51
|
Bielli A, Scioli MG, Gentile P, Cervelli V, Orlandi A. Adipose-derived stem cells in cartilage regeneration: current perspectives. Regen Med 2016; 11:693-703. [PMID: 27599358 DOI: 10.2217/rme-2016-0077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022] Open
Abstract
Repair of cartilage injuries represents a musculoskeletal medicine criticism because of the poor ability to self-renewal of adult cartilage. Therefore, research focuses on developing new regenerative strategies combining chondrocytes or stem cells, scaffolds and growth factors. Because of the low proliferation capability of explanted chondrocytes, new chondrogenesis models, employing human adipose-derived stem cells (ASCs), have been investigated. ASCs are readily accessible with no morbidity and display the capability to differentiate into several cell lineages, including the spontaneous chondrogenic differentiation when entrapped in collagen gel scaffolds. Recent studies also defined some biomolecular mechanisms involved in ASC chondrogenesis in vitro, and their regenerative properties in bioengineered scaffolds and in the presence of growth factors. However, further investigations are required to validate these exciting preclinical results for the application of bioenginereed ASCs in the clinical practice.
Collapse
Affiliation(s)
- Alessandra Bielli
- Anatomic Pathology, Department of Biomedicine & Prevention, Tor Vergata University of Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine & Prevention, Tor Vergata University of Rome, Italy
| | - Pietro Gentile
- Plastic Surgery, Department of Biomedicine & Prevention, Tor Vergata University of Rome, Italy
| | - Valerio Cervelli
- Plastic Surgery, Department of Biomedicine & Prevention, Tor Vergata University of Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine & Prevention, Tor Vergata University of Rome, Italy
| |
Collapse
|
52
|
Harman R, Carlson K, Gaynor J, Gustafson S, Dhupa S, Clement K, Hoelzler M, McCarthy T, Schwartz P, Adams C. A Prospective, Randomized, Masked, and Placebo-Controlled Efficacy Study of Intraarticular Allogeneic Adipose Stem Cells for the Treatment of Osteoarthritis in Dogs. Front Vet Sci 2016; 3:81. [PMID: 27695698 PMCID: PMC5025432 DOI: 10.3389/fvets.2016.00081] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/01/2016] [Indexed: 01/08/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with a high prevalence in dogs. Mesenchymal stem cells (MSCs) have been used to treat humans, dogs, and horses with OA. This report describes a prospective, randomized, blinded, and placebo-controlled clinical efficacy study of intraarticular allogeneic adipose stem cells for the treatment of dogs with OA. Health assessments and measurements of pain and activity impairment were performed at baseline and at selected time points through day 60. The primary outcome variable was the owner Client-Specific Outcome Measurement (CSOM) and secondary measures included veterinary pain on manipulation, veterinary global score, and owner global score. The dogs were treated with either a saline placebo or a single dose of allogeneic adipose-derived MSCs in either one or two joints. Seventy-four dogs were statistically analyzed for efficacy outcomes. Success in the primary outcome variable, CSOM, was statistically improved in the treated dogs compared to the placebo dogs (79.2 versus 55.4%, p = 0.029). The veterinary pain on manipulation score (92.8 versus 50.2%, p = 0.017) and the veterinary global score (86.9 versus 30.8%, p = 0.009) were both statistically improved in treated dogs compared to placebo. There was no detected significant difference between treated and placebo dogs in the incidence of adverse events or negative health findings. Allogeneic adipose-derived stem cell treatment was shown to be efficacious compared to placebo. This large study of dogs also provides valuable animal clinical safety and efficacy outcome data to our colleagues developing human stem cell therapy.
