51
|
Sanchez S, Lemmens S, Baeten P, Sommer D, Dooley D, Hendrix S, Gou Fabregas M. HDAC3 Inhibition Promotes Alternative Activation of Macrophages but Does Not Affect Functional Recovery after Spinal Cord Injury. Exp Neurobiol 2018; 27:437-452. [PMID: 30429652 PMCID: PMC6221838 DOI: 10.5607/en.2018.27.5.437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
After spinal cord injury (SCI), monocyte derived macrophages play a detrimental role. Histone deacetylases (HDACs) are central epigenetic regulators of macrophage-polarization. We hypothesized that HDAC3 inhibition suppresses the pro-inflammatory macrophage phenotype (M1), promotes the anti-inflammatory phenotype (M2) and improves functional recovery after SCI. Therefore, two inhibitors of HDAC3 were selected, namely scriptaid and RGFP966. The impact on macrophage polarization was studied by investigating the effect on gene and protein expression of selected M1 and M2 markers. We show that scriptaid differentially influences M1 and M2 markers. It increases CD86 and iNOS gene expression and decreases GPR18, CD38, FPR2 and Arg-1 gene expression as well as the production of IL-6 and NO. RGFP966 primarily increased the expression of the M2 markers Arg-1 and Ym1 and reduced the production of IL-6 (M1). RGFP966 and scriptaid reduced the formation of foamy macrophages. Finally, to investigate the impact of HDAC3 inhibition on functional recovery after SCI, we studied the effects of RGFP966 and scriptaid in an in vivo T-cut hemisection SCI model. Histological analyses were performed on spinal cord sections to determine lesion size and astrogliosis, demyelinated area and selected infiltrating immune cells. RGFP966 and scriptaid did not affect functional recovery or histopathological outcome after SCI. In conclusion, these results indicate that specific HDAC3 inhibition with RGFP966 promotes alternative activation of macrophages and reduces the formation of foamy macrophages, but does not lead to a better functional recovery after SCI.
Collapse
Affiliation(s)
- Selien Sanchez
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| | - Stefanie Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| | - Paulien Baeten
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| | - Daniela Sommer
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| | - Dearbhaile Dooley
- Health Science Centre, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| | - Myriam Gou Fabregas
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| |
Collapse
|
52
|
Zhang H, Wang W, Li N, Li P, Liu M, Pan J, Wang D, Li J, Xiong Y, Xia L. LncRNA DGCR5 suppresses neuronal apoptosis to improve acute spinal cord injury through targeting PRDM5. Cell Cycle 2018; 17:1992-2000. [PMID: 30146926 DOI: 10.1080/15384101.2018.1509622] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) usually results in neurological damage. DGCR5 is closely related to neurological disorders, and this study aims to explore its role in neuronal apoptosis in acute SCI. The ASCI model was established in rats, and the Basso, Beattie, and Bresnahan (BBB) scoring was used to assess the neurological function. The expression of RNA and protein was quantified by quantitative real-time PCR (qRT-PCR) and western blotting, respectively. The oxygenglucose deprivation (OGD) was performed upon neurons and apoptosis was evaluated by flow cytometry. The interaction and binding between DGCR5 and PRDM5 was detected with RNA pull-down and RIP assay, respectively. DGCR5 was down-regulated in ASCI model rat and in neurons treated with hypoxia. Over-expression of DGCR5 inhibited neuronal apoptosis. Interaction between DGCR5 negatively regulated PRDM5 protein expression by binding and interacting with it. DGCR5 inhibited neuronal apoptosis through PRDM5. Over-expressed DGCR5 ameliorated ASCI in rat. DGCR5 suppresses neuronal apoptosis through directly binding and negatively regulating PRDM5, and thereby ameliorating ASCI.
Collapse
Affiliation(s)
- Huafeng Zhang
- a Department of Orthopedics , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Wengang Wang
- a Department of Orthopedics , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ning Li
- a Department of Orthopedics , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Peng Li
- a Department of Orthopedics , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ming Liu
- a Department of Orthopedics , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Junwei Pan
- a Department of Orthopedics , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Dan Wang
- a Department of Orthopedics , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Junwei Li
- a Department of Orthopedics , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yuanyuan Xiong
- b Department of Hematology , the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital , Zhengzhou , China
| | - Lei Xia
- a Department of Orthopedics , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
53
|
Zhang H, Li D, Zhang Y, Li J, Ma S, Zhang J, Xiong Y, Wang W, Li N, Xia L. Knockdown of lncRNA BDNF-AS suppresses neuronal cell apoptosis via downregulating miR-130b-5p target gene PRDM5 in acute spinal cord injury. RNA Biol 2018; 15:1071-1080. [PMID: 29995562 DOI: 10.1080/15476286.2018.1493333] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The present study was designed to investigate the molecular mechanism and biological roles of lncRNA brain-derived neurotrophic factor antisense (lncRNA BDNF-AS) in acute spinal cord injury (ASCI). METHODS The rat model of ASCI and hypoxic cellular model were established to detect the expression of BDNF-AS, miR-130b-5p, PR (PRDI-BF1 and RIZ) domain protein 5 (PRDM5) and cleaved caspase 3 (c-caspase 3) using qRT-PCR and western blot. Basso, Beattie and Bresnahan (BBB) score was carried out to assess neurological function. Flow cytometry was used to determine the apoptosis of neuronal cells. The association among BDNF-AS, miR-130b-5p and PRDM5 were disclosed by RNA immunoprecipitation (RIP) assay, RNA pull-down assay and dual-luciferase reporter assay. RESULTS BDNF-AS, PRDM5 and c-caspase 3 expression were significantly upregulated, while miR-130b-5p was suppressed in the ASCI group and neuronal cells following hypoxia treatment. BDNF-AS knockdown inhibited neuronal cell apoptosis. Further studies indicated that BDNF-AS functioned as a competing endogenous RNA (ceRNA) by sponging miR-130b-5p in neuronal cells. Further investigations demonstrated that PRDM5 was a target of miR-130b-5p and BDNF-AS knockdown exerted anti-apoptotic effects via miR-130b-5p/PRDM5 axis. CONCLUSION The lncRNA BDNF-AS/miR-130b-5p/PRDM5 axis might be a promising therapeutic target for ASCI.
