51
|
Sellgren KL, Ma T. Effects of flow configuration on bone tissue engineering using human mesenchymal stem cells in 3D chitosan composite scaffolds. J Biomed Mater Res A 2014; 103:2509-20. [DOI: 10.1002/jbm.a.35386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/20/2014] [Accepted: 12/04/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Katelyn L. Sellgren
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering, Florida State University; Tallahassee Florida 32310
| | - Teng Ma
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering, Florida State University; Tallahassee Florida 32310
| |
Collapse
|
52
|
Lynch ME, Fischbach C. Biomechanical forces in the skeleton and their relevance to bone metastasis: biology and engineering considerations. Adv Drug Deliv Rev 2014; 79-80:119-34. [PMID: 25174311 DOI: 10.1016/j.addr.2014.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 12/17/2022]
Abstract
Bone metastasis represents the leading cause of breast cancer related-deaths. However, the effect of skeleton-associated biomechanical signals on the initiation, progression, and therapy response of breast cancer bone metastasis is largely unknown. This review seeks to highlight possible functional connections between skeletal mechanical signals and breast cancer bone metastasis and their contribution to clinical outcome. It provides an introduction to the physical and biological signals underlying bone functional adaptation and discusses the modulatory roles of mechanical loading and breast cancer metastasis in this process. Following a definition of biophysical design criteria, in vitro and in vivo approaches from the fields of bone biomechanics and tissue engineering that may be suitable to investigate breast cancer bone metastasis as a function of varied mechano-signaling will be reviewed. Finally, an outlook of future opportunities and challenges associated with this newly emerging field will be provided.
Collapse
Affiliation(s)
- Maureen E Lynch
- Department of Biomedical Engineering, Cornell University, Ithaca, USA
| | - Claudia Fischbach
- Department of Biomedical Engineering, Cornell University, Ithaca, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, USA.
| |
Collapse
|
53
|
Della Porta G, Nguyen BNB, Campardelli R, Reverchon E, Fisher JP. Synergistic effect of sustained release of growth factors and dynamic culture on osteoblastic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2014; 103:2161-71. [PMID: 25346530 DOI: 10.1002/jbm.a.35354] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/19/2014] [Accepted: 10/10/2014] [Indexed: 01/29/2023]
Abstract
Microparticles have been utilized as delivery vehicles of soluble factors to modify cellular behavior and therefore enhance tissue engineering regeneration. When incorporated into three-dimensional systems, microparticles can provide geometrical and temporal controlled release of bioactive agents, such as growth factors (GFs) to surrounding cells. This study investigates the effect of GFs release from biopolymer microparticles on osteoblastic differentiation of human mesenchymal stem cells (hMSCs) encapsulated in calcium (Ca)-alginate scaffolds while cultured in a tubular perfusion system bioreactor system. Empirical and deterministic models were used to demonstrate that poly(D,L-lactic-co-glycolic acid)-encapsulated GFs would result in a delayed release profile compared to GFs encapsulated into scaffolds directly. We hypothesized that the dual delivery of human bone-morphogenetic protein 2 (hBMP2) and human vascular endothelial growth factor to cells in dynamic culture would provide molecular and physical cues to promote differentiation. Results indicated that the exposures of hBMP2 and dynamic flow are sufficient in enhancing the osteoblastic differentiation pathway compared to no GF addition and static culture. The GF delivery system in a dynamic flow environment resulted in a synergistic effect on osteoblastic differentiation of hMSCs.
Collapse
Affiliation(s)
- Giovanna Della Porta
- Department of Industrial Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Laboratory of Cellular and Molecular Engineering (DEI), University of Bologna, 47521, Cesena (FC), Italy
| | | | | | | | | |
Collapse
|
54
|
Li DQ, Li M, Liu PL, Zhang YK, Lu JX, Li JM. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor. Orthopedics 2014; 37:685-90. [PMID: 25275969 DOI: 10.3928/01477447-20140924-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/12/2014] [Indexed: 02/03/2023]
Abstract
Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.].