Collapse
Affiliation(s)
| | - Kim Carlson
- VCA Bay Area Veterinary Specialists , San Leandro, CA , USA
| | - Jamie Gaynor
- Peak Performance Veterinary Group , Frisco, CO , USA
| | | | - Sarit Dhupa
- California Veterinary Specialists , Carlsbad, CA , USA
| | - Keith Clement
- Burnt Hills Veterinary Hospital , Burnt Hills, NY , USA
| | | | - Tim McCarthy
- Cascade Veterinary Referral Center , Tigard, OR , USA
| | | | - Cheryl Adams
- Integrative Sports Rehab and Wellness LLC , Foxfield, CO , USA
| |
Collapse
|
53
|
Visscher DO, Bos EJ, Peeters M, Kuzmin NV, Groot ML, Helder MN, van Zuijlen PPM. Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage. Tissue Eng Part C Methods 2016; 22:573-84. [PMID: 27089896 DOI: 10.1089/ten.tec.2016.0073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Scaffold contraction is a common but underestimated problem in the field of tissue engineering. It becomes particularly problematic when creating anatomically complex shapes such as the ear. The aim of this study was to develop a contraction-free biocompatible scaffold construct for ear cartilage tissue engineering. To address this aim, we used three constructs: (i) a fibrin/hyaluronic acid (FB/HA) hydrogel, (ii) a FB/HA hydrogel combined with a collagen I/III scaffold, and (iii) a cage construct containing (ii) surrounded by a 3D-printed poly-ɛ-caprolactone mold. A wide range of different cell types were tested within these constructs, including chondrocytes, perichondrocytes, adipose-derived mesenchymal stem cells, and their combinations. After in vitro culturing for 1, 14, and 28 days, all constructs were analyzed. Macroscopic observation showed severe contraction of the cell-seeded hydrogel (i). This could be prevented, in part, by combining the hydrogel with the collagen scaffold (ii) and prevented in total using the 3D-printed cage construct (iii). (Immuno)histological analysis, multiphoton laser scanning microscopy, and biomechanical analysis showed extracellular matrix deposition and increased Young's modulus and thereby the feasibility of ear cartilage engineering. These results demonstrated that the 3D-printed cage construct is an adequate model for contraction-free ear cartilage engineering using a range of cell combinations.
Collapse
Affiliation(s)
- Dafydd O Visscher
- 1 Department of Plastic, Reconstructive & Hand Surgery, VU Medical Center , Amsterdam, Netherlands
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
| | - Ernst J Bos
- 1 Department of Plastic, Reconstructive & Hand Surgery, VU Medical Center , Amsterdam, Netherlands
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
| | - Mirte Peeters
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
- 3 Department of Orthopedic Surgery, VU Medical Center , Amsterdam, Netherlands
| | - Nikolay V Kuzmin
- 4 LaserLaB Amsterdam, Department of Physics, Vrije Universiteit , Amsterdam, Netherlands
| | - Marie Louise Groot
- 4 LaserLaB Amsterdam, Department of Physics, Vrije Universiteit , Amsterdam, Netherlands
| | - Marco N Helder
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
- 3 Department of Orthopedic Surgery, VU Medical Center , Amsterdam, Netherlands
| | - Paul P M van Zuijlen
- 1 Department of Plastic, Reconstructive & Hand Surgery, VU Medical Center , Amsterdam, Netherlands
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
- 5 Red Cross Hospital Beverwijk , Beverwijk, Netherlands
| |
Collapse
|
54
|
In Vitro Validation of a Closed Device Enabling the Purification of the Fluid Portion of Liposuction Aspirates. Plast Reconstr Surg 2016; 137:1157-1167. [DOI: 10.1097/prs.0000000000002014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
55
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
56
|
Moran CJ, Ramesh A, Brama PAJ, O'Byrne JM, O'Brien FJ, Levingstone TJ. The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop 2016; 3:1. [PMID: 26915001 PMCID: PMC4703594 DOI: 10.1186/s40634-015-0037-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
Much research is currently ongoing into new therapies for cartilage defect repair with new biomaterials frequently appearing which purport to have significant regenerative capacity. These biomaterials may be classified as medical devices, and as such must undergo rigorous testing before they are implanted in humans. A large part of this testing involves in vitro trials and biomechanical testing. However, in order to bridge the gap between the lab and the clinic, in vivo preclinical trials are required, and usually demanded by regulatory approval bodies. This review examines the in vivo models in current use for cartilage defect repair testing and the relevance of each in the context of generated results and applicability to bringing the device to clinical practice. Some of the preclinical models currently used include murine, leporine, ovine, caprine, porcine, canine, and equine models. Each of these has advantages and disadvantages in terms of animal husbandry, cartilage thickness, joint biomechanics and ethical and licencing issues. This review will examine the strengths and weaknesses of the various animal models currently in use in preclinical studies of cartilage repair.
