51
|
Development of NASH in Obese Mice is Confounded by Adipose Tissue Increase in Inflammatory NOV and Oxidative Stress. Int J Hepatol 2018; 2018:3484107. [PMID: 30057822 PMCID: PMC6051135 DOI: 10.1155/2018/3484107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022] Open
Abstract
AIM Nonalcoholic steatohepatitis (NASH) is the consequence of insulin resistance, fatty acid accumulation, oxidative stress, and lipotoxicity. We hypothesize that an increase in the inflammatory adipokine NOV decreases antioxidant Heme Oxygenase 1 (HO-1) levels in adipose and hepatic tissue, resulting in the development of NASH in obese mice. METHODS Mice were fed a high fat diet (HFD) and obese animals were administered an HO-1 inducer with or without an inhibitor of HO activity to examine levels of adipose-derived NOV and possible links between increased synthesis of inflammatory adipokines and hepatic pathology. RESULTS NASH mice displayed decreased HO-1 levels and HO activity, increased levels of hepatic heme, NOV, MMP2, hepcidin, and increased NAS scores and hepatic fibrosis. Increased HO-1 levels are associated with a decrease in NOV, improved hepatic NAS score, ameliorated fibrosis, and increases in mitochondrial integrity and insulin receptor phosphorylation. Adipose tissue function is disrupted in obesity as evidenced by an increase in proinflammatory molecules such as NOV and a decrease in adiponectin. Importantly, increased HO-1 levels are associated with a decrease of NOV, increased adiponectin levels, and increased levels of thermogenic and mitochondrial signaling associated genes in adipose tissue. CONCLUSIONS These results suggest that the metabolic abnormalities in NASH are driven by decreased levels of hepatic HO-1 that is associated with an increase in the adipose-derived proinflammatory adipokine NOV in our obese mouse model of NASH. Concurrently, induction of HO-1 provides protection against insulin resistance as seen by increased insulin receptor phosphorylation. Pharmacological increases in HO-1 associated with decreases in NOV may offer a potential therapeutic approach in preventing fibrosis, mitochondrial dysfunction, and the development of NASH.
Collapse
|
52
|
Schragenheim J, Bellner L, Cao J, Singh SP, Bamshad D, McClung JA, Maayan O, Meissner A, Grant I, Stier CT, Abraham NG. EET enhances renal function in obese mice resulting in restoration of HO-1-Mfn1/2 signaling, and decrease in hypertension through inhibition of sodium chloride co-transporter. Prostaglandins Other Lipid Mediat 2018; 137:30-39. [PMID: 29787809 DOI: 10.1016/j.prostaglandins.2018.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on renal and adipose tissue function, in addition to its vasodilatory action; it increases insulin sensitivity and inhibits inflammation. In an examination of the signaling mechanisms by which EET reduces renal and peri-renal fat function, we hypothesized that EET ameliorates obesity-induced renal dysfunction by improving sodium excretion, reducing the sodium-chloride cotransporter NCC, lowering blood pressure, and enhancing mitochondrial and thermogenic gene levels in PGC-1α dependent mice. METHODS EET-agonist treatment normalized glucose metabolism, renal ENaC and NCC protein expression, urinary sodium excretion and blood pressure in obese (db/db) mice. A marked improvement in mitochondrial integrity, thermogenic genes, and PGC-1α-HO-1-adiponectin signaling occurred. Knockout of PGC-1α in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in sodium excretion, elevation of blood pressure and an increase in the pro-inflammatory adipokine nephroblastoma overexpressed gene (NOV). In the elucidation of the effects of EET on peri-renal adipose tissue, EET increased adiponectin, mitochondrial integrity, thermogenic genes and decreased NOV, i.e. "Browning' peri-renal adipose phenotype that occurs under high fat diets. Taken together, these data demonstrate a critical role of an EET agonist in the restoration of healthy adipose tissue with reduced release of inflammatory molecules, such as AngII and NOV, thereby preventing their detrimental impact on sodium absorption and NCC levels and the development of obesity-induced renal dysfunction.
Collapse
Affiliation(s)
- Joseph Schragenheim
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States
| | - Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States
| | - Jian Cao
- Chinese PLA General Hospital, Beijing, 100853, China
| | - Shailendra P Singh
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States
| | - David Bamshad
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, United States
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, United States
| | - Omri Maayan
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States
| | - Aliza Meissner
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, United States
| | - Ilana Grant
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, United States
| | - Charles T Stier
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States.