Collapse
Affiliation(s)
- Huafeng Zhang
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Dongzhe Li
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Yi Zhang
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Jianqiang Li
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Shengli Ma
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Jianwei Zhang
- b Department of Urology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Yuanyuan Xiong
- c Department of Hematology , The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital , Zhengzhou , Henan Province , China
| | - Wengang Wang
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Ning Li
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Lei Xia
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| |
Collapse
|
54
|
Zhang Y, Su Z, Liu HL, Li L, Wei M, Ge DJ, Zhang ZJ. Effects of miR-26a-5p on neuropathic pain development by targeting MAPK6 in in CCI rat models. Biomed Pharmacother 2018; 107:644-649. [PMID: 30118880 DOI: 10.1016/j.biopha.2018.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/23/2023] Open
Abstract
MicroRNA are emerging as significant regulators of neuropathic pain progression. In addition, neuroinflammation contributes a lot to neuropathic pain. miR-26a-5p has been identified as an inflammation-associated miRNA in multiple pathological processes. However, little is known about the biological role of miR-26a-5p in neuroinflammation and neuropathic pain development. Therefore, we aimed to investigate the function of miR-26a-5p in neuropathic pain by establishing a rat model using chronic sciatic nerve injury (CCI). A significant decrease of miR-26a-5p expression was observed in the spinal cord tissues form the CCI rats compared to the control group. Moreover, overexpression of miR-26a-5p significantly repressed neuropathic pain and neuroinflammation in CCI rats. MAPK6 was identified as a direct downstream target gene of miR-26a-5p and confirmed by dual-luciferase reporter assays. As displayed, overexpression of miR-26a-5p greatly reduced MAPK6 levels in vitro and in vivo. Meanwhile, MAPK6 expression and miR-26a-5p were oppositely correlated in CCI rats. Furthermore, up-regulation of MAPK6 obviously reversed the suppressive effect of miR-26a-5p on neuroinflammation and neuropathic pain progression. Taken these together, our results implied that miR-26a-5p could act as a negative regulator of neuropathic pain development through targeting MAPK6, which indicated that miR-26a-5p might serve as a potential therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, PR China
| | - Zhen Su
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, PR China
| | - Hai-Lin Liu
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, PR China
| | - Lin Li
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, PR China
| | - Meng Wei
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, PR China
| | - Dong-Jian Ge
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, PR China
| | - Zhi-Jie Zhang
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, PR China.
| |
Collapse
|
55
|
Wang N, Feng Z, Zhao W, Zhang Z, Zhang L. Ultrashortwave radiation promotes the recovery of spinal cord injury by inhibiting inflammation via suppression of the MK2/TNF‑α pathway. Int J Mol Med 2018; 42:1909-1916. [PMID: 30066830 PMCID: PMC6108855 DOI: 10.3892/ijmm.2018.3786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/12/2018] [Indexed: 01/10/2023] Open
Abstract
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) and its mediated inflammation are involved in various diseases, including spinal cord injury (SCI). Ultrashortwave (USW) radiation has previously been reported to exert a protective effect on SCI. In the present study, through a series of reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot and immunofluorescence assay, it was found that MK2 and tumor necrosis factor (TNF)-α/interleukin (IL)-1β were elevated in patients with SCI and in H2O2-treated C8-D1A cells. Through gene level and protein level detection by using of RT-qPCR, western blot, immunofluorescence assay and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling assay, it was demonstrated that USW radiation inhibited the expression of MK2/TNF-α/IL-1β and suppressed the apoptosis of H2O2-treated C8-D1A cells. Furthermore, it was confirmed that the overexpression of MK2 reversed the protective effect of USW on C8-D1A cells, which indicated that USW achieved its function via regulation of the MK2/TNF-α/IL-1β pathway. Finally, using a constructed in vivo model and a series of RT-qPCR, western blot and IHC detection, it was confirmed that USW suppressed the expression of MK2 to promote functional recovery following SCI. The findings of the present study may provide a novel target and improve on the current understanding of how USW functions in the treatment of SCI.