Collapse
Affiliation(s)
- Conor J Moran
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | - Ashwanth Ramesh
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | - Pieter A J Brama
- Section of Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John M O'Byrne
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,Cappagh National Orthopaedic Hospital, Finglas, Dublin 11, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | - Tanya J Levingstone
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland. .,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland. .,Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland.
| |
Collapse
|
57
|
Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GRD, Widgerow AD. Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature. J Plast Reconstr Aesthet Surg 2015; 69:170-9. [PMID: 26565755 DOI: 10.1016/j.bjps.2015.10.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/25/2015] [Accepted: 10/13/2015] [Indexed: 12/21/2022]
Abstract
Stromal Vascular Fraction (SVF) is a heterogeneous collection of cells contained within adipose tissue that is traditionally isolated using enzymes such as collagenase. With the removal of adipose cells, connective tissue and blood from lipoaspirate, comes the SVF, a mix including mesenchymal stem cells, endothelial precursor cells, T regulatory cells, macrophages, smooth muscle cells, pericytes and preadipocytes. In part 1 of our 2-part series, we review the literature with regards to the intensifying interest that has shifted toward this mixture of cells, particularly due to its component synergy and translational potential. Trials assessing the regenerative potential of cultured Adipose Derived Stem Cells (ADSCs) and SVF demonstrate that SVF is comparably effective in treating conditions ranging from radiation injuries, burn wounds and diabetes, amongst others. Aside from their use in chronic conditions, SVF enrichment of fat grafts has proven a major advance in maintaining fat graft volume and viability. Many SVF studies are currently in preclinical phases or are moving to human trials. Overall, regenerative cell therapy based on SVF is at an early investigative stage but its potential for clinical application is enormous.
Collapse
Affiliation(s)
- Andrew Nguyen
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - James Guo
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Derek A Banyard
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Darya Fadavi
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Jason D Toranto
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Garrett A Wirth
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Keyianoosh Z Paydar
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Gregory R D Evans
- Department of Plastic Surgery, University of California, Irvine, USA
| | - Alan D Widgerow
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA.
| |
Collapse
|
58
|
Stromal vascular fraction: A regenerative reality? Part 2: Mechanisms of regenerative action. J Plast Reconstr Aesthet Surg 2015; 69:180-8. [PMID: 26546112 DOI: 10.1016/j.bjps.2015.10.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/26/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022]
Abstract
Adipose tissue is a rich source of cells with emerging promise for tissue engineering and regenerative medicine. The stromal vascular fraction (SVF), in particular, is an eclectic composite of cells with progenitor activity that includes preadipocytes, mesenchymal stem cells, pericytes, endothelial cells, and macrophages. SVF has enormous potential for therapeutic application and is being investigated for multiple clinical indications including lipotransfer, diabetes-related complications, nerve regeneration, burn wounds and numerous others. In Part 2 of our review, we explore the basic science behind the regenerative success of the SVF and discuss significant mechanisms that are at play. The existing literature suggests that angiogenesis, immunomodulation, differentiation, and extracellular matrix secretion are the main avenues through which regeneration and healing is achieved by the stromal vascular fraction.
Collapse
|
59
|
Bosetti M, Borrone A, Follenzi A, Messaggio F, Tremolada C, Cannas M. Human Lipoaspirate as Autologous Injectable Active Scaffold for One-Step Repair of Cartilage Defects. Cell Transplant 2015; 25:1043-56. [PMID: 26395761 DOI: 10.3727/096368915x689514] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Research on mesenchymal stem cells from adipose tissue shows promising results for cell-based therapy in cartilage lesions. In these studies, cells have been isolated, expanded, and differentiated in vitro before transplantation into the damaged cartilage or onto materials used as scaffolds to deliver cells to the impaired area. The present study employed in vitro assays to investigate the potential of intra-articular injection of micro-fragmented lipoaspirate as a one-step repair strategy; it aimed to determine whether adipose tissue can act as a scaffold for cells naturally present at their anatomical site. Cultured clusters of lipoaspirate showed a spontaneous outgrowth of cells with a mesenchymal phenotype and with multilineage differentiation potential. Transduction of lipoaspirate clusters by lentiviral vectors expressing GFP evidenced the propensity of the outgrown cells to repopulate fragments of damaged cartilage. On the basis of the results, which showed an induction of proliferation and ECM production of human primary chondrocytes, it was hypothesized that lipoaspirate may play a paracrine role. Moreover, the structure of a floating culture of lipoaspirate, treated for 3 weeks with chondrogenic growth factors, changed: tissue with a high fat component was replaced by a tissue with a lower fat component and connective tissue rich in GAG and in collagen type I, increasing the mechanical strength of the tissue. From these promising in vitro results, it may be speculated that an injectable autologous biologically active scaffold (lipoaspirate), employed intra-articularly, may 1) become a fibrous tissue that provides mechanical support for the load on the damaged cartilage; 2) induce host chondrocytes to proliferate and produce ECM; and 3) provide cells at the site of injury, which could regenerate or repair the damaged or missing cartilage.