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States; Department of Medicine, New York Medical College, Valhalla, NY, 10595, United States; Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, United States.
| |
Collapse
|
53
|
Olona A, Terra X, Ko JH, Grau-Bové C, Pinent M, Ardevol A, Diaz AG, Moreno-Moral A, Edin M, Bishop-Bailey D, Zeldin DC, Aitman TJ, Petretto E, Blay M, Behmoaras J. Epoxygenase inactivation exacerbates diet and aging-associated metabolic dysfunction resulting from impaired adipogenesis. Mol Metab 2018; 11:18-32. [PMID: 29656108 PMCID: PMC6001407 DOI: 10.1016/j.molmet.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE When molecular drivers of healthy adipogenesis are perturbed, this can cause hepatic steatosis. The role of arachidonic acid (AA) and its downstream enzymatic cascades, such as cyclooxygenase, in adipogenesis is well established. The exact contribution of the P450 epoxygenase pathway, however, remains to be established. Enzymes belonging to this pathway are mainly encoded by the CYP2J locus which shows extensive allelic expansion in mice. Here we aimed to establish the role of endogenous epoxygenase during adipogenesis under homeostatic and metabolic stress conditions. METHODS We took advantage of the simpler genetic architecture of the Cyp2j locus in the rat and used a Cyp2j4 (orthologue of human CYP2J2) knockout rat in two models of metabolic dysfunction: physiological aging and cafeteria diet (CAF). The phenotyping of Cyp2j4-/- rats under CAF was integrated with proteomics (LC-MS/MS) and lipidomics (LC-MS) analyses in the liver and the adipose tissue. RESULTS We report that Cyp2j4 deletion causes adipocyte dysfunction under metabolic challenges. This is characterized by (i) down-regulation of white adipose tissue (WAT) PPARγ and C/EBPα, (ii) adipocyte hypertrophy, (iii) extracellular matrix remodeling, and (iv) alternative usage of AA pathway. Specifically, in Cyp2j4-/- rats treated with a cafeteria diet, the dysfunctional adipogenesis is accompanied by exacerbated weight gain, hepatic lipid accumulation, and dysregulated gluconeogenesis. CONCLUSION These results suggest that AA epoxygenases are essential regulators of healthy adipogenesis. Our results uncover their synergistic role in fine-tuning AA pathway in obesity-mediated hepatic steatosis.
Collapse
Affiliation(s)
- Antoni Olona
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK
| | - Ximena Terra
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK; Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK
| | - Carme Grau-Bové
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK; Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Montserrat Pinent
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Anna Ardevol
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Ana Garcia Diaz
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Aida Moreno-Moral
- Duke-NUS Medical School, National University of Singapore, 169857, Singapore
| | - Matthew Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - David Bishop-Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Enrico Petretto
- Duke-NUS Medical School, National University of Singapore, 169857, Singapore
| | - Mayte Blay
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
54
|
Galkowski D, Ratajczak MZ, Kocki J, Darzynkiewicz Z. Of Cytometry, Stem Cells and Fountain of Youth. Stem Cell Rev Rep 2018; 13:465-481. [PMID: 28364326 DOI: 10.1007/s12015-017-9733-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Outlined are advances of cytometry applications to identify and sort stem cells, of laser scanning cytometry and ImageStream imaging instrumentation to further analyze morphometry of these cells, and of mass cytometry to classify a multitude of cellular markers in large cell populations. Reviewed are different types of stem cells, including potential candidates for cancer stem cells, with respect to their "stemness", and other characteristics. Appraised is further progress in identification and isolation of the "very small embryonic-like stem cells" (VSELs) and their autogenous transplantation for tissue repair and geroprotection. Also assessed is a function of hyaluronic acid, the major stem cells niche component, as a guardian and controller of stem cells. Briefly appraised are recent advances and challenges in the application of stem cells in regenerative medicine and oncology and their future role in different disciplines of medicine, including geriatrics.