Collapse
Affiliation(s)
- Nan Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Zhiping Feng
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Zhiqiang Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
56
|
Zhou HJ, Wang LQ, Wang DB, Yu JB, Zhu Y, Xu QS, Zheng XJ, Zhan RY. Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKβ/NF-κB signaling pathway. Am J Physiol Cell Physiol 2018; 315:C52-C61. [PMID: 29631367 DOI: 10.1152/ajpcell.00278.2017] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was widely recognized to be implicated in human cancer, vascular diseases, and neurological disorders. This study was to explore the role and underlying mechanism of MALAT1 in acute spinal cord injury (ASCI). ASCI models in adult rats were established and demonstrated by a numerical decrease in BBB scores. Expression profile of MALAT1 and miR-199b following ASCI in rats and in vitro was determined using quantitative real-time PCR. RNA pull-down assays combined with RIP assays were performed to explore the interaction between MALAT1 and miR-199b. In the present study, MALAT1 expression was significantly increased (2.4-fold that of control) in the spinal cord of the rat contusion epicenter accompanied by activation of IKKβ/NF-κB signaling pathway and an increase in the level of proinflammatory cytokines TNF-α and IL-1β. Upon treatment with LPS, MALAT1 expression dramatically increased in the microglia in vitro, but knockdown of MALAT1 attenuated LPS-induced activation of MGs and TNF-α and IL-1β production. Next, we confirmed that LPS-induced MALAT1 activated IKKβ/NF-κB signaling pathway and promoted the production of proinflammatory cytokines TNF-α and IL-1β through downregulating miR-199b. More importantly, MALAT1 knockdown gradually improved the hindlimb locomotor activity of ASCI rats as well as inhibited TNF-α, IL-1β levels, and Iba-1 protein, the marker of activated microglia in injured spinal cords. Our study demonstrated that MALAT1 was dysregulated in ASCI rats and in LPS-activated MGs, and MALAT1 knockdown was expected to attenuate ASCI through repressing inflammatory response of MGs.
Collapse
Affiliation(s)
- Heng-Jun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Li-Qing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Duan-Bu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jian-Bo Yu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qing-Sheng Xu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiu-Jue Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ren-Ya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
57
|
Riemann L, Younsi A, Scherer M, Zheng G, Skutella T, Unterberg AW, Zweckberger K. Transplantation of Neural Precursor Cells Attenuates Chronic Immune Environment in Cervical Spinal Cord Injury. Front Neurol 2018; 9:428. [PMID: 29951030 PMCID: PMC6008566 DOI: 10.3389/fneur.2018.00428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
Inflammation after traumatic spinal cord injury (SCI) is non-resolving and thus still present in chronic injury stages. It plays a key role in the pathophysiology of SCI and has been associated with further neurodegeneration and development of neuropathic pain. Neural precursor cells (NPCs) have been shown to reduce the acute and sub-acute inflammatory response after SCI. In the present study, we examined effects of NPC transplantation on the immune environment in chronic stages of SCI. SCI was induced in rats by clip-compression of the cervical spinal cord at the level C6-C7. NPCs were transplanted 10 days post-injury. The functional outcome was assessed weekly for 8 weeks using the Basso, Beattie, and Bresnahan scale, the CatWalk system, and the grid walk test. Afterwards, the rats were sacrificed, and spinal cord sections were examined for M1/M2 macrophages, T lymphocytes, astrogliosis, and apoptosis using immunofluorescence staining. Rats treated with NPCs had compared to the control group significantly fewer pro-inflammatory M1 macrophages and reduced immunodensity for inducible nitric oxide synthase (iNOS), their marker enzyme. Anti-inflammatory M2 macrophages were rarely present 8 weeks after the SCI. In this model, the sub-acute transplantation of NPCs did not support survival and proliferation of M2 macrophages. Post-traumatic apoptosis, however, was significantly reduced in the NPC group, which might be explained by the altered microenvironment following NPC transplantation. Corresponding to these findings, reactive astrogliosis was significantly reduced in NPC-transplanted animals. Furthermore, we could observe a trend toward smaller cavity sizes and functional improvement following NPC transplantation. Our data suggest that transplantation of NPCs following SCI might attenuate inflammation even in chronic injury stages. This might prevent further neurodegeneration and could also set a stage for improved neuroregeneration after SCI.
Collapse
Affiliation(s)
- Lennart Riemann
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Scherer
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Guoli Zheng
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Skutella
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Zweckberger
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
58
|
Wang C, Wang Q, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Zheng G, Zhang Z, Wu Y, Tian N, Zhou Y, Xu H, Zhang X. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. J Cell Mol Med 2017; 22:1148-1166. [PMID: 29148269 PMCID: PMC5783886 DOI: 10.1111/jcmm.13368] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disease; however, few drugs have been proved to treat SCI effectively. Neuroinflammation is the major pathogenesis of SCI secondary injury and considered to be the therapeutic target of SCI. Salidroside (Sal) has been reported to exert anti‐inflammatory effects in airway, adipose and myocardial tissue; however, the role of Sal in SCI therapeutics has not been clarified. In this study, we showed that Sal could improve the functional recovery of spinal cord in rats as revealed by increased BBB locomotor rating scale, angle of incline, and decreased cavity of spinal cord injury and apoptosis of neurons in vivo. Immunofluorescence double staining of microglia marker and M1/M2 marker demonstrated that Sal could suppress M1 microglia polarization and activate M2 microglia polarization in vivo. To verify how Sal exerts its effects on microglia polarization and neuron protection, we performed the mechanism study in vitro in microglia cell line BV‐2 and neuron cell line PC12. The results showed that Sal prevents apoptosis of PC12 cells in coculture with LPS‐induced M1 BV‐2 microglia, also the inflammatory secretion phenotype of M1 BV‐2 microglia was suppressed by Sal, and further studies demonstrated that autophagic flux regulation through AMPK/mTOR pathway was involved in Sal regulated microglia polarization after SCI. Overall, our study illustrated that Sal could promote spinal cord injury functional recovery in rats, and the mechanism may relate to its microglia polarization modulation through AMPK‐/mTOR‐mediated autophagic flux stimulation.
