51
|
Abstract
Sphingosine 1-phosphate (S1P) plays a role in lymphocyte egress from lymphoid organs. However, it remains unclear how S1P production and secretion are regulated. We show that under inflammatory conditions, α9 integrin, which is closely associated with activated β1 integrin, and its ligand, tenascin-C, colocalize on medullary and cortical sinuses of draining lymph nodes (dLNs), which is a gate for lymphocyte exit, and that inhibition of lymphocyte egress is evident by blockade of α9 integrin-mediated signaling at dLNs. Based on in vitro analysis using lymphatic endothelial cells obtained from mice embryos, we suggested the possibility that stimulation of lymphatic endothelial cells by tenascin-C enhances S1P secretion in an α9 integrin-dependent manner without affecting S1P synthesis and/or degradation. Blockade of α9 integrin-mediated signaling reduced lymphocyte egress from dLNs in several models, including experimental autoimmune encephalomyelitis, where it improved clinical scores and pathology. Therefore, manipulating α9 integrin function may offer a therapeutic strategy for treating various inflammatory disorders.
Collapse
|
52
|
Peebo BB, Fagerholm P, Lagali N. An in vivo method for visualizing flow dynamics of cells within corneal lymphatics. Lymphat Res Biol 2014; 11:93-100. [PMID: 23772718 DOI: 10.1089/lrb.2012.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monitoring the trafficking of specific cell populations within lymphatics could improve our understanding of processes such as transplant rejection and cancer metastasis. Current methods, however, lack appropriate image resolution for single-cell analysis or are incompatible with in vivo and longitudinal monitoring of lymphatics in their native state. We therefore sought to achieve high-resolution live imaging of the dynamic behavior of cells within lymph vessels in the rat cornea. METHODS/RESULTS Inflammatory angiogenesis was induced by suture placement in corneas of Wistar rats. Pre- and up to 3 weeks post-induction, corneas were noninvasively examined by laser-scanning in vivo corneal confocal microscopy (IVCM) using only endogenous contrast. Lymph vessels and the cells harbored therein were documented by still images, real-time video, and 3D confocal stack reconstruction of live tissue. In vivo, conjunctival and corneal lymphatics were morphologically distinct, those with corneal location being one-quarter the diameter of those in the conjunctiva (p<0.001). Cells were recruited to initially empty pre-existing lymph vessels during the first day of inflammation and maintained a dense occupation of vessels for up to 7 days. A diverse population of cells (diameter range: 1.5-27.5 μm) with varying morphology was observed, and exhibited variable flow patterns and were transported singly and in clusters of at least 2-9 adherent cells. CONCLUSIONS The in vivo microscopic technique presented enables lymph vessels and cell trafficking to be studied in high resolution in a minimally-perturbed physiologic milieu.
Collapse
Affiliation(s)
- Beatrice Bourghardt Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
53
|
Tung JJ, Tattersall IW, Kitajewski J. Tips, stalks, tubes: notch-mediated cell fate determination and mechanisms of tubulogenesis during angiogenesis. Cold Spring Harb Perspect Med 2013; 2:a006601. [PMID: 22355796 DOI: 10.1101/cshperspect.a006601] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiogenesis is the process of developing vascular sprouts from existing blood vessels. Luminal endothelial cells convert into "tip" cells that contribute to the development of a multicellular stalk, which then undergoes lumen formation. In this review, we consider a variety of cellular and molecular pathways that mediate these transitions. We focus first on Notch signaling in cell fate determination as a mechanism to define tip and stalk cells. We next discuss the current models of lumen formation and describe new players in this process, such as chloride intracellular channel proteins. Finally, we consider the possible medical therapeutic benefits of understanding these processes and acknowledge potential obstacles in drug development.