Collapse
Affiliation(s)
- Michela Bosetti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | | | | | | | | | | |
Collapse
|
60
|
Adipose-Derived Mesenchymal Stem Cells for the Treatment of Articular Cartilage: A Systematic Review on Preclinical and Clinical Evidence. Stem Cells Int 2015; 2015:597652. [PMID: 26240572 PMCID: PMC4512635 DOI: 10.1155/2015/597652] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/29/2014] [Accepted: 01/28/2015] [Indexed: 12/14/2022] Open
Abstract
Among the current therapeutic approaches for the regeneration of damaged articular cartilage, none has yet proven to offer results comparable to those of native hyaline cartilage. Recently, it has been claimed that the use of mesenchymal stem cells (MSCs) provides greater regenerative potential than differentiated cells, such as chondrocytes. Among the different kinds of MSCs available, adipose-derived mesenchymal stem cells (ADSCs) are emerging due to their abundancy and easiness to harvest. However, their mechanism of action and potential for cartilage regeneration are still under investigation, and many other aspects still need to be clarified. The aim of this systematic review is to give an overview of in vivo studies dealing with ADSCs, by summarizing the main evidence for the treatment of cartilage disease of the knee.
Collapse
|
61
|
Kapur SK, Dos-Anjos Vilaboa S, Llull R, Katz AJ. Adipose Tissue and Stem/Progenitor Cells. Clin Plast Surg 2015; 42:155-67. [DOI: 10.1016/j.cps.2014.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Wittmann K, Dietl S, Ludwig N, Berberich O, Hoefner C, Storck K, Blunk T, Bauer-Kreisel P. Engineering vascularized adipose tissue using the stromal-vascular fraction and fibrin hydrogels. Tissue Eng Part A 2015; 21:1343-53. [PMID: 25602488 DOI: 10.1089/ten.tea.2014.0299] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The development of vascularized and functional adipose tissue substitutes is required to improve soft tissue augmentation. In this study, vascularized adipose tissue constructs were generated using uncultured cells from the stromal-vascular fraction (SVF) of adipose tissue as an alternative cell source to adipose-derived stem cells. SVF cell behavior and tissue formation were compared in a stable fibrin formulation developed by our group and a commercial fibrin sealant (TissuCol; Baxter) upon direct subcutaneous implantation in a nude mouse model. Further, the effect of in vitro adipogenic induction on SVF cell development was investigated by implanting stable fibrin constructs after 1 week of precultivation (adipogenic vs. noninduced control). Constructs were thoroughly analyzed before implantation regarding adipogenic differentiation status, cell viability, and distribution as well as the presence of endothelial cells. Before implantation, in vitro precultivation strongly promoted adipogenesis (under adipogenic conditions) and the formation of CD31(+) prevascular structures by SVF cells (under nonadipogenic conditions). Tissue development in vivo was determined after 4 weeks by histology (hematoxylin and eosin, human vimentin) and quantified histomorphometrically. In stable fibrin gels, adipogenic precultivation was superior to noninduced conditions, resulting in mature adipocytes and the formation of distinct vascular structures of human origin in vivo. Strong neovascularization by the implanted cells predominated in noninduced constructs. Without pretreatment, the SVF in stable fibrin gels displayed only a weak differentiation capability. In contrast, TissuCol gels strongly supported the formation of coherent and well-vascularized adipose tissue of human origin, displaying large unilocular adipocytes. The developed native-like tissue architecture was highlighted by a whole mount staining technique. Taken together, SVF cells from human adipose tissue were shown to successfully lead to adipose tissue formation in fibrin hydrogels in vivo. The results render the SVF a promising cell source for subsequent studies both in vitro and in vivo with the aim of engineering clinically applicable soft tissue substitutes.
