - Aurélie Cordier
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, Stockholm, 100 44, Sweden
| | - Frank Niklaus
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, Stockholm, 100 44, Sweden
| | - Anna Herland
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, Stockholm, 100 44, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, 17177, Sweden
| | - Göran Stemme
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, Stockholm, 100 44, Sweden
| |
Collapse
|
55
|
Zargarzadeh M, Silva AS, Nunes C, Coimbra MA, Custódio CA, Mano JF. Self-glucose feeding hydrogels by enzyme empowered degradation for 3D cell culture. MATERIALS HORIZONS 2022; 9:694-707. [PMID: 34825909 DOI: 10.1039/d0mh01982h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogels have been used in combination with cells for several biomedical and biotechnological applications. Nevertheless, the use of bulk hydrogels has exhibited severe limitations in diffusion of oxygen, nutrients, and metabolites. Here, a support for cell culture is reported where glucose is generated in situ by the own hydrogel degradation, allowing cell survival and function while promoting tissue growth. For this purpose, laminaran (or laminarin)-based hydrogels were fabricated, immobilizing the adequate enzymes to obtain structural platforms for 3D cell culture and providing glucose feeding for metabolic activity of cells through polysaccharide degradation. We demonstrate that tumor A549 cells and human mesenchymal stem cells (hMSCs) can use the glucose resultant from the hydrogel degradation to survive and grow in non-added glucose cell culture medium. Additionally, in vivo biocompatibility and biodegradability of laminaran-based hydrogels were explored for the first time. The self-feeding hydrogels exhibited high potential in cell survival compared to native cell-laden laminaran hydrogels over two weeks of sub-cutaneous implantation. Such bioscaffolds with enzyme-empowered degradation capacity can be applied in diverse biotechnological contexts such as tissue regeneration devices, biofactories, disease models, and cell delivery systems.
Collapse
Affiliation(s)
- Mehrzad Zargarzadeh
- CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - A Sofia Silva
- CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - Cláudia Nunes
- CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Manuel A Coimbra
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Catarina A Custódio
- CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - João F Mano
- CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
56
|
Chaudhary S, Chakraborty E. Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:3. [PMID: 35005036 PMCID: PMC8725962 DOI: 10.1186/s43088-021-00172-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Evolution in the in vitro cell culture from conventional 2D to 3D technique has been a significant accomplishment. The 3D culture models have provided a close and better insight into the physiological study of the human body. The increasing demand for organs like liver, kidney, and pancreas for transplantation, rapid anti-cancer drug screening, and the limitations associated with the use of animal models have attracted the interest of researchers to explore 3D organ culture. MAIN BODY Natural, synthetic, and hybrid material-based hydrogels are being used as scaffolds in 3D culture and provide 'close-to-in vivo' structures. Organoids: the stem cell-derived small size 3D culture systems are now favored due to their ability to mimic the in-vivo conditions of organ or tissue and this characteristic has made it eligible for a variety of clinical applications, drug discovery and regenerative medicine are a few of the many areas of application. The use of animal models for clinical applications has been a long-time ethical and biological challenge to get accurate outcomes. 3D bioprinting has resolved the issue of vascularization in organoid culture to a great extent by its layer-by-layer construction approach. The 3D bioprinted organoids have a popular application in personalized disease modeling and rapid drug development and therapeutics. SHORT CONCLUSIONS This review paper, focuses on discussing the novel organoid culture approach, its advantages and limitations, and potential applications in a variety of life science areas namely cancer research, cell therapy, tissue engineering, and personalized medicine and drug discovery. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Shikha Chaudhary
- SRM Institute of Science & Technology, Chennai, Tamil Nadu 603203 India
| | - Eliza Chakraborty
- Medical Translational Biotechnology Lab, Prof of Department of Biotechnology, Head of the Department of DST-Fist Center (Sponsored By Ministry of Science & Technology, Government of India), Meerut Institute of Engineering and Technology (MIET), Meerut, Uttar Pradesh 250002 India
| |
Collapse
|
57
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
58
|
Capillary-like Formations of Endothelial Cells in Defined Patterns Generated by Laser Bioprinting. MICROMACHINES 2021; 12:mi12121538. [PMID: 34945388 PMCID: PMC8708310 DOI: 10.3390/mi12121538] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/17/2023]
Abstract
Bioprinting is seen as a promising technique for tissue engineering, with hopes of one day being able to produce whole organs. However, thick tissue requires a functional vascular network, which naturally contains vessels of various sizes, down to capillaries of ~10 µm in diameter, often spaced less than 200 µm apart. If such thick tissues are to be printed, the vasculature would likely need to be printed at the same time, including the capillaries. While there are many approaches in tissue engineering to produce larger vessels in a defined manner, the small capillaries usually arise only in random patterns by sprouting from the larger vessels or from randomly distributed endothelial cells. Here, we investigated whether the small capillaries could also be printed in predefined patterns. For this purpose, we used a laser-based bioprinting technique that allows for the combination of high resolution and high cell density. Our aim was to achieve the formation of closed tubular structures with lumina by laser-printed endothelial cells along the printed patterns on a surface and in bioprinted tissue. This study shows that such capillaries are directly printable; however, persistence of the printed tubular structures was achieved only in tissue with external stimulation by other cell types.