Collapse
Affiliation(s)
- Jennifer J Tung
- Department of Obstetrics/Gynecology and Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| | | | | |
Collapse
|
54
|
Abstract
Integrins are a family of α/β heterodimeric adhesion metalloprotein receptors and their functions are highly dependent on and regulated by different divalent cations. Recently advanced studies have revolutionized our perception of integrin metal ion-binding sites and their specific functions. Ligand binding to integrins is bridged by a divalent cation bound at the MIDAS motif on top of either α I domain in I domain-containing integrins or β I domain in α I domain-less integrins. The MIDAS motif in β I domain is flanked by ADMIDAS and SyMBS, the other two crucial metal ion binding sites playing pivotal roles in the regulation of integrin affinity and bidirectional signaling across the plasma membrane. The β-propeller domain of α subunit contains three or four β-hairpin loop-like Ca(2+)-binding motifs that have essential roles in integrin biogenesis. The function of another Ca(2+)-binding motif located at the genu of α subunit remains elusive. Here, we provide an overview of the integrin metal ion-binding sites and discuss their roles in the regulation of integrin functions.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
55
|
Moir LM, Black JL, Krymskaya VP. TSC2 modulates cell adhesion and migration via integrin-α1β1. Am J Physiol Lung Cell Mol Physiol 2012; 303:L703-10. [PMID: 22923640 DOI: 10.1152/ajplung.00414.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that the rare and progressive lung disease lymphangioleiomyomatosis (LAM) is metastatic in nature. Dysfunction of the tumor suppressor genes tuberous sclerosis complex (TSC), in particular mutational inactivation of TSC2, enhances both cell proliferation and migration. Although substantial progress has been made in understanding the role of TSC2 in abnormal LAM cell proliferation and its pharmacological targeting, the mechanisms underlying the enhanced migratory capacity in LAM are not well understood. In this study, we examined the role of TSC2 in cell attachment, spreading, and migration, processes that contribute to the metastatic phenotype. Here we show that loss of TSC2 increased both the attachment and spreading of mouse embryonic fibroblasts to the extracellular matrix proteins collagen type I and fibronectin and that reexpression of TSC2 reduced these effects. Integrin-α1β1 modulated cell migration with the β1-subunit involved in cell attachment and spreading as shown by using functional blocking antibodies. Loss of TSC2 increased integrin-α1 expression, and inhibition of this integrin subunit reduced cell migration. The enhanced attachment and spreading were independent of the intracellular signaling pathways mammalian target of rapamycin complex 1 and Rho-associated kinase, as pharmacological inhibition with rapamycin or Y27632, respectively, was without effect. Together, these data demonstrate that TSC2 controls cell migration, attachment, and spreading through the α1β1-integrin receptor and thus suggest a potential therapeutic target for the treatment of increased cell invasiveness in LAM.
Collapse
Affiliation(s)
- Lyn M Moir
- Cell Biology, Woolcock Institute of Medical Research, PO Box M77, Missenden Rd., NSW, 2050, Australia.
| | | | | |
Collapse
|
56
|
Blocking Fibroblast Growth Factor receptor signaling inhibits tumor growth, lymphangiogenesis, and metastasis. PLoS One 2012; 7:e39540. [PMID: 22761819 PMCID: PMC3382584 DOI: 10.1371/journal.pone.0039540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/22/2012] [Indexed: 11/22/2022] Open
Abstract
Fibroblast Growth Factor receptor (FGFR) activity plays crucial roles in tumor growth and patient survival. However, FGF (Fibroblast Growth Factor) signaling as a target for cancer therapy has been under-investigated compared to other receptor tyrosine kinases. Here, we studied the effect of FGFR signaling inhibition on tumor growth, metastasis and lymphangiogenesis by expressing a dominant negative FGFR (FGFR-2DN) in an orthotopic mouse mammary 66c14 carcinoma model. We show that FGFR-2DN-expressing 66c14 cells proliferate in vitro slower than controls. 66c14 tumor outgrowth and lung metastatic foci are reduced in mice implanted with FGFR-2DN-expressing cells, which also exhibited better overall survival. We found 66c14 cells in the lumen of tumor lymphatic vessels and in lymph nodes. FGFR-2DN-expressing tumors exhibited a decrease in VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) or podoplanin-positive lymphatic vessels, an increase in isolated intratumoral lymphatic endothelial cells and a reduction in VEGF-C (Vascular Endothelial Growth Factor-C) mRNA expression. FGFs may act in an autocrine manner as the inhibition of FGFR signaling in tumor cells suppresses VEGF-C expression in a COX-2 (cyclooxygenase-2) or HIF1-α (hypoxia-inducible factor-1 α) independent manner. FGFs may also act in a paracrine manner on tumor lymphatics by inducing expression of pro-lymphangiogenic molecules such as VEGFR-3, integrin α9, prox1 and netrin-1. Finally, in vitro lymphangiogenesis is impeded in the presence of FGFR-2DN 66c14 cells. These data confirm that both FGF and VEGF signaling are necessary for the maintenance of vascular morphogenesis and provide evidence that targeting FGFR signaling may be an interesting approach to inhibit tumor lymphangiogenesis and metastatic spread.