Collapse
|
55
|
Du D, Asaoka T, Ushida T, Furukawa KS. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication 2014; 6:045002. [DOI: 10.1088/1758-5082/6/4/045002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
56
|
Sonnaert M, Papantoniou I, Bloemen V, Kerckhofs G, Luyten FP, Schrooten J. Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation. J Tissue Eng Regen Med 2014; 11:519-530. [PMID: 25186024 DOI: 10.1002/term.1951] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/07/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022]
Abstract
Perfusion bioreactor systems have shown to be a valuable tool for the in vitro development of three-dimensional (3D) cell-carrier constructs. Their use for cell expansion, however, has been much less explored. Since maintenance of the initial cell phenotype is essential in this process, it is imperative to obtain insight into the bioreactor-related variables determining cell fate. Therefore, this study investigated the influence of fluid flow-induced shear stress on the proliferation, differentiation and matrix deposition of human periosteal-derived cells in the absence of additional differentiation-inducing stimuli; 120 000 cells were seeded on additive manufactured 3D Ti6Al4V scaffolds and cultured for up to 28 days at different flow rates in the range 0.04-6 ml/min. DNA measurements showed, on average, a three-fold increase in cell content for all perfused conditions in comparison to static controls, whereas the magnitude of the flow rate did not have an influence. Contrast-enhanced nanofocus X-ray computed tomography showed substantial formation of an engineered neotissue in all perfused conditions, resulting in a filling (up to 70%) of the total internal void volume, and no flow rate-dependent differences were observed. The expression of key osteogenic markers, such as RunX2, OCN, OPN and Col1, did not show any significant changes in comparison to static controls after 28 days of culture, with the exception of OSX at high flow rates. We therefore concluded that, in the absence of additional osteogenic stimuli, the investigated perfusion conditions increased cell proliferation but did not significantly enhance osteogenic differentiation, thus allowing for this process to be used for cell expansion. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Sonnaert
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium
| | - I Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Skeletal Biology and Engineering Research Centre, Katholieke Universiteit Leuven, Belgium
| | - V Bloemen
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Biomedical Engineering Research Team, Groep T, Leuven Engineering College (Association Katholieke Universiteit Leuven), Belgium
| | - G Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium.,Biomechanics Research Unit, Université de Liege, Belgium
| | - F P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Skeletal Biology and Engineering Research Centre, Katholieke Universiteit Leuven, Belgium
| | - J Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
57
|
Pretreatment with mechano-growth factor E peptide protects bone marrow mesenchymal cells against damage by fluid shear stress. Biotechnol Lett 2014; 36:2559-69. [PMID: 25129046 DOI: 10.1007/s10529-014-1625-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/06/2014] [Indexed: 01/16/2023]
Abstract
Improper fluid shear stress (FSS) can cause serious damages to bone marrow mesenchymal stem cells (MSCs). Mechano-growth factor (MGF) E peptide pretreatment was proposed to protect MSCs against FSS damage in this study. MSCs were exposed to FSS for 30 min after they were pretreated with MGF E peptide for 24 h. Then, the effects of MGF E peptide on the viability, proliferation and cell apoptosis of MSCs were investigated. MGF E peptide pretreatment could recover the cellular metabolic activity of MSCs reduced by 72 dyne cm(-2) FSS and had a synergistic effect with FSS on the cellular metabolic viability of MSCs under 24 and 72 dyne cm(-2) FSS. These results suggested that MGF E peptide pretreatment could be an effective method for the protection of FSS damage in bone tissue engineering.
Collapse
|
58
|
Papantoniou I, Guyot Y, Sonnaert M, Kerckhofs G, Luyten FP, Geris L, Schrooten J. Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes. Biotechnol Bioeng 2014; 111:2560-70. [PMID: 24902541 DOI: 10.1002/bit.25303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/22/2014] [Accepted: 05/27/2014] [Indexed: 12/21/2022]
Abstract
Perfusion bioreactors have shown great promise for tissue engineering applications providing a homogeneous and consistent distribution of nutrients and flow-induced shear stresses throughout tissue-engineered constructs. However, non-uniform fluid-flow profiles found in the perfusion chamber entrance region have been shown to affect tissue-engineered construct quality characteristics during culture. In this study a whole perfusion and construct, three dimensional (3D) computational fluid dynamics approach was used in order to optimize a critical design parameter such as the location of the regular pore scaffolds within the perfusion bioreactor chamber. Computational studies were coupled to bioreactor experiments for a case-study flow rate. Two cases were compared in the first instance seeded scaffolds were positioned immediately after the perfusion chamber inlet while a second group was positioned at the computationally determined optimum distance were a steady state flow profile had been reached. Experimental data showed that scaffold location affected significantly cell content and neo-tissue distribution, as determined and quantified by contrast enhanced nanoCT, within the constructs both at 14 and 21 days of culture. However, gene expression level of osteopontin and osteocalcin was not affected by the scaffold location. This study demonstrates that the bioreactor chamber environment, incorporating a scaffold and its location within it, affects the flow patterns within the pores throughout the scaffold requiring therefore dedicated optimization that can lead to bone tissue engineered constructs with improved quality attributes.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Herestraat 49-PB813, B-3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