Collapse
|
59
|
Xia P, Luo Y. Vascularization in tissue engineering: The architecture cues of pores in scaffolds. J Biomed Mater Res B Appl Biomater 2021; 110:1206-1214. [PMID: 34860454 DOI: 10.1002/jbm.b.34979] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022]
Abstract
Vascularization is a key event and also still a challenge in tissue engineering. Many efforts have been devoted to the development of vascularization based on cells, growth factors, and porous scaffolds in the past decades. Among these efforts, the architecture features of pores in scaffolds played important roles for vascularization, which have attracted increasing attention. It has been known that the open macro pores in scaffolds could facilitate cell migration, nutrient, and oxygen diffusion, which then could promote new tissue formation and vascularization. The pore parameters are the important factors affecting cells response and vessel formation. Thus, this review will give an overview of the current advances in the effects of pore parameters on vascularization in tissue engineering, mainly including pore size, interconnectivity, pore size distribution, pore shape (channel structure), and the micro/nano-surface topography of pores.
Collapse
Affiliation(s)
- Ping Xia
- People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Yongxiang Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
60
|
Stahl A, Yang YP. Regenerative Approaches for the Treatment of Large Bone Defects. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:539-547. [PMID: 33138705 PMCID: PMC8739850 DOI: 10.1089/ten.teb.2020.0281] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
A variety of engineered materials have gained acceptance in orthopedic practice as substitutes for autologous bone grafts, although the regenerative efficacy of these engineered grafts is still limited compared with that of transplanted native tissues. For bone defects greater than 4-5 cm, however, common bone grafting procedures are insufficient and more complicated surgical interventions are required to repair and regenerate the damaged or missing bone. In this review, we describe current grafting materials and surgical techniques for the reconstruction of large bone defects, followed by tissue engineering (TE) efforts to develop improved therapies. Particular emphasis is placed on graft vascularization, because for both autologous bone and engineered alternatives, achieving adequate vascular development within the regenerating bone tissues remains a significant challenge in the context of large bone defects. To this end, TE and surgical strategies to induce development of a vasculature within bone grafts are discussed. Impact statement This review aims to present an accessible and thorough overview of current orthopedic surgical techniques as well as bone tissue engineering and vascularization strategies that might one day offer improvements to clinical therapies for the repair of large bone defects. We consider the lessons that clinical orthopedic reconstructive practices can contribute to the push toward engineered bone.
Collapse
Affiliation(s)
- Alexander Stahl
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Materials Science and Engineering, and Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
61
|
Szklanny AA, Machour M, Redenski I, Chochola V, Goldfracht I, Kaplan B, Epshtein M, Simaan Yameen H, Merdler U, Feinberg A, Seliktar D, Korin N, Jaroš J, Levenberg S. 3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102661. [PMID: 34510579 PMCID: PMC11468543 DOI: 10.1002/adma.202102661] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Indexed: 05/09/2023]
Abstract
Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel-like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel-like scaffolds and endothelial cells seeded in their lumen form native-like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites the bioprinted vasculature and endothelium to cooperatively create vessels, enabling tissue perfusion through the scaffold lumen. Using a cuffing microsurgery approach, the engineered tissue is directly anastomosed with a rat femoral artery, promoting a rich host vasculature within the implanted tissue. After two weeks in vivo, contrast microcomputer tomography imaging and lectin perfusion of explanted engineered tissues verify the host ingrowth vasculature's functionality. Furthermore, the hierarchical vessel network (VesselNet) supports in vitro functionality of cardiomyocytes. Finally, the proposed approach is expanded to mimic complex structures with native-like millimetric vessels. This work presents a novel strategy aiming to create fully-engineered patient-specific thick tissue flaps.