Collapse
Affiliation(s)
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University in Lublin, 20-080, Lublin, Poland
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, 10095, USA.
| |
Collapse
|
55
|
Jain R, Austin Pickens C, Fenton JI. The role of the lipidome in obesity-mediated colon cancer risk. J Nutr Biochem 2018; 59:1-9. [PMID: 29605789 DOI: 10.1016/j.jnutbio.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a state of chronic inflammation influenced by lipids such as fatty acids and their secondary oxygenated metabolites deemed oxylipids. Many such lipid mediators serve as potent signaling molecules of inflammation, which can further alter lipid metabolism and lead to carcinogenesis. For example, sphingosine-1-phosphate activates cyclooxygenase-2 in endothelial cells resulting in the conversion of arachidonic acid (AA) to prostaglandin E2 (PGE2). PGE2 promotes colon cancer cell growth. In contrast, the less studied path of AA oxygenation via cytochrome p450 enzymes produces epoxyeicosatetraenoic acids (EETs), whose anti-inflammatory properties cause shrinking of enlarged adipocytes, a characteristic of obesity, through the liberation of fatty acids. It is now thought that EET depletion occurs in obesity and may contribute to colon cell carcinogenesis. Meanwhile, gangliosides, a type of sphingolipid, are cell surface signaling molecules that contribute to the apoptosis of colon tumor cells. Many of these discoveries have been made recently and the mechanisms are still not fully understood, leading to an exciting new chapter of lipidomic research. In this review, mechanisms behind obesity-associated colon cancer are discussed with a focus on the role of small lipid signaling molecules in the process. Specifically, changes in lipid metabolite levels during obesity and the development of colon cancer, as well as novel biomarkers and targets for therapy, are discussed.
Collapse
Affiliation(s)
- Raghav Jain
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - C Austin Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
56
|
Leu SY, Tsai YC, Chen WC, Hsu CH, Lee YM, Cheng PY. Raspberry ketone induces brown-like adipocyte formation through suppression of autophagy in adipocytes and adipose tissue. J Nutr Biochem 2018. [PMID: 29525531 DOI: 10.1016/j.jnutbio.2018.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Promoting white adipose tissue (WAT) to acquire brown-like characteristics is a promising approach for obesity treatment. Although raspberry ketone (RK) has been reported to possess antiobesity activity, its effects on the formation of brown-like adipocytes remain unclear. Therefore, we investigated the effects and underlying mechanism of RK on WAT browning in 3T3-L1 adipocytes and rats with ovariectomy (Ovx)-induced obesity. RK (100 μM) significantly induced browning of 3T3-L1 cells by increasing mitochondrial biogenesis and the expression of browning-specific proteins (PR domain containing 16, PRDM16; peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC-1α; uncoupling protein-1, UCP-1) and lipolytic enzymes (hormone-sensitive lipase and adipose triglyceride lipase). RK significantly reduced the expression of the autophagy-related protein Atg12 and increased the expression of p62 and heme oxygenase 1 (HO-1). Additionally, these effects of RK were reversed by the HO-1 inhibitor SnPP (20 μM). In addition, RK (160 mg/kg, gavage, for 8 weeks) significantly reduced body weight gain (Ovx+RK, 191.8 ± 4.6 g vs. Ovx, 223.6 ± 5.9; P < .05), food intake, the amount of inguinal adipose tissue (Ovx+RK, 9.05 ± 1.1 g vs Ovx, 12.9 ± 0.92 g; P < .05) and the size of white adipocytes in Ovx rats. Moreover, compared to expression in the Ovx group, the levels of browning-specific proteins were significantly higher and the levels of autophagy-related proteins were significantly lower in the Ovx+RK group. Therefore, this study elucidated the mechanism associated with RK-induced WAT browning and thus provides evidence to support the clinical use of RK for obesity treatment.