Collapse
|
57
|
Blakely C, Jahan T. Emerging antiangiogenic therapies for non-small-cell lung cancer. Expert Rev Anticancer Ther 2012; 11:1607-18. [PMID: 21999134 DOI: 10.1586/era.11.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lung cancer remains the leading cause of cancer-related deaths. Antiangiogenic therapy has increasingly been studied for advanced non-small-cell lung cancer (NSCLC). Bevacizumab is the only approved antiangiogenic agent for NSCLC and has shown progression-free survival benefits in large Phase III studies and an overall survival benefit in the Phase III E4599 trial in advanced nonsquamous NSCLC. New antiangiogenic treatment strategies are being evaluated that target multiple receptors within a family (VEGF receptor [VEGFR]-1, VEGFR-2) or multiple angiogenic pathways (targets VEGFR and PDGF receptor pathways), and agents that inhibit alternative mediators of angiogenesis (integrins and established vasculature). As data become available from ongoing studies, it will be important to determine how these new antiangiogenic agents will best fit into the current NSCLC treatment paradigm.
Collapse
Affiliation(s)
- Collin Blakely
- University of California, San Francisco, Box 1705, San Francisco, CA 94143-1705, USA
| | | |
Collapse
|
58
|
Wang XL, Chen XM, Fang JP, Yang CQ. Lentivirus-mediated RNA silencing of c-Met markedly suppresses peritoneal dissemination of gastric cancer in vitro and in vivo. Acta Pharmacol Sin 2012; 33:513-22. [PMID: 22407230 DOI: 10.1038/aps.2011.205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To investigate the expression of c-Met in peritoneal free cancer cells isolated from human gastric cancer ascites, and its relationship to peritoneal dissemination of gastric cancer. METHODS Peritoneal free cancer cells (PFCCs) were isolated from ascites specimens of gastric cancer patients. c-Met expression in PFCCs was detected with immunocytochemistry. In human gastric cancer cell line SGC7901, c-Met expression was detected using RT-PCR and Western blot, and was suppressed with lentivirus-mediated RNAi. The proliferation of SGC7901 cells was measured using MTT assay, and the invasion ability was detected with invasion assay. The adhesion of SGC7901 cells to peritoneum was observed in human peritoneal mesothelial cells (HPMCs) monolayer in vitro and in mice in vivo. RESULTS PFCCs were isolated from ascites of 6 out of 10 gastric cancer patients. c-Met expression in PFCCs was detected in 5 of the 6 gastric cancer patients. In SGC7901 cells, Lentivirus-mediated RNAi significantly reduced both c-Met mRNA and protein expression, which resulted in suppressing the cell proliferation, invasion and adhesion to peritoneum. The expression of α3β1 integrin and E-cadherin was significantly inhibited in SGC7901 cells transfected with Lenti-miRNAc-Met. In the peritoneal dissemination model of gastric cancer, intraperitoneal injection of Lenti-miRNAc-Met markedly suppressed the tumor Progression of SGC7901 cells. CONCLUSION c-Met is expressed in PFCCs from the ascites of gastric cancer patients. Down-regulation of c-Met expression markedly suppresses the multistep process of peritoneal dissemination, thus may be a potential target for the treatment of gastric cancer.