Collapse
Affiliation(s)
- Ariel A. Szklanny
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Majd Machour
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Idan Redenski
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Václav Chochola
- Department of Histology and EmbryologyFaculty of MedicineMasaryk UniversityBrno625 00Czech Republic
| | - Idit Goldfracht
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Ben Kaplan
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Mark Epshtein
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Haneen Simaan Yameen
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Uri Merdler
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Adam Feinberg
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Dror Seliktar
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Netanel Korin
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Josef Jaroš
- Cell and Tissue RegenerationInternational Clinical Research CenterSt. Anne's University Hospital BrnoBrno65691Czech Republic
| | - Shulamit Levenberg
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| |
Collapse
|
62
|
Casale C, Imparato G, Mazio C, Netti PA, Urciuolo F. Geometrical confinement controls cell, ECM and vascular network alignment during the morphogenesis of 3D bioengineered human connective tissues. Acta Biomater 2021; 131:341-354. [PMID: 34144214 DOI: 10.1016/j.actbio.2021.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022]
Abstract
Engineered tissues featuring aligned ECM possess superior regenerative capabilities for the healing of damaged aligned tissues. The morphofunctional integration in the host's injury site improves if the aligned ECM elicits the unidirectional growth of vascular network. In this work we used a bottom-up tissue engineering strategy to produce endogenous and highly aligned human connective tissues with the final aim to trigger the unidirectional growth of capillary-like structures. Engineered microtissues, previously developed by our group, were casted in molds featured by different aspect ratio (AR) to obtain final centimeter-sized macrotissues differently shaped. By varying the AR from 1 to 50 we were able to vary the final shape of the macrotissues, from square to wire. We demonstrated that by increasing the AR of the maturation space hosting the microtissues, it was possible to control the alignment of the neo-synthesized ECM. The geometrical confinement conditions at AR = 50, indeed, promoted the unidirectional growth and assembly of the collagen network. The wire-shaped tissues were characterized by parallel arrangement of the collagen fiber bundles, higher persistence length and speed of migrating cells and superior mechanical properties than the square-shaped macrotissues. Interestingly, the aligned collagen fibers elicited the unidirectional growth of capillary-like structures. STATEMENT OF SIGNIFICANCE: Alignment of preexisting extracellular matrices by using mechanical cues modulating cell traction, has been widely described. Here, we show a new method to align de novo synthesized extracellular matrix components in bioengineered connective tissues obtained by means of a bottom-up tissue engineering approach. Building blocks are cast in maturation chambers, having different aspect ratios, in which the in vitro morphogenesis process takes place. High aspect ratio chambers (corresponding to wire-shaped tissues) triggered spontaneous alignment of collagenous network affecting cell polarization, migration and tensile properties of the tissue as well. Aligned ECM provided a contact guidance for the formation of highly polarized capillary-like network suggesting an in vivo possible application to trigger fast angiogenesis and perfusion in damaged aligned tissues.
Collapse
|
63
|
Tavafoghi M, Darabi MA, Mahmoodi M, Tutar R, Xu C, Mirjafari A, Billi F, Swieszkowski W, Nasrollahi F, Ahadian S, Hosseini V, Khademhosseini A, Ashammakhi N. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication 2021; 13. [PMID: 34130266 DOI: 10.1088/1758-5090/ac0b9a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Tissue reconstruction requires the utilization of multiple biomaterials and cell types to replicate the delicate and complex structure of native tissues. Various three-dimensional (3D) bioprinting techniques have been developed to fabricate customized tissue structures; however, there are still significant challenges, such as vascularization, mechanical stability of printed constructs, and fabrication of gradient structures to be addressed for the creation of biomimetic and complex tissue constructs. One approach to address these challenges is to develop multimaterial 3D bioprinting techniques that can integrate various types of biomaterials and bioprinting capabilities towards the fabrication of more complex structures. Notable examples include multi-nozzle, coaxial, and microfluidics-assisted multimaterial 3D bioprinting techniques. More advanced multimaterial 3D printing techniques are emerging, and new areas in this niche technology are rapidly evolving. In this review, we briefly introduce the basics of individual 3D bioprinting techniques and then discuss the multimaterial 3D printing techniques that can be developed based on combination of these techniques for the engineering of complex and biomimetic tissue constructs. We also discuss the perspectives and future directions to develop state-of-the-art multimaterial 3D bioprinting techniques for engineering tissues and organs.
Collapse
Affiliation(s)
- Maryam Tavafoghi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States of America
| | - Mahboobeh Mahmoodi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Rumeysa Tutar
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa Avcılar, Istanbul 34320, Turkey
| | - Chun Xu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,School of Dentistry, The University of Queensland, Brisbane, Australia
| | - Arshia Mirjafari
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America
| | - Fabrizio Billi
- UCLA/OIC Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States of America
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Fatemeh Nasrollahi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States of America
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States of America
| | - Vahid Hosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States of America
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States of America.,Department of Chemical Engineering, University of California, Los Angeles, CA, United States of America
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America.,Department of Biomedical Engineering, College of Engineering, Michigan State University, MI, United States of America
| |
Collapse
|
64
|
Nazeer MA, Karaoglu IC, Ozer O, Albayrak C, Kizilel S. Neovascularization of engineered tissues for clinical translation: Where we are, where we should be? APL Bioeng 2021; 5:021503. [PMID: 33834155 PMCID: PMC8024034 DOI: 10.1063/5.0044027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the key challenges in engineering three-dimensional tissue constructs is the development of a mature microvascular network capable of supplying sufficient oxygen and nutrients to the tissue. Recent angiogenic therapeutic strategies have focused on vascularization of the constructed tissue, and its integration in vitro; these strategies typically combine regenerative cells, growth factors (GFs) with custom-designed biomaterials. However, the field needs to progress in the clinical translation of tissue engineering strategies. The article first presents a detailed description of the steps in neovascularization and the roles of extracellular matrix elements such as GFs in angiogenesis. It then delves into decellularization, cell, and GF-based strategies employed thus far for therapeutic angiogenesis, with a particularly detailed examination of different methods by which GFs are delivered in biomaterial scaffolds. Finally, interdisciplinary approaches involving advancement in biomaterials science and current state of technological development in fabrication techniques are critically evaluated, and a list of remaining challenges is presented that need to be solved for successful translation to the clinics.