Collapse
Affiliation(s)
- Sy-Ying Leu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan; Department of Medicine, Taipei Medical University, Taipei; Department of Sport Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wen-Chi Chen
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hsiung Hsu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Mei Lee
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
57
|
Singh SP, McClung JA, Bellner L, Cao J, Waldman M, Schragenheim J, Arad M, Hochhauser E, Falck JR, Weingarten JA, Peterson SJ, Abraham NG. CYP-450 Epoxygenase Derived Epoxyeicosatrienoic Acid Contribute To Reversal of Heart Failure in Obesity-Induced Diabetic Cardiomyopathy via PGC-1 α Activation. ACTA ACUST UNITED AC 2018; 7. [PMID: 29707604 PMCID: PMC5922773 DOI: 10.4172/2329-6607.1000233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown that an Epoxyeicosatrienoic Acid (EET) -agonist has pleiotropic effects and reverses cardiomyopathy by decreasing inflammatory molecules and increasing antioxidant signaling. We hypothesized that administration of an EET agonist would increase Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), which controls mitochondrial function and induction of HO-1 and negatively regulates the expression of the proinflammatory adipokines CCN3/NOV in cardiac and pericardial tissues. This pathway would be expected to further improve left ventricular (LV) systolic function as well as increase insulin receptor phosphorylation. Measurement of the effect of an EET agonist on oxygen consumption, fractional shortening, blood glucose levels, thermogenic and mitochondrial signaling proteins was performed. Control obese mice developed signs of metabolic syndrome including insulin resistance, hypertension, inflammation, LV dysfunction, and increased NOV expression in pericardial adipose tissue. EET agonist intervention decreased pericardial adipose tissue expression of NOV, while normalized FS, increased PGC-1α, HO-1 levels, insulin receptor phosphorylation and improved mitochondrial function, theses beneficial effect were reversed by deletion of PGC-1α. These studies demonstrate that an EET agonist increases insulin receptor phosphorylation, mitochondrial and thermogenic gene expression, decreased cardiac and pericardial tissue NOV levels, and ameliorates cardiomyopathy in an obese mouse model of the metabolic syndrome.
Collapse
Affiliation(s)
- S P Singh
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - J A McClung
- Departments of Medicine, New York Medical College, Valhalla, New York, USA
| | - L Bellner
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - J Cao
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA.,Chinese PLA General Hospital, Beijing 100853, China
| | - M Waldman
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA.,Cardiac Research Laboratory, Felsenstein Medical Research Institute and Sackler School of Medicine, Tel-Aviv University, Israel
| | - J Schragenheim
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - M Arad
- Leviev Heart Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| | - E Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute and Sackler School of Medicine, Tel-Aviv University, Israel
| | - J R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - J A Weingarten
- Weill Cornell Medicine, New York, USA.,New York Presbyterian Brooklyn Methodist Hospital, New York, USA
| | - S J Peterson
- Weill Cornell Medicine, New York, USA.,New York Presbyterian Brooklyn Methodist Hospital, New York, USA
| | - N G Abraham
- Departments of Medicine, New York Medical College, Valhalla, New York, USA.,Joan Edward School of Medicine, West Virginia, USA
| |
Collapse
|
58
|
Prudovsky I, Anunciado-Koza RP, Jacobs CG, Kacer D, Siviski ME, Koza RA. Mesoderm-specific transcript localization in the ER and ER-lipid droplet interface supports a role in adipocyte hypertrophy. J Cell Biochem 2017; 119:2636-2645. [PMID: 29058774 DOI: 10.1002/jcb.26429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023]
Abstract
Highly variable expression of mesoderm-specific transcript (Mest) in adipose tissue among genetically homogeneous mice fed an obesogenic diet, and its positive association with fat mass expansion, suggests that Mest is an epigenetic determinant for the development of obesity. Although the mechanisms by which MEST augments fat accumulation in adipocytes have not been elucidated, it has sequence homology and catalytic peptide motifs which suggests that it functions as an epoxide hydrolase or as a glycerol- or acylglycerol-3-phosphate acyltransferase. To better understand MEST function, detailed studies were performed to precisely define the intracellular organelle localization of MEST using immunofluorescence confocal microscopy. Lentiviral-mediated expression of a C-terminus Myc-DDK-tagged MEST fusion protein expressed in 3T3-L1 preadipocytes/adipocytes, and ear-derived mesenchymal stem cells (EMSC) from mice was observed in the endoplasmic reticulum (ER) membranes and is consistent with previous studies showing endogenous MEST in the membrane fraction of adipose tissue. MEST was not associated with the Golgi apparatus or mitochondria; however, frequent contacts were observed between MEST-positive ER and mitochondria. MEST-positive domains were also shown on the plasma membrane (PM) of non-permeabilized cells but they did not co-localize with ER-PM bridges. Post-adipogenic differentiated 3T3-L1 adipocytes and EMSC showed significant co-localization of MEST with the lipid droplet surface marker perilipin at contact points between the ER and lipid droplet. Identification of MEST as an ER-specific protein that co-localizes with lipid droplets in cells undergoing adipogenic differentiation supports a function for MEST in the facilitation of lipid accumulation and storage in adipocytes.