Collapse
|
59
|
Planas-Paz L, Strilić B, Goedecke A, Breier G, Fässler R, Lammert E. Mechanoinduction of lymph vessel expansion. EMBO J 2011; 31:788-804. [PMID: 22157817 DOI: 10.1038/emboj.2011.456] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/14/2011] [Indexed: 02/08/2023] Open
Abstract
In the mammalian embryo, few mechanical signals have been identified to influence organ development and function. Here, we report that an increase in the volume of interstitial or extracellular fluid mechanically induces growth of an organ system, that is, the lymphatic vasculature. We first demonstrate that lymph vessel expansion in the developing mouse embryo correlates with a peak in interstitial fluid pressure and lymphatic endothelial cell (LEC) elongation. In 'loss-of-fluid' experiments, we then show that aspiration of interstitial fluid reduces the length of LECs, decreases tyrosine phosphorylation of vascular endothelial growth factor receptor-3 (VEGFR3), and inhibits LEC proliferation. Conversely, in 'gain-of-fluid' experiments, increasing the amount of interstitial fluid elongates the LECs, and increases both VEGFR3 phosphorylation and LEC proliferation. Finally, we provide genetic evidence that β1 integrins are required for the proliferative response of LECs to both fluid accumulation and cell stretching and, therefore, are necessary for lymphatic vessel expansion and fluid drainage. Thus, we propose a new and physiologically relevant mode of VEGFR3 activation, which is based on mechanotransduction and is essential for normal development and fluid homeostasis in a mammalian embryo.
Collapse
Affiliation(s)
- Lara Planas-Paz
- Institute of Metabolic Physiology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
60
|
Liu F, Lou YL, Wu J, Ruan QF, Xie A, Guo F, Cui SP, Deng ZF, Wang Y. Upregulation of microRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press Res 2011; 35:182-91. [PMID: 22123256 DOI: 10.1159/000331054] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/24/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs that regulate gene expression and function, but little is known about regulation of miRNAs in the kidneys under normal or pathologic conditions. Here, we sought to investigate the potential involvement of miRNAs in renal ischemia/reperfusion (I/R) injury and angiogenesis and to define some of the miRNAs possibly associated with renal angiogenesis. METHODS AND RESULTS Male Balb/c mice were subjected to a standard renal I/R. CD31 immunostaining indicated a significant increase of microvessels in the ischemic region. VEGF and VEGFR2 expression were increased in renal I/R at both the mRNA and protein levels which were detected by qRT-PCR and Western blot, respectively. More importantly, 76 microRNAs exhibited more than 2-fold changes using Agilent microRNA microarray, which contains downregulation of 40 miRNAs and upregulation of 36 miRNAs. Upregulation of miR-210 was confirmed by qRT-PCR with prominent changes at 4 and 24 h after reperfusion. Furthermore, overexpression of miR-210 in HUVEC-12 cells enhances VEGF and VEGFR2 expression and promotes angiogenesis on Matrigel in vitro. CONCLUSION These findings suggest miR-210 may be involved in targeting the VEGF signaling pathway to regulate angiogenesis after renal I/R injury, which provides novel insights into the angiogenesis mechanism of renal I/R injury.