Collapse
Affiliation(s)
| | | | - Onur Ozer
- Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - Cem Albayrak
- Authors to whom correspondence should be addressed: and
| | - Seda Kizilel
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
65
|
Mansouri M, Leipzig ND. Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs. BIOPHYSICS REVIEWS 2021; 2:021305. [PMID: 38505119 PMCID: PMC10903443 DOI: 10.1063/5.0048837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 03/21/2024]
Abstract
Spheroids and organoids are promising models for biomedical applications ranging from human disease modeling to drug discovery. A main goal of these 3D cell-based platforms is to recapitulate important physiological parameters of their in vivo organ counterparts. One way to achieve improved biomimetic architectures and functions is to culture cells at higher density and larger total numbers. However, poor nutrient and waste transport lead to low stability, survival, and functionality over extended periods of time, presenting outstanding challenges in this field. Fortunately, important improvements in culture strategies have enhanced the survival and function of cells within engineered microtissues/organs. Here, we first discuss the challenges of growing large spheroids/organoids with a focus on mass transport limitations, then highlight recent tools and methodologies that are available for producing and sustaining functional 3D in vitro models. This information points toward the fact that there is a critical need for the continued development of novel cell culture strategies that address mass transport in a physiologically relevant human setting to generate long-lasting and large-sized spheroids/organoids.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
66
|
Masson-Meyers DS, Tayebi L. Vascularization strategies in tissue engineering approaches for soft tissue repair. J Tissue Eng Regen Med 2021; 15:747-762. [PMID: 34058083 DOI: 10.1002/term.3225] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
Insufficient vascularization during tissue repair is often associated with poor clinical outcomes. This is a concern especially when patients have critical-sized injuries, where the size of the defect restricts vascularity, or even in small defects that have to be treated under special conditions, such as after radiation therapy (relevant to tumor resection) that hinders vascularity. In fact, poor vascularization is one of the major obstacles for clinical application of tissue engineering methods in soft tissue repair. As a key issue, lack of graft integration, caused by inadequate vascularization after implantation, can lead to graft failure. Moreover, poor vascularization compromises the viability of cells seeded in deep portions of scaffolds/graft materials, due to hypoxia and insufficient nutrient supply. In this article we aim to review vascularization strategies employed in tissue engineering techniques to repair soft tissues. For this purpose, we start by providing a brief overview of the main events during the physiological wound healing process in soft tissues. Then, we discuss how tissue repair can be achieved through tissue engineering, and considerations with regards to the choice of scaffold materials, culture conditions, and vascularization techniques. Next, we highlight the importance of vascularization, along with strategies and methods of prevascularization of soft tissue equivalents, particularly cell-based prevascularization. Lastly, we present a summary of commonly used in vitro methods during the vascularization of tissue-engineered soft tissue constructs.
Collapse
Affiliation(s)
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
67
|
Vajda J, Milojević M, Maver U, Vihar B. Microvascular Tissue Engineering-A Review. Biomedicines 2021; 9:589. [PMID: 34064101 PMCID: PMC8224375 DOI: 10.3390/biomedicines9060589] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue engineering and regenerative medicine have come a long way in recent decades, but the lack of functioning vasculature is still a major obstacle preventing the development of thicker, physiologically relevant tissue constructs. A large part of this obstacle lies in the development of the vessels on a microscale-the microvasculature-that are crucial for oxygen and nutrient delivery. In this review, we present the state of the art in the field of microvascular tissue engineering and demonstrate the challenges for future research in various sections of the field. Finally, we illustrate the potential strategies for addressing some of those challenges.