Collapse
Affiliation(s)
- Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Rea P Anunciado-Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Chester G Jacobs
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Doreen Kacer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Matthew E Siviski
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Robert A Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| |
Collapse
|
59
|
Heme Oxygenase Induction Suppresses Hepatic Hepcidin and Rescues Ferroportin and Ferritin Expression in Obese Mice. J Nutr Metab 2017; 2017:4964571. [PMID: 29062571 PMCID: PMC5618758 DOI: 10.1155/2017/4964571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
Hepcidin, a phase II reactant secreted by hepatocytes, regulates cellular iron levels by increasing internalization of ferroportin-a transmembrane protein facilitating egress of cellular iron. Chronic low-grade inflammatory states, such as obesity, have been shown to increase oxidative stress and enhance hepcidin secretion from hepatocytes and macrophages. Heme-heme oxygenase (HO) is a stress response system which reduces oxidative stress. We investigated the effects of HO-1 induction on hepatic hepcidin levels and on iron homeostasis in hepatic tissues from lean and obese mice. Obese mice exhibited hyperglycemia (p < 0.05); increased levels of proinflammatory cytokines (MCP-1, IL-6, p < 0.05); oxidative stress (p < 0.05); and increased hepatic hepcidin levels (p < 0.05). Enhancement of hepcidin was reflected in the reduced expression of ferroportin in obese mice (p < 0.05). However, this effect is accompanied by a significant decline in ferritin expression. Additionally, there are reduced insulin receptor phosphorylation and attenuation of metabolic regulators pAMPK, pAKT, and pLKB1. Cobalt protoporphyrin- (CoPP-) induced HO-1 upregulation in obese mice reversed these alterations (p < 0.05), while attenuating hepatic hepcidin levels. These effects of CoPP were prevented in obese mice concurrently exposed to an inhibitor of HO (SnMP) (p < 0.05). Our results highlight a modulatory effect of HO on iron homeostasis mediated through the suppression of hepatic hepcidin.
Collapse
|
60
|
Singh SP, Grant I, Meissner A, Kappas A, Abraham NG. Ablation of adipose-HO-1 expression increases white fat over beige fat through inhibition of mitochondrial fusion and of PGC1α in female mice. Horm Mol Biol Clin Investig 2017; 31:hmbci-2017-0027. [PMID: 28763300 DOI: 10.1515/hmbci-2017-0027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Background Hmox1 plays an important role in the regulation of mitochondrial bioenergetics and function by regulating cellular heme-derived CO and bilirubin. Previous studies have demonstrated that global disruption of HO-1 in humans and mice resulted in severe organ dysfunction. Methods We investigated the potential role of adipose-specific-HO-1 genetic ablation on adipose tissue function, mitochondrial quality control and energy expenditure by generating an adipo-HO-1 knockout mouse model (Adipo-HO-1-/-) and, in vitro, adipocyte cells in which HO activity was inhibited. Adiposity, signaling proteins, fasting glucose and oxygen consumption were determined and compared to adipocyte cultures with depressed levels of both HO-1/HO-2. Results Adipo-HO-1-/- female mice exhibited increased adipocyte size, and decreases in the mitochondrial fusion to fission ratio, PGC1, and SIRT3. Importantly, ablation of HO-1 in adipose tissue resulted in fat acquiring many properties of visceral fat such as decreases in thermogenic genes including pAMPK and PRDM16. Deletion of HO-1 in mouse adipose tissue led to complete metabolic dysfunction, an increase in white adipose tissue, a reduction of beige fat and associated increases in FAS, aP2 and hyperglycemia. Mechanistically, genetic deletion of HO-1 in adipose tissues decreased the mitochondrial fusion to fission ratio; disrupted the activity of the PGC1 transcriptional axis and thermogenic genes both in vitro and in vivo. Conclusion Ablation of adipose tissue-HO-1 abridged PGC1 expression promoted mitochondrial dysfunction and contributed to an increase of pro-inflammatory visceral fat and abrogated beige-cell like phenotype.