Collapse
Affiliation(s)
- Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yiting Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Jianxiang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Zhenhua Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Qian Tang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
59
|
A causal relationship between the neurotherapeutic effects of miR182/7a and decreased expression of PRDM5. Biochem Biophys Res Commun 2017; 490:1-7. [PMID: 28552531 DOI: 10.1016/j.bbrc.2017.05.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is terrible damage resulting in the deficiencies and necrosis of neurology and causes infinite inconvenience to sufferers. The therapy of SCI still meets a larger number of problems. Therefore, the underlying mechanism and novel therapy of acute SCI (ASCI) are urgent to explore. MATERIALS AND METHODS The SCI model was established in rats. The expression of miR-182/miR-7a and PRDM5 at mRNA level was detected by quantitative real-time PCR and the protein expression of PRDM5 and c-caspase 3 was assessed by western blotting assays. The apoptosis of spinal cord neurons (SCN) was assessed on flow cytometry. The transfection of cells was performed by Lipofectamine 2000 kit. The relationship between PRDM5 and miR-182/miR-7a was examined by Luciferase assay. RESULTS The expression of PRDM5 was up-regulated at either mRNA (2.212 folds) or protein level after SCI in rats, and knockdown of PRDM5 in SCN declined the c-caspase3 expression. In addition, the expression of miR-182 and miR-7a was decreased by 44.6% and 39.3% after SCI in rats. Moreover, the expression of miR-182 and miR-7a were negatively correlated with the level of PRDM5 expression, and the expression of PRDM5 was inhibited due to the increase of miR-182 and/or miR-7a expression. Moreover, both miR-182 and miR-7a could regulate PRDM5 to control SCN apoptosis. According to the BBB score increased 2 folds, the intrathecal injection of miR-182 and miR-7a improved the neurological function of rats. CONCLUSION Inhibition of PRDM5 which was apparently negative correlation with miR-182 and miR-7a could suppress the neurons apoptosis to attenuate acute spinal cord injury in rats.
Collapse
|
60
|
Chin TY, Kiat SS, Faizul HG, Wu W, Abdullah JM. The Effects of Minocycline on Spinal Root Avulsion Injury in Rat Model. Malays J Med Sci 2017; 24:31-39. [PMID: 28381927 DOI: 10.21315/mjms2017.24.1.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/12/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The neuroprotective role of minocycline in the treatment of brachial plexus injury is controversial. OBJECTIVE To study the neuroprotective effect of minocycline via different routes in adult Sprague Dawley rats with brachial plexus injury. METHODS The C7 nerve roots of the animals were avulsed via an anterior extravertebral approach. Traction force was used to transect the ventral motor nerve roots at the preganglionic level. Intraperitoneal and intrathecal minocycline (50 mg/kg for the first week and 25 mg/kg for the second week) were administered to promote motor healing. The spinal cord was harvested six weeks after the injury, and structural changes following the avulsion injury and pharmacological intervention were analysed. RESULTS Motor neuron death and microglial proliferation were observed after the administration of minocycline via two different routes (intraperitoneal and intrathecal) following traumatic avulsion injury of the ventral nerve root. The administration of intraperitoneal minocycline reduced the microglia count but increased the motor neuron count. Intrathecal minocycline also reduced the microglial count, with a greater reduction than in the intraperitoneal group, but it decreased the motor neuron count. CONCLUSIONS Intraperitoneal minocycline increased motor neuron survival by inhibiting microglial proliferation following traumatic avulsion injury of the nerve root. The inhibitory effect was augmented by the use of intrathecal minocycline, in which the targeted drug delivery method increased the bioavailability of the therapeutic agent. However, motor neuron survival was impaired at a higher concentration of minocycline via the intrathecal route due to the more efficient method of drug delivery. Microglial suppression via minocycline can have both beneficial and damaging effects, with a moderate dose being beneficial as regards motor neuron survival but a higher dose proving neurotoxic due to impairment of the glial response and Wallerian degeneration, which is a pre-requisite for regeneration.