59
|
Padilla F, Puts R, Vico L, Raum K. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. ULTRASONICS 2014; 54:1125-45. [PMID: 24507669 DOI: 10.1016/j.ultras.2014.01.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 05/15/2023]
Abstract
In vivo and in vitro studies have demonstrated the positive role that ultrasound can play in the enhancement of fracture healing or in the reactivation of a failed healing process. We review the several options available for the use of ultrasound in this context, either to induce a direct physical effect (LIPUS, shock waves), to deliver bioactive molecules such as growth factors, or to transfect cells with osteogenic plasmids; with a main focus on LIPUS (or Low Intensity Pulsed Ultrasound) as it is the most widespread and studied technique. The biological response to LIPUS is complex as numerous cell types respond to this stimulus involving several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2, iNOS/NO pathways and activation of ATI mechanoreceptor. The mechanisms by which ultrasound can trigger these effects remain intriguing. Possible mechanisms include direct and indirect mechanical effects like acoustic radiation force, acoustic streaming, and propagation of surface waves, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. Effects caused by the transformation of acoustic wave energy into heat can usually be neglected, but heating of the transducer may have a potential impact on the stimulation in some in-vitro systems, depending on the coupling conditions. Cavitation cannot occur at the pressure levels delivered by LIPUS. In-vitro studies, although not appropriate to identify the overall biological effects, are of great interest to study specific mechanisms of action. The diversity of current experimental set-ups however renders this analysis very complex, as phenomena such as transducer heating, inhomogeneities of the sound intensity in the near field, resonances in the transmission and reflection through the culture dish walls and the formation of standing waves will greatly affect the local type and amplitude of the stimulus exerted on the cells. A future engineering challenge is therefore the design of dedicated experimental set-ups, in which the different mechanical phenomena induced by ultrasound can be controlled. This is a prerequisite to evaluate the biological effects of the different phenomena with respect to particular parameters, like intensity, frequency, or duty cycle. By relating the variations of these parameters to the induced physical effects and to the biological responses, it will become possible to derive an 'acoustic dose' and propose a quantification and cross-calibration of the different experimental systems. Improvements in bone healing management will probably also come from a combination of ultrasound with a 'biologic' components, e.g. growth factors, scaffolds, gene therapies, or drug delivery vehicles, the effects of which being potentiated by the ultrasound.
Collapse
Affiliation(s)
- Frédéric Padilla
- Inserm, U1032, LabTau, Lyon F-69003, France; Université de Lyon, Lyon F-69003, France.
| | - Regina Puts
- Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Laurence Vico
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Lyon, St-Etienne F-42023, France
| | - Kay Raum
- Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
60
|
Optimal fluid flow enhanced mineralization of MG-63 cells in porous chitosan scaffold. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2013.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
61
|
Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep. INTERNATIONAL ORTHOPAEDICS 2014; 38:2399-406. [PMID: 24916136 DOI: 10.1007/s00264-014-2389-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/18/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. METHODS A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. RESULT X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P < 0.05). CONCLUSION Tissue-engineered bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.
Collapse
|
62
|
Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold. Biomech Model Mechanobiol 2014; 14:231-43. [PMID: 24903125 DOI: 10.1007/s10237-014-0599-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Recent studies have shown that mechanical stimulation, by means of flow perfusion and mechanical compression (or stretching), enhances osteogenic differentiation of mesenchymal stem cells and bone cells within biomaterial scaffolds in vitro. However, the precise mechanisms by which such stimulation enhances bone regeneration is not yet fully understood. Previous computational studies have sought to characterise the mechanical stimulation on cells within biomaterial scaffolds using either computational fluid dynamics or finite element (FE) approaches. However, the physical environment within a scaffold under perfusion is extremely complex and requires a multiscale and multiphysics approach to study the mechanical stimulation of cells. In this study, we seek to determine the mechanical stimulation of osteoblasts seeded in a biomaterial scaffold under flow perfusion and mechanical compression using multiscale modelling by two-way fluid-structure interaction and FE approaches. The mechanical stimulation, in terms of wall shear stress (WSS) and strain in osteoblasts, is quantified at different locations within the scaffold for cells of different attachment morphologies (attached, bridged). The results show that 75.4 % of scaffold surface has a WSS of 0.1-10 mPa, which indicates the likelihood of bone cell differentiation at these locations. For attached and bridged osteoblasts, the maximum strains are 397 and 177,200 με, respectively. Additionally, the results from mechanical compression show that attached cells are more stimulated (maximum strain = 22,600 με) than bridged cells (maximum strain = 10.000 με)Such information is important for understanding the biological response of osteoblasts under in vitro stimulation. Finally, a combination of perfusion and compression of a tissue engineering scaffold is suggested for osteogenic differentiation.