Collapse
Affiliation(s)
| | - Ilana Grant
- Department of Medicine, New York Medical College, NY, USA
| | - Aliza Meissner
- Department of Medicine, New York Medical College, NY, USA
| | - Attallah Kappas
- The Rockefeller University, New York, NY 10065, USA, Phone: 212-327-8494, Fax: 212-327-8690
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, NY, USA
- New York Medical College, Valhalla, NY 10595, USA, Phone: +914-594-3121, Fax: +914-347-4956
| |
Collapse
|
61
|
Anunciado-Koza RP, Manuel J, Mynatt RL, Zhang J, Kozak LP, Koza RA. Diet-induced adipose tissue expansion is mitigated in mice with a targeted inactivation of mesoderm specific transcript (Mest). PLoS One 2017. [PMID: 28640866 PMCID: PMC5481029 DOI: 10.1371/journal.pone.0179879] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interindividual variation of white adipose tissue (WAT) expression of mesoderm specific transcript (Mest), a paternally-expressed imprinted gene belonging to the α/β-hydrolase fold protein family, becomes apparent among genetically inbred mice fed high fat diet (HFD) and is positively associated with adipose tissue expansion (ATE). To elucidate a role for MEST in ATE, mice were developed with global and adipose tissue inactivation of Mest. Mice with homozygous (MestgKO) and paternal allelic (MestpKO) inactivation of Mest were born at expected Mendelian frequencies, showed no behavioral or physical abnormalities, and did not perturb expression of the Mest locus-derived microRNA miR-335. MestpKO mice fed HFD showed reduced ATE and adipocyte hypertrophy, improved glucose tolerance, and reduced WAT expression of genes associated with hypoxia and inflammation compared to littermate controls. Remarkably, caloric intake and energy expenditure were unchanged between genotypes. Mice with adipose tissue inactivation of Mest were phenotypically similar to MestpKO, supporting a role for WAT MEST in ATE. Global profiling of WAT gene expression of HFD-fed control and MestpKO mice detected few differences between genotypes; nevertheless, genes with reduced expression in MestpKO mice were associated with immune processes and consistent with improved glucose homeostasis. Ear-derived mesenchymal stem cells (EMSC) from MestgKO mice showed no differences in adipogenic differentiation compared to control cells unless challenged by shRNA knockdown of Gpat4, an enzyme that mediates lipid accumulation in adipocytes. Reduced adipogenic capacity of EMSC from MestgKO after Gpat4 knockdown suggests that MEST facilitates lipid accumulation in adipocytes. Our data suggests that reduced diet-induced ATE in MEST-deficient mice diminishes hypoxia and inflammation in WAT leading to improved glucose tolerance and insulin sensitivity. Since inactivation of Mest in mice has minimal additional effects aside from reduction of ATE, an intervention that mitigates MEST function in adipocytes is a plausible strategy to obviate obesity and type-2-diabetes.
Collapse
Affiliation(s)
- Rea P. Anunciado-Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Justin Manuel
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Randall L. Mynatt
- Transgenics Core Facility, Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, United States of America
| | - Jingying Zhang
- Transgenics Core Facility, Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, United States of America
| | - Leslie P. Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Robert A. Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- * E-mail:
| |
Collapse
|
62
|
Cao J, Singh SP, McClung JA, Joseph G, Vanella L, Barbagallo I, Jiang H, Falck JR, Arad M, Shapiro JI, Abraham NG. EET intervention on Wnt1, NOV, and HO-1 signaling prevents obesity-induced cardiomyopathy in obese mice. Am J Physiol Heart Circ Physiol 2017; 313:H368-H380. [PMID: 28576832 PMCID: PMC5582926 DOI: 10.1152/ajpheart.00093.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 01/15/2023]
Abstract
We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on vascular function; in addition to its antiapoptotic action, it increases insulin sensitivity and inhibits inflammation. To uncover the signaling mechanisms by which EET reduces cardiomyopathy, we hypothesized that EET infusion might ameliorate obesity-induced cardiomyopathy by improving heme oxygenase (HO)-1, Wnt1, thermogenic gene levels, and mitochondrial integrity in cardiac tissues and improved pericardial fat phenotype. EET reduced levels of fasting blood glucose and proinflammatory adipokines, including nephroblastoma overexpressed (NOV) signaling, while increasing echocardiographic fractional shortening and O2 consumption. Of interest, we also noted a marked improvement in mitochondrial integrity, thermogenic genes, and Wnt 1 and HO-1 signaling mechanisms. Knockout of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in myocardial Wnt1 and HO-1 expression and an increase in NOV. To further elucidate the effects of EET on pericardial adipose tissues, we observed EET treatment increases in adiponectin, PGC-1α, phospho-AMP-activated protein kinase, insulin receptor phosphorylation, and thermogenic genes, resulting in a "browning" pericardial adipose phenotype under high-fat diets. Collectively, these experiments demonstrate that an EET agonist increased Wnt1 and HO-1 signaling while decreasing NOV pathways and the progression of cardiomyopathy. Furthermore, this report presents a portal into potential therapeutic approaches for the treatment of heart failure and metabolic syndrome.NEW & NOTEWORTHY The mechanism by which EET acts on obesity-induced cardiomyopathy is unknown. Here, we describe a previously unrecognized function of EET infusion that inhibits nephroblastoma overexpressed (NOV) levels and activates Wnt1, hence identifying NOV inhibition and enhanced Wnt1 expression as novel pharmacological targets for the prevention and treatment of cardiomyopathy and heart failure.Listen to this article's corresponding podcast at http://ajpheart.physiology.org/content/early/2017/05/31/ajpheart.00093.2017.