Collapse
Affiliation(s)
- Tan Yew Chin
- Department of Neurosciences School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Center for Neuroscience Services and Research, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sim Sze Kiat
- Department of Neurosciences School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Hizal Ghazali Faizul
- Department of Neurosciences School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wutian Wu
- Department of Anatomy, Hong Kong University, 21 Sassoon Road, Hong Kong
| | - Jafri Malin Abdullah
- Department of Neurosciences School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Center for Neuroscience Services and Research, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
61
|
Qiao H, He X, Zhang Q, Zhang N, Li L, Hui Y, Li W, Wang D, Wu Z. Α-synuclein induces microglial cell migration through stimulating HIF-1α accumulation. J Neurosci Res 2017; 95:1809-1817. [PMID: 28134982 DOI: 10.1002/jnr.24012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/28/2016] [Accepted: 12/12/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Hongfei Qiao
- Departments of Rehabilitation Medicine; the Second Affiliated Hospital of Xi’an Jiaotong University; Xi’an China
| | - Xijing He
- Departments of Orthopedics; the Second Affiliated Hospital of Xi’an Jiaotong University; Xi’an China
| | - Qiaojun Zhang
- Departments of Rehabilitation Medicine; the Second Affiliated Hospital of Xi’an Jiaotong University; Xi’an China
| | - Ni Zhang
- Departments of Rehabilitation Medicine; the Second Affiliated Hospital of Xi’an Jiaotong University; Xi’an China
| | - Libo Li
- Departments of Rehabilitation Medicine; the Second Affiliated Hospital of Xi’an Jiaotong University; Xi’an China
| | - Yanping Hui
- Departments of Rehabilitation Medicine; the Second Affiliated Hospital of Xi’an Jiaotong University; Xi’an China
| | - Wenjuan Li
- Departments of Rehabilitation Medicine; the Second Affiliated Hospital of Xi’an Jiaotong University; Xi’an China
| | - Dong Wang
- Departments of Orthopedics; the Second Affiliated Hospital of Xi’an Jiaotong University; Xi’an China
| | - Zhonghen Wu
- Departments of Rehabilitation Medicine; the Second Affiliated Hospital of Xi’an Jiaotong University; Xi’an China
| |
Collapse
|
62
|
Jin Y, Yang S, Zhang X. Reduction of neuronal damage and promotion of locomotor recovery after spinal cord injury by early administration of methylprednisolone: possible involvement of autophagy pathway. RSC Adv 2017. [DOI: 10.1039/c6ra25794a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interaction between autophagy and apoptosis participates in the neuroprotective effect of methylprednisolone on spinal cord injury.
Collapse
Affiliation(s)
- Yichao Jin
- Department of Neurosurgery
- Shanghai Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Shaofeng Yang
- Department of Neurosurgery
- Shanghai Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| | - Xiaohua Zhang
- Department of Neurosurgery
- Shanghai Renji Hospital
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200127
| |
Collapse
|
63
|
Wu Y, Lin YH, Shi LL, Yao ZF, Xie XM, Jiang ZS, Tang J, Hu JG, Lü HZ. Temporal kinetics of CD8 + CD28 + and CD8 + CD28 - T lymphocytes in the injured rat spinal cord. J Neurosci Res 2016; 95:1666-1676. [PMID: 27898179 DOI: 10.1002/jnr.23993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/09/2016] [Accepted: 10/31/2016] [Indexed: 01/13/2023]
Abstract
This study aims to explore the temporal changes of cytotoxic CD8+ CD28+ and regulatory CD8+ CD28- T-cell subsets in the lesion microenvironment after spinal cord injury (SCI) in rats, by combination of immunohistochemistry (IHC) and flow cytometry (FCM). In the sham-opened spinal cord, few CD8+ T cells were found. After SCI, the CD8+ T cells were detected at one day post-injury (dpi), then markedly increased and were significantly higher at 3, 7, and 14 dpi compared with one dpi (p < 0.01), the highest being seven dpi. In CD8+ T cells, more than 90% were CD28+ , and there were only small part of CD28- ( < 10%). After 14 days, the infiltrated CD8+ T cells were significantly decreased, and few could be found in good condition at 21 and 28 dpi. Annexin V and propidium iodide (PI) staining showed that the percentages of apoptotic/necrotic CD8+ cells at 14 dpi and 21 dpi were significantly higher than those of the other early time-points (p < 0.01). These results indicate that CD8+ T cells could rapidly infiltrate into the injured spinal cords and survive two weeks, however, cytotoxic CD8+ T cells were dominant. Therefore, two weeks after injury might be the "time window" for treating SCI by prolonging survival times and increasing the fraction of CD8+ regulatory T-cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Wu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Yu-Hong Lin
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Ling-Ling Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Zong-Feng Yao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China
| | - Xiu-Mei Xie
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China
| | - Zheng-Song Jiang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Jie Tang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| |
Collapse
|
64
|
Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells. Exp Cell Res 2016; 349:60-67. [PMID: 27693495 DOI: 10.1016/j.yexcr.2016.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Inflammatory response played an important role in the progression of spinal cord injury (SCI). Several miRNAs were associated with the pathology of SCI. However, the molecular mechanism of miRNA involving in inflammatory response in acute SCI (ASCI) was poorly understood. Sprague-Dawley (SD) rats were divided into 2 groups: control group (n=6) and acute SCI (ASCI) group (n=6). The expression of miR-199b and IκB kinase β-nuclear factor-kappa B (IKKβ-NF-κB) signaling pathway were evaluated by quantitative reverse transcription-PCR (qRT-PCR) in rats with ASCI and in primary microglia activated by lipopolysaccharide (LPS). We found that downregulation of miR-199b and activation of IKKβ/NF-κB were observed in rats after ASCI and in activated microglia. miR-199b negatively regulated IKKβ by targeting its 3'- untranslated regions (UTR) through using luciferase reporter assay. Overexpression of miR-199b reversed the up-regulation of IKKβ, p-p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in LPS-treated BV2 cells assessed by western blotting analysis. In addition, BMS-345541 reversed the up-regulation effects of miR-199b inhibitor on the expression of TNF-α and IL-1β. In the SCI rats, overexpression of miR-199b attenuated ASCI and decreased the expression of IKKβ-NF-κB signaling pathway and TNF-α and IL-1β. These results indicated that miR-199b attenuated ASCI at least partly through IKKβ-NF-κB signaling pathway and affecting the function of microglia. Our findings suggest that miR-199b may be employed as therapeutic for spinal cord injury.