Collapse
Affiliation(s)
- Katharina Wittmann
- 1 Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg , Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Nejadnik H, Ye D, Lenkov OD, Donig J, Martin JE, Castillo R, Derugin N, Sennino B, Rao J, Daldrup-Link HE. Magnetic resonance imaging of stem cell apoptosis in arthritic joints with a caspase activatable contrast agent. ACS NANO 2015; 9:1150-60. [PMID: 25597243 PMCID: PMC4441518 DOI: 10.1021/nn504494c] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
About 43 million individuals in the U.S. encounter cartilage injuries due to trauma or osteoarthritis, leading to joint pain and functional disability. Matrix-associated stem cell implants (MASI) represent a promising approach for repair of cartilage defects. However, limited survival of MASI creates a significant bottleneck for successful cartilage regeneration outcomes and functional reconstitution. We report an approach for noninvasive detection of stem cell apoptosis with magnetic resonance imaging (MRI), based on a caspase-3-sensitive nanoaggregation MRI probe (C-SNAM). C-SNAM self-assembles into nanoparticles after hydrolysis by caspase-3, leading to 90% amplification of (1)H MR signal and prolonged in vivo retention. Following intra-articular injection, C-SNAM causes significant MR signal enhancement in apoptotic MASI compared to viable MASI. Our results indicate that C-SNAM functions as an imaging probe for stem cell apoptosis in MASI. This concept could be applied to a broad range of cell transplants and target sites.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Deju Ye
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Olga D. Lenkov
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Jessica Donig
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - John E. Martin
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Rostislav Castillo
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Nikita Derugin
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Barbara Sennino
- Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California San Francisco, San Francisco, CA
| | - Jianghong Rao
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Heike E. Daldrup-Link
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| |
Collapse
|
64
|
Detiger SEL, Helder MN, Smit TH, Hoogendoorn RJW. Adverse effects of stromal vascular fraction during regenerative treatment of the intervertebral disc: observations in a goat model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 24:1992-2000. [PMID: 25682272 DOI: 10.1007/s00586-015-3803-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Abstract
Stromal vascular fraction (SVF), an adipose tissue-derived heterogeneous cell mixture containing, among others, multipotent adipose stromal cells (ASCs) and erythrocytes, has proved beneficial for a wide range of applications in regenerative medicine. We sought to establish intervertebral disc (IVD) regeneration by injecting SVF intradiscally during a one-step surgical procedure in an enzymatically (Chondroitinase ABC; cABC) induced goat model of disc degeneration. Unexpectedly, we observed a severe inflammatory response that has not been described before, including massive lymphocyte infiltration, neovascularisation and endplate destruction. A second study investigated two main suspects for these adverse effects: cABC and erythrocytes within SVF. The same destructive response was observed in healthy goat discs injected with SVF, thereby eliminating cABC as a cause. Density gradient removal of erythrocytes and ASCs purified by culturing did not lead to adverse effects. Following these observations, we incorporated an extra washing step in the SVF harvesting protocol. In a third study, we applied this protocol in a one-step procedure to a goat herniation model, in which no adverse responses were observed either. However, upon intradiscal injection of an identically processed SVF mixture into our goat IVD degeneration model during a fourth study, the adverse effects surprisingly occurred again. Despite our quest for the responsible agent, we eventually could not identify the mechanism through which the observed destructive responses occurred. Although we cannot exclude that the adverse effects are species-dependent or model-specific, we advertise caution with the clinical application of autologous SVF injections into the IVD until the responsible agent(s) are identified.