Collapse
Affiliation(s)
- Jernej Vajda
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
| | - Marko Milojević
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Boštjan Vihar
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
- IRNAS Ltd., Limbuška cesta 78b, 2000 Maribor, Slovenia
| |
Collapse
|
68
|
Ratri MC, Brilian AI, Setiawati A, Nguyen HT, Soum V, Shin K. Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Monica Cahyaning Ratri
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Chemistry Education Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Albertus Ivan Brilian
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Agustina Setiawati
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Life Science Sogang University Seoul 04107 Republic of Korea
- Faculty of Pharmacy Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Huong Thanh Nguyen
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Veasna Soum
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
69
|
Azarpira N, Kaviani M, Sarvestani FS. Incorporation of VEGF-and bFGF-loaded alginate oxide particles in acellular collagen-alginate composite hydrogel to promote angiogenesis. Tissue Cell 2021; 72:101539. [PMID: 33838351 DOI: 10.1016/j.tice.2021.101539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/14/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The use of growth factors in tissue engineering is often challenging due to their instability and short half-life. The delivery of growth factors with nanocarriers can eliminate these problems. In the present study, we introduced an alginate oxide particle in acellular collagen-alginate composite hydrogel platform for the immobilization and controlled release of VEGF and bFGF to promote angiogenesis. METHODS The particles were prepared by the oxidation of sodium alginate. Then, they were embedded in collagen-alginate hydrogel. Cytocompatibility of the construct with the human umbilical vein endothelial cells was analyzed through a live/dead assay and scanning electron microscopy. In vitro evaluation of VEGF and bFGF Release Kinetics was done. Moreover, the function of the constructs was confirmed through the chick chorioallantoic membrane assay. RESULTS The engineered constructs maintained the human umbilical vein endothelial cells viability, which indicates the non-toxicity of the tested constructs. The presence of VEGF-loaded particles could improve the Total Branching Points in the chick chorioallantoic membrane assay. In this regard, Total Branching Points was significantly improved in the VEGF group compared to the control group (p = 0.010) and FGF group (p = 0.023). CONCLUSION The results demonstrated the potential role of these particles in regenerative medicine to improve angiogenesis.
Collapse
Affiliation(s)
- Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
70
|
Bifunctional hydrogel for potential vascularized bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112075. [PMID: 33947567 DOI: 10.1016/j.msec.2021.112075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Most of the synthetic polymer-based hydrogels lack the intrinsic properties needed for tissue engineering applications. Here, we describe a biomimetic approach to induce the mineralization and vascularization of poly(ethylene glycol) (PEG)-based hydrogel to template the osteogenic activities. The strategy involves the covalent functionalization of oligo[poly(ethylene glycol) fumarate] (OPF) with phosphate groups and subsequent treatment of phosphorylated-OPF (Pi-OPF) hydrogels with alkaline phosphatase enzyme (ALP) and calcium. Unlike previously reported studies for ALP induced mineralization, in this study, the base polymer itself was modified with the phosphate groups for uniform mineralization of hydrogels. In addition to improvement of mechanical properties, enhancement of MC3T3-E1 cell attachment and proliferation, and promotion of mesenchymal stem cells (MSC) differentiation were observed as the intrinsic benefits of such mineralization. Current bone tissue engineering (BTE) research endeavors are also extensively focused on vascular tissue regeneration due to its inherent advantages in bone regeneration. Taking this into account, we further functionalized the mineralized hydrogels with FG-4592, small hypoxia mimicking molecule. The functionalized hydrogels elicited upregulated in vitro angiogenic activities of human umbilical vein endothelial cells (HUVEC). In addition, when implanted subcutaneously in rats, enhanced early vascularization activities around the implantation site were observed as demonstrated by the immunohistochemistry results. This further leveraged the formation of calcified tissues at the implantation site at later time points evident through X-ray imaging. The overall results here show the perspectives of bifunctional OPF hydrogels for vascularized BTE.
Collapse
|
71
|
Moreira HR, Raftery RM, da Silva LP, Cerqueira MT, Reis RL, Marques AP, O'Brien FJ. In vitro vascularization of tissue engineered constructs by non-viral delivery of pro-angiogenic genes. Biomater Sci 2021; 9:2067-2081. [PMID: 33475111 DOI: 10.1039/d0bm01560a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascularization is still one of the major challenges in tissue engineering. In the context of tissue regeneration, the formation of capillary-like structures is often triggered by the addition of growth factors which are associated with high cost, bolus release and short half-life. As an alternative to growth factors, we hypothesized that delivering genes-encoding angiogenic growth factors to cells in a scaffold microenvironment would lead to a controlled release of angiogenic proteins promoting vascularization, simultaneously offering structural support for new matrix deposition. Two non-viral vectors, chitosan (Ch) and polyethyleneimine (PEI), were tested to deliver plasmids encoding for vascular endothelial growth factor (pVEGF) and fibroblast growth factor-2 (pFGF2) to human dermal fibroblasts (hDFbs). hDFbs were successfully transfected with both Ch and PEI, without compromising the metabolic activity. Despite low transfection efficiency, superior VEGF and FGF-2 transgene expression was attained when pVEGF was delivered with PEI and when pFGF2 was delivered with Ch, impacting the formation of capillary-like structures by primary human dermal microvascular endothelial cells (hDMECs). Moreover, in a 3D microenvironment, when PEI-pVEGF and Ch-FGF2 were delivered to hDFbs, cells produced functional pro-angiogenic proteins which induced faster formation of capillary-like structures that were retained in vitro for longer time in a Matrigel assay. The dual combination of the plasmids resulted in a downregulation of the production of VEGF and an upregulation of FGF-2. The number of capillary-like segments obtained with this system was inferior to the delivery of plasmids individually but superior to what was observed with the non-transfected cells. This work confirmed that cell-laden scaffolds containing transfected cells offer a novel, selective and alternative approach to impact the vascularization during tissue regeneration. Moreover, this work provides a new platform for pathophysiology studies, models of disease, culture systems and drug screening.