Collapse
Affiliation(s)
- Fen Liu
- Institute of Urology, Nanchang University, Nanchang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hwang-Bo J, Yoo KH, Park JH, Jeong HS, Chung IS. Recombinant canstatin inhibits angiopoietin-1-induced angiogenesis and lymphangiogenesis. Int J Cancer 2011; 131:298-309. [PMID: 21823121 DOI: 10.1002/ijc.26353] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/21/2011] [Indexed: 01/25/2023]
Abstract
We describe the effect of recombinant canstatin, the NC1 domain of the α2 chain of Type IV collagen, on suppression of angiogenesis and lymphangiogenesis both in vitro and in vivo. Recombinant canstatin produced from stably transformed Drosophila S2 cells reduced the expression of angiopoietin-1 in hypoxia mimetic agent, CoCl(2) -treated CT-26 cells. Recombinant canstatin inhibited proliferation, tube formation and migration of human angiopoietin-1 (rhAngpt-1)-treated human umbilical vein endothelial cells (HUVEC) and lymphatic endothelial cells (LEC). Recombinant canstatin suppressed the expression of Tie-2 and vascular endothelial growth factor-3 (VEGFR-3) transcripts in rhAngpt-1-treated HUVEC and LEC, respectively. The inhibitory effect of recombinant canstatin on tumor growth was also investigated using a heterotopic CT-26 colon carcinoma animal (BALB/c mice) model. Recombinant canstatin reduced the final volume and weight of tumors, and blood and lymphatic vessel densities of tumors, which were evaluated by CD-31 and LYVE-1 immunostaining. Immunohistochemical analysis showed that recombinant canstatin dramatically reduced the expression of angiopoietin-1 in CT-26 colon carcinoma-induced tumor, but not the expression of VEGF-C. Tie-2 and VEGFR-3 expressions were also reduced in recombinant canstatin-treated tumors. These results indicate that recombinant canstatin has anti-tumoral activities against CT-26 colon carcinoma cells. Recombinant canstatin reduces the expression of angiopoietin-1 in hypoxia-induced CT-26 cells and inhibits the angiogenic and lymphangiogenic signaling induced by angiopoietin-1. Recombinant canstatin probably inhibits angiogenesis and lymphangiogenesis via suppression of the integrin-dependent FAK signaling induced by angiopoietin-1/Tie-2 and/or VEGFR-3.
Collapse
Affiliation(s)
- Jeon Hwang-Bo
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | | | | | | | | |
Collapse
|
62
|
Prager GW, Poettler M. Angiogenesis in cancer. Basic mechanisms and therapeutic advances. Hamostaseologie 2011; 32:105-14. [PMID: 21837355 DOI: 10.5482/ha-1163] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/18/2011] [Indexed: 12/15/2022] Open
Abstract
Etiological concepts on cancer development, malignant growth and tumour propagation have undergone a revolutionary development during recent years: Among other aspects, the discovery of angiogenesis - the growth of new blood vessels from pre-existing vasculature - as a key element in the pathogenesis of malignancy has opened an abundance of biologic insights and subsequent therapeutic options, which have led to improved prognosis in many cancers including those originating from colon, lung, breast and kidney. Thereby, targeting the major pro-angiogenic stimulus vascular endothelial growth factor (VEGF) became the focus for therapeutic interventions. However, the use of VEGF-targeting drugs has been shown to be of limited efficacy, which might lie in the fact that tumor angiogenesis is mediated by a variety of different subcellular systems. This review focuses on the basic mechanisms involved in angiogenesis, which potentially represent novel targets for pharmacological agents in the treatment of malignancies.
Collapse
Affiliation(s)
- G W Prager
- Comprehensive Cancer Center Vienna, Department of Medicine I, Medical University of Vienna, Austria.