Collapse
|
65
|
Filippi M, Boido M, Pasquino C, Garello F, Boffa C, Terreno E. Successful in vivo MRI tracking of MSCs labeled with Gadoteridol in a Spinal Cord Injury experimental model. Exp Neurol 2016; 282:66-77. [DOI: 10.1016/j.expneurol.2016.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/26/2016] [Accepted: 05/18/2016] [Indexed: 01/02/2023]
|
66
|
Hayakawa K, Haas C, Fischer I. Examining the properties and therapeutic potential of glial restricted precursors in spinal cord injury. Neural Regen Res 2016; 11:529-33. [PMID: 27212899 PMCID: PMC4870895 DOI: 10.4103/1673-5374.180725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the aftermath of spinal cord injury, glial restricted precursors (GRPs) and immature astrocytes offer the potential to modulate the inflammatory environment of the injured spinal cord and promote host axon regeneration. Nevertheless clinical application of cellular therapy for the repair of spinal cord injury requires strict quality-assured protocols for large-scale production and preservation that necessitates long-term in vitro expansion. Importantly, such processes have the potential to alter the phenotypic and functional properties and thus therapeutic potential of these cells. Furthermore, clinical use of cellular therapies may be limited by the inflammatory microenvironment of the injured spinal cord, altering the phenotypic and functional properties of grafted cells. This report simulates the process of large-scale GRP production and demonstrates the permissive properties of GRP following long-term in vitro culture. Furthermore, we defined the phenotypic and functional properties of GRP in the presence of inflammatory factors, and call attention to the importance of the microenvironment of grafted cells, underscoring the importance of modulating the environment of the injured spinal cord.
Collapse
Affiliation(s)
- Kazuo Hayakawa
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Christopher Haas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
67
|
Tremoleda JL, Thau-Zuchman O, Davies M, Foster J, Khan I, Vadivelu KC, Yip PK, Sosabowski J, Trigg W, Michael-Titus AT. In vivo PET imaging of the neuroinflammatory response in rat spinal cord injury using the TSPO tracer [(18)F]GE-180 and effect of docosahexaenoic acid. Eur J Nucl Med Mol Imaging 2016; 43:1710-22. [PMID: 27154521 PMCID: PMC4932147 DOI: 10.1007/s00259-016-3391-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/04/2016] [Indexed: 12/30/2022]
Abstract
Purpose Traumatic spinal cord injury (SCI) is a devastating condition which affects millions of people worldwide causing major disability and substantial socioeconomic burden. There are currently no effective treatments. Modulating the neuroinflammatory (NI) response after SCI has evolved as a major therapeutic strategy. PET can be used to detect the upregulation of the 18-kDa translocator protein (TSPO), a hallmark of activated microglia in the CNS. We investigated whether PET imaging using the novel TSPO tracer [18F]GE-180 can be used as a clinically relevant biomarker for NI in a contusion SCI rat model, and we present data on the modulation of NI by the lipid docosahexaenoic acid (DHA). Methods A total of 22 adult male Wistar rats were subjected to controlled spinal cord contusion at the T10 spinal cord level. Six non-injured and ten T10 laminectomy only (LAM) animals were used as controls. A subset of six SCI animals were treated with a single intravenous dose of 250 nmol/kg DHA (SCI-DHA group) 30 min after injury; a saline-injected group of six animals was used as an injection control. PET and CT imaging was carried out 7 days after injury using the [18F]GE-180 radiotracer. After imaging, the animals were killed and the spinal cord dissected out for biodistribution and autoradiography studies. In vivo data were correlated with ex vivo immunohistochemistry for TSPO. Results In vivo dynamic PET imaging revealed an increase in tracer uptake in the spinal cord of the SCI animals compared with the non-injured and LAM animals from 35 min after injection (P < 0.0001; SCI vs. LAM vs. non-injured). Biodistribution and autoradiography studies confirmed the high affinity and specific [18F]GE-180 binding in the injured spinal cord compared with the binding in the control groups. Furthermore, they also showed decreased tracer uptake in the T10 SCI area in relation to the non-injured remainder of the spinal cord in the SCI-DHA group compared with the SCI-saline group (P < 0.05), supporting a NI modulatory effect of DHA. Immunohistochemistry showed a high level of TSPO expression (38 %) at the T10 injury site in SCI animals compared with that in the non-injured animals (6 %). Conclusion [18F]GE-180 PET imaging can reveal areas of increased TSPO expression that can be visualized and quantified in vivo after SCI, offering a minimally invasive approach to the monitoring of NI in SCI models and providing a translatable clinical readout for the testing of new therapies. Electronic supplementary material The online version of this article (doi:10.1007/s00259-016-3391-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J L Tremoleda
- Centre for Trauma Sciences, The Blizard Institute, London, UK.