Collapse
Affiliation(s)
- Helena R Moreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
72
|
Heene S, Thoms S, Kalies S, Wegner N, Peppermüller P, Born N, Walther F, Scheper T, Blume CA. Vascular Network Formation on Macroporous Polydioxanone Scaffolds. Tissue Eng Part A 2021; 27:1239-1249. [PMID: 33397206 DOI: 10.1089/ten.tea.2020.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, microvascular network structures for tissue engineering were generated on newly developed macroporous polydioxanone (PDO) scaffolds. PDO represents a polymer biodegradable within months and offers optimal material properties such as elasticity and nontoxic degradation products. PDO scaffolds prepared by porogen leaching and cryo-dried to achieve pore sizes of 326 ± 149.67 μm remained stable with equivalent values for Young's modulus after 4 weeks. Scaffolds were coated with fibrin for optimal cell adherence. To exclude interindividual differences, autologous fibrin was prepared out of human plasma-derived fibrinogen and proved a comparable quality to nonautologous commercially available fibrinogen. Fibrin-coated scaffolds were seeded with recombinant human umbilical vein endothelial cells expressing GFP (GFP-HUVECs) in coculture with adipose tissue-derived mesenchymal stem cells (AD-hMSCs) to form vascular networks. The growth factor content in culture media was optimized according its effect on network formation, quantified and assessed by AngioTool®. A ratio of 2:3 GFP-HUVECs/AD-hMSCs in medium enriched with 20 ng/mL vascular endothelial growth factor, basic fibroblast growth factor, and hydrocortisone was found to be optimal. Network structures appeared after 2 days of cultivation and stabilized until day 7. The resulting networks were lumenized that could be verified by dextran staining. This new approach might be suitable for microvascular tissue patches as a useful template to be used in diverse vascularized tissue constructs.
Collapse
Affiliation(s)
- Sebastian Heene
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Stefanie Thoms
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | | | - Nils Wegner
- Department of Materials Test Engineering, Technical University Dortmund, Dortmund, Germany
| | - Pia Peppermüller
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | | | - Frank Walther
- Department of Materials Test Engineering, Technical University Dortmund, Dortmund, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Cornelia A Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
73
|
Saska S, Pilatti L, Blay A, Shibli JA. Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers (Basel) 2021; 13:563. [PMID: 33668617 PMCID: PMC7918883 DOI: 10.3390/polym13040563] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023] Open
Abstract
Three-dimensional (3D) printing is a valuable tool in the production of complexes structures with specific shapes for tissue engineering. Differently from native tissues, the printed structures are static and do not transform their shape in response to different environment changes. Stimuli-responsive biocompatible materials have emerged in the biomedical field due to the ability of responding to other stimuli (physical, chemical, and/or biological), resulting in microstructures modifications. Four-dimensional (4D) printing arises as a new technology that implements dynamic improvements in printed structures using smart materials (stimuli-responsive materials) and/or cells. These dynamic scaffolds enable engineered tissues to undergo morphological changes in a pre-planned way. Stimuli-responsive polymeric hydrogels are the most promising material for 4D bio-fabrication because they produce a biocompatible and bioresorbable 3D shape environment similar to the extracellular matrix and allow deposition of cells on the scaffold surface as well as in the inside. Subsequently, this review presents different bioresorbable advanced polymers and discusses its use in 4D printing for tissue engineering applications.