| | | |
Collapse
|
63
|
Phase I/II trial of cilengitide with cetuximab, cisplatin and 5-fluorouracil in recurrent and/or metastatic squamous cell cancer of the head and neck: findings of the phase I part. Br J Cancer 2011; 104:1691-6. [PMID: 21540865 PMCID: PMC3111165 DOI: 10.1038/bjc.2011.152] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background: Novel therapies are needed to improve the poor prognosis of patients with recurrent and/or metastatic squamous cell cancer of the head and neck (SCCHN). Methods: ADVANTAGE is a phase I/II, multicentre study evaluating the integrin inhibitor cilengitide combined with cetuximab and platinum-based chemotherapy in patients with recurrent and/or metastatic SCCHN. The phase I part tested cilengitide (500, 1000 and 2000 mg) twice weekly with standard doses of cetuximab, cisplatin and 5-fluorouracil. Results: Ten patients (9 male, 1 female; median 56 years old) were included in the phase I part. No dose-limiting toxicities (DLTs: grade 3/4 toxicities in the first 3 weeks as defined per protocol) or deaths occurred. The most common adverse events (AEs) were constipation, rash, nausea, anorexia and fatigue. Cilengitide-related grade 3/4 AEs, all of which occurred after the DLT observation period, were anaemia, angioedema, asthenia, mucosal inflammation, nausea and vomiting (one event per category). Best overall tumour response was partial response (PR) for 4 out of 10 patients and stable disease (SD) for 6 out of 10 patients across all cohorts. Disease control rate (complete response, PR and SD) was 100%. Conclusion: Cilengitide combined with cetuximab and platinum-based chemotherapy was well tolerated. No DLTs or unexpected AEs were observed. Cilengitide 2000 mg was considered safe and was selected for the subsequent randomised phase II part assessing progression-free survival.
Collapse
|
64
|
Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat 2011; 128:7-21. [PMID: 21499686 DOI: 10.1007/s10549-011-1499-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/31/2011] [Indexed: 01/13/2023]
Abstract
Metastasis is responsible for the majority of breast cancer-related deaths. The metastatic spread of cancer cells is a complicated process that requires considerable flexibility in the adhesive properties of both tumor cells and other interacting cells. Cell adhesion molecules (CAMs) are membrane receptors that mediate cell-cell and cell-matrix interactions, and are essential for transducing intracellular signals responsible for adhesion, migration, invasion, angiogensis, and organ-specific metastasis. This review will discuss the recent advances in our understanding on the biological functions, signaling mechanisms, and therapeutic potentials of important CAMs involved in breast cancer metastasis.
Collapse
|
65
|
Laco F, Grant MH, Flint DJ, Black RA. Cellular Trans-Differentiation and Morphogenesis Toward the Lymphatic Lineage in Regenerative Medicine. Stem Cells Dev 2011; 20:181-95. [DOI: 10.1089/scd.2009.0527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Filip Laco
- Department of Bioengineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Mary Helen Grant
- Department of Bioengineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - David J. Flint
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Richard A. Black
- Department of Bioengineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| |
Collapse
|
66
|
Molecular imaging of tumor angiogenesis using RGD-labeled iron oxide nanoparticles. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-4004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
67
|
Verbridge SS, Chandler EM, Fischbach C. Tissue-engineered three-dimensional tumor models to study tumor angiogenesis. Tissue Eng Part A 2010; 16:2147-52. [PMID: 20214471 PMCID: PMC4093914 DOI: 10.1089/ten.tea.2009.0668] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 03/08/2010] [Indexed: 11/12/2022] Open
Abstract
Cell-microenvironment interactions play a critical role in the transformation of normal cells into cancer; however, the underlying mechanisms and effects are far from being well understood. Tissue Engineering provides innovative culture tools and strategies to study tumorigenesis under pathologically relevant culture conditions. Specifically, integration of biomaterials, scaffold fabrication, and micro/nano-fabrication techniques offers great promise to reveal the dynamic role of chemical, cell-cell, cell-extracellular matrix, and mechanical interactions in the pathogenesis of cancer. Due to the central importance of blood vessel formation in tumor growth, progression, and drug response, this review will discuss specific design parameters for the development of culture microenvironments to study tumor angiogenesis. Tumor engineering approaches have the potential to revolutionize our understanding of cancer, provide new platforms for testing of anti-cancer drugs, and may ultimately result in improved treatment strategies.