| | - O Thau-Zuchman
- Centre for Trauma Sciences, The Blizard Institute, London, UK
| | - M Davies
- Centre for Trauma Sciences, The Blizard Institute, London, UK
| | - J Foster
- Barts Cancer Institute, Queen Mary University London, London, UK
| | - I Khan
- GE Healthcare Ltd, Amersham, UK
| | - K C Vadivelu
- Centre for Trauma Sciences, The Blizard Institute, London, UK
| | - P K Yip
- Centre for Trauma Sciences, The Blizard Institute, London, UK
| | - J Sosabowski
- Barts Cancer Institute, Queen Mary University London, London, UK
| | - W Trigg
- GE Healthcare Ltd, Amersham, UK
| | | |
Collapse
|
68
|
Poniatowski ŁA, Wojdasiewicz P, Krawczyk M, Szukiewicz D, Gasik R, Kubaszewski Ł, Kurkowska-Jastrzębska I. Analysis of the Role of CX3CL1 (Fractalkine) and Its Receptor CX3CR1 in Traumatic Brain and Spinal Cord Injury: Insight into Recent Advances in Actions of Neurochemokine Agents. Mol Neurobiol 2016; 54:2167-2188. [PMID: 26927660 PMCID: PMC5355526 DOI: 10.1007/s12035-016-9787-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
CX3CL1 (fractalkine) is the only member of the CX3C (delta) subfamily of chemokines which is unique and combines the properties of both chemoattractant and adhesion molecules. The two-form ligand can exist either in a soluble form, like all other chemokines, and as a membrane-anchored molecule. CX3CL1 discloses its biological properties through interaction with one dedicated CX3CR1 receptor which belongs to a family of G protein-coupled receptors (GPCR). The CX3CL1/CX3CR1 axis acts in many physiological phenomena including those occurring in the central nervous system (CNS), by regulating the interactions between neurons, microglia, and immune cells. Apart from the role under physiological conditions, the CX3CL1/CX3CR1 axis was implied to have a role in different neuropathologies such as traumatic brain injury (TBI) and spinal cord injury (SCI). CNS injuries represent a serious public health problem, despite improvements in therapeutic management. To date, no effective treatment has been determined, so they constitute a leading cause of death and severe disability. The course of TBI and SCI has two consecutive poorly demarcated phases: the initial, primary injury and secondary injury. Recent evidence has implicated the role of the CX3CL1/CX3CR1 axis in neuroinflammatory processes occurring after CNS injuries. The importance of the CX3CL1/CX3CR1 axis in the pathophysiology of TBI and SCI in the context of systemic and direct local immune response is still under investigation. This paper, based on a review of the literature, updates and summarizes the current knowledge about CX3CL1/CX3CR1 axis involvement in TBI and SCI pathogenesis, indicating possible molecular and cellular mechanisms with a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Łukasz A Poniatowski
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.
| | - Piotr Wojdasiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.,Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Maciej Krawczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.,Department of Pediatric and Neurological Rehabilitation, Faculty of Rehabilitation, Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Robert Gasik
- Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Łukasz Kubaszewski
- Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Orthopaedics and Traumatology, Wiktor Dega Orthopaedic and Rehabilitation Clinical Hospital, Poznań University of Medical Sciences, 28 Czerwca 1956 135/147, 61-545, Poznań, Poland
| | | |
Collapse
|
69
|
Cao XJ, Feng SQ, Fu CF, Gao K, Guo JS, Guo XD, He XJ, Huang ZW, Li ZH, Liu L, Liu RH, Lü HZ, Mei XF, Ning B, Ning GZ, Qian CH, Qin J, Qu YZ, Saijilafu, Shi B, Sui T, Sun TS, Wang J, Wen JK, Xiao J, Xu B, Xu HD, Yu PP, Zhang ZC, Zhou Y, Zhou YL. Repair, protection and regeneration of spinal cord injury. Neural Regen Res 2015; 10:1953-75. [PMID: 26889184 PMCID: PMC4730820 DOI: 10.4103/1673-5374.172314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
70
|
Kabiri M, Oraee-Yazdani S, Dodel M, Hanaee-Ahvaz H, Soudi S, Seyedjafari E, Salehi M, Soleimani M. Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (L-Lactic acid) composite scaffold intended for nerve tissue engineering. EXCLI JOURNAL 2015; 14:851-60. [PMID: 26600751 PMCID: PMC4650950 DOI: 10.17179/excli2015-282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/28/2015] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to fabricate a conductive aligned nanofibrous substrate and evaluate its suitability and cytocompatibility with neural cells for nerve tissue engineering purposes. In order to reach these goals, we first used electrospinning to fabricate single-walled carbon-nanotube (SWCNT) incorporated poly(L-lactic acid) (PLLA) nanofibrous scaffolds and then assessed its cytocompatibility with olfactory ensheathing glial cells (OEC). The plasma treated scaffolds were characterized using scanning electron microscopy and water contact angle. OECs were isolated from olfactory bulb of GFP Sprague-Dawley rats and characterized using OEC specific markers via immunocytochemistry and flow cytometery. The cytocompatibility of the conductive aligned nano-featured scaffold was assessed using microscopy and MTT assay. We indicate that doping of PLLA polymer with SWCNT can augment the aligned nanosized substrate with conductivity, making it favorable for nerve tissue engineering. Our results demonstrated that SWCNT/PLLA composite scaffold promote the adhesion, growth, survival and proliferation of OEC. Regarding the ideal physical, topographical and electrical properties of the scaffold and the neurotrophic and migratory features of the OECs, we suggest this scaffold and the cell/scaffold construct as a promising platform for cell delivery to neural defects in nerve tissue engineering approaches.