Collapse
Affiliation(s)
- Suzanne E L Detiger
- Department of Orthopaedic Surgery, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands,
| | | | | | | |
Collapse
|
65
|
Abdallah AN, Shamaa AA, Tookhy OSE, Mottaleb EMAE. Evaluation of Low Level Laser-Activated Stromal Vascular Fraction as a Single Procedure for Treatment of Experimental Chondral Defects. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajas.2016.15.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
66
|
Mehrabani D, Babazadeh M, Tanideh N, Zare S, Hoseinzadeh S, Torabinejad S, Koohi-Hosseinabadi O. The Healing Effect of Adipose-Derived Mesenchymal Stem Cells in Full-thickness Femoral Articular Cartilage Defects of Rabbit. Int J Organ Transplant Med 2015; 6:165-75. [PMID: 26576262 PMCID: PMC4644569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Articular cartilage defect can lead to degradation of subchondral bone and osteoarthritis (OA). OBJECTIVE To determine the healing effect of transplantation of adipose-derived mesenchymal stem cells (Ad-MSCs) in full-thickness femoral articular cartilage defects in rabbit. METHODS 12 rabbits were equally divided into cell-treated and control groups. In cell-treated group, 2×10(6) cells of third passage suspended in 1 mL of DMEM was injected into articular defect. The control group just received 1 mL of DMEM. Dulbecco's modified Eagles medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin and streptomycin and 2 mM L-glutamine were used for cell culture. To induce cartilage defect, 4 mm articular cartilage full-thickness defect was created in the knee. For histological evaluation in each group (H&E, safranin-O and toluidine blue), 3 rabbits were sacrificed 4 weeks and 3 animals, 8 weeks after cell transplantation. RESULTS In cell therapy group post-transplantation, no abnormal gross findings were noticed. Neo-formed tissues in cell-treated groups were translucent with a smooth and intact surface and less irregularity. In cell-treated group after 8 weeks post-transplantation, the overall healing score of experimental knees were superior when compared to other groups. CONCLUSION We showed that Ad-MSCs, as an available and non-invasive produced source of cells, could be safely administered in knee osteochondral defects.
Collapse
Affiliation(s)
- D. Mehrabani
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Babazadeh
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N. Tanideh
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Nader Tanideh, PhD, Assistant professor of pharmacology department,shiraz medical school at shiraz university of medical sciences, Shiraz, Iran, Tel/Fax: +98-711-234-1025, E-mail:
| | - S. Zare
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. Hoseinzadeh
- School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - S. Torabinejad
- Pathology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
67
|
|
68
|
Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study. Arthroscopy 2014; 30:1453-60. [PMID: 25108907 DOI: 10.1016/j.arthro.2014.05.036] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE This study compared the clinical results and second-look arthroscopic findings of patients undergoing open-wedge high tibial osteotomy (HTO) for varus deformity, with or without mesenchymal stem cell (MSC) therapy. METHODS This prospective, comparative observational study was designed to evaluate the effectiveness of MSC therapy. The patients were divided into 2 groups: HTO with platelet-rich plasma (PRP) injection only (n = 23) or HTO in conjunction with MSC therapy and PRP injection (n = 21). Prospective evaluations of both groups were performed using the Lysholm score, Knee Injury and Osteoarthritis Outcome Score (KOOS), and a visual analog scale (VAS) score for pain. Second-look arthroscopy was carried out in all patients at the time of metal removal. RESULTS The patients in the MSC-PRP group showed significantly greater improvements in the KOOS subscales for pain (PRP only, 74.0 ± 5.7; MSC-PRP, 81.2 ± 6.9; P < .001) and symptoms (PRP only, 75.4 ± 8.5; MSC-PRP, 82.8 ± 7.2; P = .006) relative to the PRP-only group. Although the mean Lysholm score was similarly improved in both groups (PRP only, 80.6 ± 13.5; MSC-PRP, 84.7 ± 16.2; P = .357), the MSC-PRP group showed a significantly greater improvement in the VAS pain score (PRP only, 16.2 ± 4.6; MSC-PRP, 10.2 ± 5.7; P < .001). There were no differences in the preoperative (PRP only, varus 2.8° ± 1.7°; MSC-PRP, varus 3.4° ± 3.0°; P = .719) and postoperative (PRP only, valgus 9.8° ± 2.4°; MSC-PRP, valgus 8.7° ± 2.3°; P = .678) femorotibial angles or weight-bearing lines between the groups. Arthroscopic evaluation, at plate removal, showed that partial or even fibrocartilage coverage was achieved in 50% of the MSC-PRP group patients but in only 10% of the patients in the PRP-only group (P < .001). CONCLUSIONS MSC therapy, in conjunction with HTO, mildly improved cartilage healing and showed good clinical results in some KOOS subscores and the VAS pain score compared with PRP only. LEVEL OF EVIDENCE Level II, prospective comparative study.