Collapse
Affiliation(s)
- Sybele Saska
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Livia Pilatti
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Alberto Blay
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Jamil Awad Shibli
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos, Sao Paulo 07023-070, Brazil
| |
Collapse
|
74
|
Kjar A, McFarland B, Mecham K, Harward N, Huang Y. Engineering of tissue constructs using coaxial bioprinting. Bioact Mater 2021; 6:460-471. [PMID: 32995673 PMCID: PMC7490764 DOI: 10.1016/j.bioactmat.2020.08.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Bioprinting is a rapidly developing technology for the precise design and manufacture of tissues in various biological systems or organs. Coaxial extrusion bioprinting, an emergent branch, has demonstrated a strong potential to enhance bioprinting's engineering versatility. Coaxial bioprinting assists in the fabrication of complex tissue constructs, by enabling concentric deposition of biomaterials. The fabricated tissue constructs started with simple, tubular vasculature but have been substantially developed to integrate complex cell composition and self-assembly, ECM patterning, controlled release, and multi-material gradient profiles. This review article begins with a brief overview of coaxial printing history, followed by an introduction of crucial engineering components. Afterward, we review the recent progress and untapped potential in each specific organ or biological system, and demonstrate how coaxial bioprinting facilitates the creation of tissue constructs. Ultimately, we conclude that this growing technology will contribute significantly to capabilities in the fields of in vitro modeling, pharmaceutical development, and clinical regenerative medicine.
Collapse
Affiliation(s)
- Andrew Kjar
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Bailey McFarland
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Keetch Mecham
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Nathan Harward
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
75
|
Meijer EM, van Dijk CGM, Kramann R, Verhaar MC, Cheng C. Implementation of Pericytes in Vascular Regeneration Strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1-21. [PMID: 33231500 DOI: 10.1089/ten.teb.2020.0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the survival and integration of complex large-sized tissue-engineered (TE) organ constructs that exceed the maximal nutrients and oxygen diffusion distance required for cell survival, graft (pre)vascularization to ensure medium or blood supply is crucial. To achieve this, the morphology and functionality of the microcapillary bed should be mimicked by incorporating vascular cell populations, including endothelium and mural cells. Pericytes play a crucial role in microvascular function, blood vessel stability, angiogenesis, and blood pressure regulation. In addition, tissue-specific pericytes are important in maintaining specific functions in different organs, including vitamin A storage in the liver, renin production in the kidneys and maintenance of the blood-brain-barrier. Together with their multipotential differentiation capacity, this makes pericytes the preferred cell type for application in TE grafts. The use of a tissue-specific pericyte cell population that matches the TE organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)-vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts. Impact statement The use of a tissue-specific pericyte cell population that matches the tissue-engineered (TE) organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts.
Collapse
Affiliation(s)
- Elana M Meijer
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Institute of Experimental Medicine and Systems Biology, University Hospital RWTH Aachen, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
76
|
Li Y, Hoffman MD, Benoit DSW. Matrix metalloproteinase (MMP)-degradable tissue engineered periosteum coordinates allograft healing via early stage recruitment and support of host neurovasculature. Biomaterials 2021; 268:120535. [PMID: 33271450 PMCID: PMC8110201 DOI: 10.1016/j.biomaterials.2020.120535] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/17/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Despite serving as the clinical "gold standard" treatment for critical size bone defects, decellularized allografts suffer from long-term failure rates of ~60% due to the absence of the periosteum. Stem and osteoprogenitor cells within the periosteum orchestrate autograft healing through host cell recruitment, which initiates the regenerative process. To emulate periosteum-mediated healing, tissue engineering approaches have been utilized with mixed outcomes. While vascularization has been widely established as critical for bone regeneration, innervation was recently identified to be spatiotemporally regulated together with vascularization and similarly indispensable to bone healing. Notwithstanding, there are no known approaches that have focused on periosteal matrix cues to coordinate host vessel and/or axon recruitment. Here, we investigated the influence of hydrogel degradation mechanism, i.e. hydrolytic or enzymatic (cell-dictated), on tissue engineered periosteum (TEP)-modified allograft healing, especially host vessel/nerve recruitment and integration. Matrix metalloproteinase (MMP)-degradable hydrogels supported endothelial cell migration from encapsulated spheroids whereas no migration was observed in hydrolytically degradable hydrogels in vitro, which correlated with increased neurovascularization in vivo. Specifically, ~2.45 and 1.84-fold, and ~3.48 and 2.58-fold greater vessel and nerve densities with high levels of vessel and nerve co-localization was observed using MMP degradable TEP (MMP-TEP) -modified allografts versus unmodified and hydrolytically degradable TEP (Hydro-TEP)-modified allografts, respectively, at 3 weeks post-surgery. MMP-TEP-modified allografts exhibited greater longitudinal graft-localized vascularization and endochondral ossification, along with 4-fold and 2-fold greater maximum torques versus unmodified and Hydro-TEP-modified allografts after 9 weeks, respectively, which was comparable to that of autografts. In summary, our results demonstrated that the MMP-TEP coordinated allograft healing via early stage recruitment and support of host neurovasculature.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Michael D Hoffman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Materials Science Program, University of Rochester, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA; Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