Collapse
Affiliation(s)
- Jian Cao
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York.,Chinese PLA General Hospital, Beijing, China
| | - Shailendra P Singh
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - John A McClung
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - Gregory Joseph
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - Luca Vanella
- Department of Drug Science/Section of Biochemistry, University of Catania, Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science/Section of Biochemistry, University of Catania, Catania, Italy
| | - Houli Jiang
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael Arad
- Leviev Heart Center, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel; and
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York; .,Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
63
|
Endothelial and Perivascular Adipose Tissue Abnormalities in Obesity-Related Vascular Dysfunction: Novel Targets for Treatment. J Cardiovasc Pharmacol 2017; 69:360-368. [DOI: 10.1097/fjc.0000000000000469] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
64
|
Koh EJ, Kim KJ, Seo YJ, Choi J, Lee BY. Modulation of HO-1 by Ferulic Acid Attenuates Adipocyte Differentiation in 3T3-L1 Cells. Molecules 2017; 22:molecules22050745. [PMID: 28475135 PMCID: PMC6154011 DOI: 10.3390/molecules22050745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 01/05/2023] Open
Abstract
Ferulic acid (FA) is phenolic compound found in fruits. Many studies have reported that FA has diverse therapeutic effects against metabolic diseases. However, the mechanism by which FA modulates adipogenesis via the expression of heme oxygenase-1 (HO-1) implicated in suppression of adipocyte differentiation is not fully understood. We investigated whether HO-1 can be activated by FA and suppress adipogenic factors in 3T3-L1. Our results showed that FA suppresses triglyceride-synthesizing enzymes, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). We observed that the expression of CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) were suppressed by FA. In addition, HO-1 inhibitor stimulated lipid accumulation, while FA attenuated lipid accumulation in 3T3-L1 treated with HO-1 inhibitor. We also observed that the expression of HO-1 had the same tendency as C/EBP homologous protein 10 (CHOP10) during the mitotic clonal expansion (MCE) of adipogenesis. We next employed siRNA against HO-1 to clarify whether HO-1 regulates CHOP10. The results indicated that CHOP10 is downstream of HO-1. Furthermore, FA-mediated HO-1/CHOP10 axis activation prevented the initiation of MCE. Therefore, we demonstrated that FA is a positive regulator of HO-1 in 3T3-L1, and may be an effective bioactive compound to reduce adipocyte tissue mass.
Collapse
Affiliation(s)
- Eun-Jeong Koh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyeonggi 13488, Korea.
| | - Kui-Jin Kim
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyeonggi 13488, Korea.
| | - Young-Jin Seo
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyeonggi 13488, Korea.
| | - Jia Choi
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyeonggi 13488, Korea.