Collapse
|
69
|
Bone marrow derived stem cells in joint and bone diseases: a concise review. INTERNATIONAL ORTHOPAEDICS 2014; 38:1787-801. [PMID: 25005462 DOI: 10.1007/s00264-014-2445-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/21/2014] [Indexed: 12/11/2022]
Abstract
Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the treatment of bone, cartilage and meniscus tissues.
Collapse
|
70
|
Li L, Pan S, Ni B, Lin Y. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres. Cell Biol Int 2014; 38:962-70. [PMID: 24740717 DOI: 10.1002/cbin.10284] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/20/2014] [Indexed: 11/11/2022]
Abstract
Early neovascularization is important for autologous fat transplant survival. SVF cells are ideal seed cells. Both vascular endothelial growth factor (VEGF) and SVF cells can promote neovascularization. However, the half-life (about 50 min) of VEGF is too short to sustain an adequate local concentration. We have investigated whether VEGF-polylactic acid (PLA) nano-sustained release microspheres plus SVF cells can improve neovascularization and survival of transplanted fat tissues. SVF cells were harvested and constructed VEGF-PLA nano-sustained release microspheres in vitro. Human fat tissues was mixed with SVF cells plus VEGF-PLA, SVF cells alone or Dulbecco's modified Eagle's medium as the control. These three mixtures were injected into random sites in 18 nude mice. Two months later, the transplants were weighed and examined histologically; and capillaries were counted to quantify neovascularization. Hematoxylin-eosin (HE) and anti-VEGF stains were applied to reveal cell infiltration. The mean wet weight of fat in the SVF plus VEGF-PLA, SVF alone, and control transplants were 0.18 ± 0.013 g, 0.16 ± 0.015 g, and 0.071 ± 0.12 g, respectively; the differences between groups were statistically significant. More vessels were present in the SVF plus VEGF-PLA transplants than in the other two types. Transplants mixed with SVF cells also had an acceptable density of capillaries. Histological analysis revealed that both the SVF plus VEGF-PLA and SVF alone transplants, but not the control transplants, were composed of adipose tissue, and had less fat necrosis and less fibrosis than control specimens. SVF plus VEGF-PLA transplants had significantly greater capillary density and VEGF expression than the other two transplant groups. Thus transplanted fat tissue survival and quality can be enhanced by the addition of VEGF-PLA nano-sustained release microspheres plus SVF cells.
Collapse
Affiliation(s)
- Liqun Li
- First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai Direct, Wenzhou City, Zhejiang Province, People's Republic of China
| | | | | | | |
Collapse
|
71
|
Orth P, Rey-Rico A, Venkatesan JK, Madry H, Cucchiarini M. Current perspectives in stem cell research for knee cartilage repair. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2014; 7:1-17. [PMID: 24520197 PMCID: PMC3897321 DOI: 10.2147/sccaa.s42880] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protocols based on the delivery of stem cells are currently applied in patients, showing encouraging results for the treatment of articular cartilage lesions (focal defects, osteoarthritis). Yet, restoration of a fully functional cartilage surface (native structural organization and mechanical functions) especially in the knee joint has not been reported to date, showing the need for improved designs of clinical trials. Various sources of progenitor cells are now available, originating from adult tissues but also from embryonic or reprogrammed tissues, most of which have already been evaluated for their chondrogenic potential in culture and for their reparative properties in vivo upon implantation in relevant animal models of cartilage lesions. Nevertheless, particular attention will be needed regarding their safe clinical use and their potential to form a cartilaginous repair tissue of proper quality and functionality in the patient. Possible improvements may reside in the use of biological supplements in accordance with regulations, while some challenges remain in establishing standardized, effective procedures in the clinics.
Collapse
Affiliation(s)
- Patrick Orth
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany ; Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|