Collapse
Affiliation(s)
- Scott S Verbridge
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
68
|
Thomas M, Felcht M, Kruse K, Kretschmer S, Deppermann C, Biesdorf A, Rohr K, Benest AV, Fiedler U, Augustin HG. Angiopoietin-2 stimulation of endothelial cells induces alphavbeta3 integrin internalization and degradation. J Biol Chem 2010; 285:23842-9. [PMID: 20519501 DOI: 10.1074/jbc.m109.097543] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The angiopoietins (Ang-1 and Ang-2) have been identified as agonistic and antagonistic ligands of the endothelial receptor tyrosine kinase Tie2, respectively. Both ligands have been demonstrated to induce translocation of Tie2 to cell-cell junctions. However, only Ang-1 induces Tie2-dependent Akt activation and subsequent survival signaling and endothelial quiescence. Ang-2 interferes negatively with Ang-1/Tie2 signaling, thereby antagonizing the Ang-1/Tie2 axis. Here, we show that both Ang-1 and Ang-2 recruit beta3 integrins to Tie2. This co-localization is most prominent in cell-cell junctions. However, only Ang-2 stimulation resulted in complex formation among Tie2, alphavbeta3 integrin, and focal adhesion kinase as evidenced by co-immunoprecipitation experiments. Focal adhesion kinase was phosphorylated in the FAT domain at Ser(910) upon Ang-2 stimulation and the adaptor proteins p130Cas and talin dissociated from alphavbeta3 integrin. The alphavbeta3 integrin was internalized, ubiquitinylated, and gated toward lysosomes. Taken together, the experiments define Tie2/alphavbeta3 integrin association-induced integrin internalization and degradation as mechanistic consequences of endothelial Ang-2 stimulation.
Collapse
Affiliation(s)
- Markus Thomas
- Joint Research Division Vascular Biology, Medical Faculty Mannheim (CBTM), Heidelberg University, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Bazaa A, Pasquier E, Defilles C, Limam I, Kessentini-Zouari R, Kallech-Ziri O, El Battari A, Braguer D, El Ayeb M, Marrakchi N, Luis J. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PLoS One 2010; 5:e10124. [PMID: 20405031 PMCID: PMC2853567 DOI: 10.1371/journal.pone.0010124] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 03/11/2010] [Indexed: 01/24/2023] Open
Abstract
Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1) in a dose-dependent manner without being cytotoxic. Using Matrigel and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of alphav beta3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration.
Collapse
Affiliation(s)
- Amine Bazaa
- Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Gupta SK, Vlahakis NE. Integrin alpha9beta1: Unique signaling pathways reveal diverse biological roles. Cell Adh Migr 2010; 4:194-8. [PMID: 20179422 DOI: 10.4161/cam.4.2.10900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane heterodimeric receptors responsible for transducing and modulating signals between the extracellular matrix and cytoskeleton, ultimately influencing cell functions such as adhesion and migration. Integrin alpha9beta1 is classified within a two member sub-family of integrins highlighted in part by its specialized role in cell migration. The importance of this role is demonstrated by its regulation of numerous biological functions including lymphatic valve morphogenesis, lymphangiogenesis, angiogenesis and hematopoietic homeostasis. Compared to other integrins the signaling mechanisms that transduce alpha9beta1-induced cell migration are not well described. We have recently shown that Src tyrosine kinase plays a key proximal role to control alpha9beta1 signaling. Specifically it activates inducible nitric oxide synthase (iNOS) and in turn nitric oxide (NO) production as a means to transduce cell migration. Furthermore, we have also described a role for FAK, Erk and Rac1 in alpha9beta1 signal transduction. Here we provide an over view of known integrin alpha9beta1 signaling pathways and highlight its roles in diverse biological conditions.