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyeonggi 13488, Korea.
| |
Collapse
|
65
|
Downregulation of PGC-1 α Prevents the Beneficial Effect of EET-Heme Oxygenase-1 on Mitochondrial Integrity and Associated Metabolic Function in Obese Mice. J Nutr Metab 2016; 2016:9039754. [PMID: 28097021 PMCID: PMC5206458 DOI: 10.1155/2016/9039754] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/13/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022] Open
Abstract
Background/Objectives. Obesity and metabolic syndrome and associated adiposity are a systemic condition characterized by increased mitochondrial dysfunction, inflammation, and inhibition of antioxidant genes, HO-1, and EETs levels. We postulate that EETs attenuate adiposity by stimulating mitochondrial function and induction of HO-1 via activation of PGC-1α in adipose and hepatic tissue. Methods. Cultured murine adipocytes and mice fed a high fat (HF) diet were used to assess the functional relationship among EETs, PGC-1α, HO-1, and mitochondrial signaling using an EET-agonist (EET-A) and PGC-1α-deficient cells and mice using lentiviral PGC-1α(sh). Results. EET-A is a potent inducer of PGC-1α, HO-1, mitochondrial biogenesis (cytochrome oxidase subunits 1 and 4 and SIRT3), fusion proteins (Mfn 1/2 and OPA1) and fission proteins (DRP1 and FIS1) (p < 0.05), fasting glucose, BW, and blood pressure. These beneficial effects were prevented by administration of lenti-PGC-1α(sh). EET-A administration prevented HF diet induced mitochondrial and dysfunction in adipose tissue and restored VO2 effects that were abrogated in PGC-1α-deficient mice. Conclusion. EET is identified as an upstream positive regulator of PGC-1α that leads to increased HO-1, decreased BW and fasting blood glucose and increased insulin receptor phosphorylation, that is, increased insulin sensitivity and mitochondrial integrity, and possible use of EET-agonist for treatment of obesity and metabolic syndrome.
Collapse
|
66
|
Epoxyeicosatrienoic Acid as Therapy for Diabetic and Ischemic Cardiomyopathy. Trends Pharmacol Sci 2016; 37:945-962. [DOI: 10.1016/j.tips.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
|
67
|
Singh SP, Schragenheim J, Cao J, Falck JR, Abraham NG, Bellner L. PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat 2016; 125:8-18. [PMID: 27418542 DOI: 10.1016/j.prostaglandins.2016.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is a risk factor in the development of type 2 diabetes mellitus (DM2), which is associated with increased morbidity and mortality, predominantly as a result of cardiovascular complications. Increased adiposity is a systemic condition characterized by increased oxidative stress (ROS), increased inflammation, inhibition of anti-oxidant genes such as HO-1 and increased degradation of epoxyeicosatrienoic acids (EETs). We previously demonstrated that EETs attenuate mitochondrial ROS. We postulate that EETs increase peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), which controls mitochondrial function, oxidative metabolism and induction of HO-1. METHODS Cultured murine adipocytes and mice fed a high fat (HF) diet were used to assess functional relationship between EETs, HO-1 and (PGC-1α) using an EET analogue (EET-A) and lentivirus to knock down the PPARGC1A gene. RESULTS EET-A increased PGC-1α and HO-1 in cultured adipocytes and increased the expression of genes involved in thermogenesis and adipocyte browning (UCP1 and PRDM16, respectively). PGC-1α knockdown prevented EET-A-induced HO-1expression, suggesting that PGC-1α is upstream of HO-1. MRI data obtained from fat tissues showed that EET-A administration to mice on a HF diet significantly reduced total body fat content, subcutaneous and visceral fat deposits and reduced the VAT: SAT ratio. Moreover EET-A normalized the VO2 and RQ (VCO2/VO2) in mice fed a HF diet, an effect that was completely prevented in PGC-1α deficient mice. In addition, EET-A increased mitochondrial biogenesis and function as measured by OPA1, MnSOD, Mfn1, Mfn2, and SIRT3, an effect that was inhibited by knockdown of PGC-1α. CONCLUSION Taken together, our findings show that EET-A increased PGC-1α thereby increasing mitochondrial viability, increased fusion potential thereby providing metabolic protection and increased VO2 consumption in HF-induced obesity in mice, thus demonstrating that the EET-mediated increase in HO-1 levels require PGC-1α expression.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Joseph Schragenheim
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Jian Cao
- First Geriatric Cardiology Division, Chinese PLA General Hospital, Beijing, China
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States; Department of Medicine, New York Medical College, Valhalla, NY 10595, United States; Department of Medicine, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, United States.
| | - Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|