51
|
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, Preville X, Sautès-Fridman C, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology 2016; 5:e1117740. [PMID: 27057469 PMCID: PMC4801444 DOI: 10.1080/2162402x.2015.1117740] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
54
|
Friedman GK, Moore BP, Nan L, Kelly VM, Etminan T, Langford CP, Xu H, Han X, Markert JM, Beierle EA, Gillespie GY. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses. Neuro Oncol 2015; 18:227-35. [PMID: 26188016 DOI: 10.1093/neuonc/nov123] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. METHODS Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. RESULTS We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. CONCLUSIONS Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted.
Collapse
Affiliation(s)
- Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Blake P Moore
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Li Nan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Virginia M Kelly
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Tina Etminan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Catherine P Langford
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Hui Xu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Xiaosi Han
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - James M Markert
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Elizabeth A Beierle
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - G Yancey Gillespie
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| |
Collapse
|
58
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694. [PMID: 25097804 PMCID: PMC4091053 DOI: 10.4161/onci.28694] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | | | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|