Collapse
Affiliation(s)
- Shiv K Gupta
- Thoracic Disease Research Unit, Division of Pulmonary & Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
71
|
Gastrointestinal cancer metastasis and lymphatic advancement. Surg Today 2010; 40:301-6. [PMID: 20339983 DOI: 10.1007/s00595-009-4142-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 08/28/2009] [Indexed: 12/16/2022]
Abstract
The role of angiogenesis in the growth of solid tumors is well established, but the role of lymphatic vessels and the relationship between lymphangiogenesis and tumor spread are less clear. Recently, the molecular pathway that signals lymphangiogenesis and specific markers for lymphatic endothelium have been discovered; however, the lymphatic pathway of cancer metastasis is only partly clarified. Several investigators from the mid 20th century indicated the existence of lymphatico-venous communications, and some observed the retrograde filling of lymph flow and lymphatico-venous communication in obstructive lymphopathy. In the 1960s Burn reported the importance of lymphovenous communication in his clinical and animal experimental data. Thus, the role of potential peripheral lymphatico-venous communication must be considered in the mechanism of cancer metastasis. We observed the lymphatico-venous (portal) communication, as well as lymph retention and reflux, in a rat model of mesenteric lymph vessel obstruction. Based on the phenomenon of lymphatico-venous communication and lymph flow reflux by lymphatic obstruction, we speculate that tumor cell obstruction in the lymph system will lead to the establishment of liver and/or peritoneal metastasis. Clinically, we observed extranodal cancer invasion in a model of lymphatic obstruction, and noted a strong relationship between extranodal invasion and liver or peritoneal metastasis. Thus, the existence of peritoneal and liver metastasis via a lymphatic pathway should be considered.
Collapse
|
72
|
Kostidou E, Topouridou K, Daniilidis A, Kaloyianni M, Koliakos G. Oxidized laminin-1 induces increased monocyte attachment and expression of ICAM-1 in endothelial cells. Int J Exp Pathol 2010; 90:630-7. [PMID: 19958399 DOI: 10.1111/j.1365-2613.2009.00686.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis has been associated with increased oxidative stress and monocyte recruitment by endothelial cells. Sub-endothelial basement membrane proteins, such as laminins that play a central role in cell adhesion, are exposed to reactive oxygen species. In the present study monocyte attachment on human umbilical cord vein endothelial cells (HUVEC) that were preattached to oxidized or native laminin, was investigated. Intracellular cell adhesion molecule-1 (ICAM-1) expression by HUVEC was estimated by an enzyme-linked immunosorbent assay. HUVEC attachment to oxidized or native laminin-1 was examined using the Hemacolor kit. Anti-alphaL, anti-alphaM, anti-alpha2 and anti-beta2 integrin subunit antibodies were used in order to further investigate the above phenomena. HUVEC that were preattached to oxidized laminin expressed higher levels of ICAM-1 and monocytes attached at a higher degree to these cells as compared to HUVEC that were preattached to native laminin. Incubation of monocytes with monoclonal antibodies against the alphaM and beta2 integrin subunits equalized the above mentioned differences. Moreover, HUVEC attached to oxidized laminin at a higher degree as compared to native laminin. This difference was equalized after incubation with the antibody against the alpha2 integrin subunit. These results indicate a modified interaction between HUVEC and the basement membranes in cases where laminin is oxidatively modified. This modified interaction results in increased ICAM-1 expression by endothelial cells and consequently increased monocyte recruitment capacity.
Collapse
Affiliation(s)
- Elena Kostidou
- Laboratory of Animal Physiology, Department of Zoology and Biological Chemistry, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
73
|
Robert F, Pelletier J. Translation initiation: a critical signalling node in cancer. Expert Opin Ther Targets 2009; 13:1279-93. [PMID: 19705976 DOI: 10.1517/14728220903241625] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a master regulator of translation initiation that controls the recruitment of ribosomes to mRNA templates in response to intracellular and extracellular cues. Evidence suggests that mTOR and its direct downstream targets, S6K and eIF4E/4E-BP, play significant roles in oncogenesis, and that inhibiting this pathway holds promise as an anti-proliferative approach. Recent genome-wide analyses of mutations in human cancers indicate that transformed cells activate a handful of processes and signalling pathways that are major contributors to their phenotype. Here we review the current literature implicating mTOR and translation initiation downstream of many of these various signalling pathways and processes usurped in human cancers. This review highlights the widespread activation of mTOR/eIF4E following acquisition of oncogenic lesions and its implication in promoting the transformation phenotype and indicates that targeting the control of translation initiation makes logical sense as a broad-acting therapeutic approach.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry and Goodman cancer centre, McGill University, McIntyre Medical Sciences Building, Room 810, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada
| | | |
Collapse
|