77
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
78
|
de Melo BA, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater 2020; 117:60-76. [PMID: 32949823 DOI: 10.1016/j.actbio.2020.09.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
Fibrin gel has been widely used for engineering various types of tissues due to its biocompatible nature, biodegradability, and tunable mechanical and nanofibrous structural properties. Despite their promising regenerative capacity and extensive biocompatibility with various tissue types, fibrin-based biomaterials are often notoriously known as burdensome candidates for 3D biofabrication and bioprinting. The high viscosity of fibrin (crosslinked form) hinders proper ink extrusion, and its pre-polymer form, fibrinogen, is not capable of maintaining shape fidelity. To overcome these limitations and empower fibrinogen-based bioinks for fibrin biomimetics and regenerative applications, different strategies can be practiced. The aim of this review is to report the strategies that bring fabrication compatibility to these bioinks through mixing fibrinogen with printable biomaterials, using supporting bath supplemented with crosslinking agents, and crosslinking fibrin in situ. Moreover, the review discusses some of the recent advances in 3D bioprinting of biomimetic soft and hard tissues using fibrinogen-based bioinks, and highlights the impacts of these strategies on fibrin properties, its bioactivity, and the functionality of the consequent biomimetic tissue. Statement of Significance Due to its biocompatible nature, biodegradability, and tunable mechanical and nanofibrous structural properties, fibrin gel has been widely employed in tissue engineering and more recently, used as in 3D bioprinting. The fibrinogen's poor printable properties make it difficult to maintain the 3D shape of bioprinted constructs. Our work describes the strategies employed in tissue engineering to allow the 3D bioprinting of fibrinogen-based bioinks, such as the combination of fibrinogen with printable biomaterials, the in situ fibrin crosslinking, and the use of supporting bath supplemented with crosslinking agents. Further, this review discuss the application of 3D bioprinting technology to biofabricate fibrin-based soft and hard tissues for biomedical applications, and discuss current limitations and future of such in vitro models.
Collapse
|
79
|
Siller IG, Epping NM, Lavrentieva A, Scheper T, Bahnemann J. Customizable 3D-Printed (Co-)Cultivation Systems for In Vitro Study of Angiogenesis. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4290. [PMID: 32992945 PMCID: PMC7579111 DOI: 10.3390/ma13194290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Due to the ever-increasing resolution of 3D printing technology, additive manufacturing is now even used to produce complex devices for laboratory applications. Personalized experimental devices or entire cultivation systems of almost unlimited complexity can potentially be manufactured within hours from start to finish-an enormous potential for experimental parallelization in a highly controllable environment. This study presents customized 3D-printed co-cultivation systems, which qualify for angiogenesis studies. In these systems, endothelial and mesenchymal stem cells (AD-MSC) were indirectly co-cultivated-that is, both cell types were physically separated through a rigid, 3D-printed barrier in the middle, while still sharing the same cell culture medium that allows for the exchange of signalling molecules. Biochemical-based cytotoxicity assays initially confirmed that the 3D printing material does not exert any negative effects on cells. Since the material also enables phase contrast and fluorescence microscopy, the behaviour of cells could be observed over the entire cultivation via both. Microscopic observations and subsequent quantitative analysis revealed that endothelial cells form tubular-like structures as angiogenic feature when indirectly co-cultured alongside AD-MSCs in the 3D-printed co-cultivation system. In addition, further 3D-printed devices are also introduced that address different issues and aspire to help in varying experimental setups. Our results mark an important step forward for the integration of customized 3D-printed systems as self-contained test systems or equipment in biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (I.G.S.); (N.-M.E.); (A.L.); (T.S.)
| |
Collapse
|
80
|
Jalilian E, Elkin K, Shin SR. Novel Cell-Based and Tissue Engineering Approaches for Induction of Angiogenesis as an Alternative Therapy for Diabetic Retinopathy. Int J Mol Sci 2020; 21:E3496. [PMID: 32429094 PMCID: PMC7278952 DOI: 10.3390/ijms21103496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of long-term diabetes and the most common cause of blindness, increasing morbidity in the working-age population. The most effective therapies for these complications include laser photocoagulation and anti-vascular endothelial growth factor (VEGF) intravitreal injections. However, laser and anti-VEGF drugs are untenable as a final solution as they fail to address the underlying neurovascular degeneration and ischemia. Regenerative medicine may be a more promising approach, aimed at the repair of blood vessels and reversal of retinal ischemia. Stem cell therapy has introduced a novel way to reverse the underlying ischemia present in microvascular complications in diseases such as diabetes. The present review discusses current treatments, their side effects, and novel cell-based and tissue engineering approaches as a potential alternative therapeutic approach.
Collapse
Affiliation(s)
- Elmira Jalilian
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Kenneth Elkin
- Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA;
| |
Collapse
|