Collapse
Affiliation(s)
- Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran ; Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masumeh Dodel
- Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran ; Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran, Stem Cell Technology Research Center, Tehran, Iran
| | - Hana Hanaee-Ahvaz
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Sara Soudi
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran ; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Mohammad Salehi
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
71
|
Haider T, Höftberger R, Rüger B, Mildner M, Blumer R, Mitterbauer A, Buchacher T, Sherif C, Altmann P, Redl H, Gabriel C, Gyöngyösi M, Fischer MB, Lubec G, Ankersmit HJ. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats. Exp Neurol 2015; 267:230-42. [PMID: 25797576 DOI: 10.1016/j.expneurol.2015.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
After spinal cord injury (SCI), secondary damage caused by oxidative stress, inflammation, and ischemia leads to neurological deterioration. In recent years, therapeutic approaches to trauma have focused on modulating this secondary cascade. There is increasing evidence that the success of cell-based SCI therapy is due mainly to secreted factors rather than to cell implantation per se. This study investigated peripheral blood mononuclear cells as a source of factors for secretome- (MNC-secretome-) based therapy. Specifically, we investigated whether MNC-secretome had therapeutic effects in a rat SCI contusion model and its possible underlying mechanisms. Rats treated with MNC-secretome showed substantially improved functional recovery, attenuated cavity formation, and reduced acute axonal injury compared to control animals. Histological evaluation revealed higher vascular density in the spinal cords of treated animals. Immunohistochemistry showed that MNC-secretome treatment increased the recruitment of CD68(+) cells with concomitant reduction of oxidative stress as reflected by lower expression of inducible nitric oxide synthase. Notably, MNC-secretome showed angiogenic properties ex vivo in aortic rings and spinal cord tissue, and experiments showed that the angiogenic potential of MNC-secretome may be regulated by CXCL-1 upregulation in vivo. Moreover, systemic application of MNC-secretome activated the ERK1/2 pathway in the spinal cord. Taken together, these results indicate that factors in MNC-secretome can mitigate the pathophysiological processes of secondary damage after SCI and improve functional outcomes in rats.
Collapse
Affiliation(s)
- Thomas Haider
- University Clinic for Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Beate Rüger
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Roland Blumer
- Center of Anatomy and Cell Biology, Medical University Vienna, Vienna, Austria
| | - Andreas Mitterbauer
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Department of Thoracic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Tanja Buchacher
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Department of Thoracic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Camillo Sherif
- Department of Neurosurgery, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Patrick Altmann
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Department of Thoracic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Christian Gabriel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria; Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria; Center for Biomedical Technology, Danube University Krems, Krems, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Department of Thoracic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
72
|
Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain Behav Immun 2015; 45:157-70. [PMID: 25476600 DOI: 10.1016/j.bbi.2014.11.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023] Open
Abstract
Classically activated pro-inflammatory (M1) and alternatively activated anti-inflammatory (M2) macrophages populate the local microenvironment after spinal cord injury (SCI). The former type is neurotoxic while the latter has positive effects on neuroregeneration and is less toxic. In addition, while the M1 macrophage response is rapidly induced and sustained, M2 induction is transient. A promising strategy for the repair of SCI is to increase the fraction of M2 cells and prolong their residence time. This study investigated the effect of M2 macrophages induced from bone marrow-derived macrophages on the local microenvironment and their possible role in neuroprotection after SCI. M2 macrophages produced anti-inflammatory cytokines such as interleukin (IL)-10 and transforming growth factor β and infiltrated into the injured spinal cord, stimulated M2 and helper T (Th)2 cells, and produced high levels of IL-10 and -13 at the site of injury. M2 cell transfer decreased spinal cord lesion volume and resulted in increased myelination of axons and preservation of neurons. This was accompanied by significant locomotor improvement as revealed by Basso, Beattie and Bresnahan locomotor rating scale, grid walk and footprint analyses. These results indicate that M2 adoptive transfer has beneficial effects for the injured spinal cord, in which the increased number of M2 macrophages causes a shift in the immunological response from Th1- to Th2-dominated through the production of anti-inflammatory cytokines, which in turn induces the polarization of local microglia and/or macrophages to the M2 subtype, and creates a local microenvironment that is conducive to the rescue of residual myelin and neurons and preservation of neuronal function.
Collapse
|