Collapse
|
63
|
Su WT, Wu PS, Ko CS, Huang TY. Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 41:152-60. [PMID: 24907748 DOI: 10.1016/j.msec.2014.04.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/13/2014] [Accepted: 04/18/2014] [Indexed: 01/17/2023]
Abstract
Stem cells from human exfoliated deciduous teeth (SHEDs) have been considered as alternative sources of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages. Strontium has an important function in bone remodeling because it can simulate bone formation and decrease bone resorption. In this study, the effects of strontium phosphate on the osteogenic differentiation of SHEDs were investigated. Strontium phosphate was found to enhance the osteogenic differentiation of SHEDs with up-regulated osteoblast-related gene expression. The proliferation of SHEDs was slightly inhibited by chitosan scaffolds; however, type-I collagen expression, alkaline phosphatase activity, and calcium deposition on chitosan scaffolds containing strontium were significantly enhanced. Furthermore, cells seeded in a 3D scaffold under dynamic culture at an optimal fluid rate might enhance cellular differentiation than static culture in osteoblastic gene expression. This experiment might provide a useful cell resource and dynamic 3D culture for tissue engineering and bone repair.
Collapse
Affiliation(s)
- Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| | - Pai-Shuen Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Sheng Ko
- PhytoHealth Corporation, Maywufa Biopharma Group, Taipei, Taiwan
| | | |
Collapse
|
64
|
Du D, Ushida T, Furukawa KS. Influence of cassette design on three-dimensional perfusion culture of artificial bone. J Biomed Mater Res B Appl Biomater 2014; 103:84-91. [DOI: 10.1002/jbm.b.33188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/25/2014] [Accepted: 04/12/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Dajiang Du
- Department of Orthopaedic Surgery, Sino-Russian Institute of Hard Tissue Development and Regeneration; Harbin Medical University; Nangang Harbin 150086 China
| | - Takashi Ushida
- Division of Biomedical Materials and Systems, Center for Disease Biology and Integrative Medicine; School of Medicine, the University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- NanoBio. Integration, University of Tokyo; Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Katsuko S Furukawa
- NanoBio. Integration, University of Tokyo; Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Laboratory of Biomedical Engineering, Department of Mechanical Engineering; Graduate School of Engineering, the University of Tokyo; 2nd Building, 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering; Graduate School of Engineering, The University of Tokyo; 2nd Building, 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
65
|
Hossain MS, Chen XB, Bergstrom DJ. Investigation of the in vitro culture process for skeletal-tissue-engineered constructs using computational fluid dynamics and experimental methods. J Biomech Eng 2014; 134:121003. [PMID: 23363205 DOI: 10.1115/1.4007952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The in vitro culture process via bioreactors is critical to create tissue-engineered constructs (TECs) to repair or replace the damaged tissues/organs in various engineered applications. In the past, the TEC culture process was typically treated as a black box and performed on the basis of trial and error. Recently, computational fluid dynamics (CFD) has demonstrated its potential to analyze the fluid flow inside and around the TECs, therefore, being able to provide insight into the culture process, such as information on the velocity field and shear stress distribution that can significantly affect such cellular activities as cell viability and proliferation during the culture process. This paper briefly reviews the CFD and experimental methods used to investigate the in vitro culture process of skeletal-type TECs in bioreactors, where mechanical deformation of the TEC can be ignored. Specifically, this paper presents CFD modeling approaches for the analysis of the velocity and shear stress fields, mass transfer, and cell growth during the culture process and also describes various particle image velocimetry (PIV) based experimental methods to measure the velocity and shear stress in the in vitro culture process. Some key issues and challenges are also identified and discussed along with recommendations for future research.
Collapse
Affiliation(s)
- Md Shakhawath Hossain
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada.
| | | | | |
Collapse
|
66
|
Sart S, Agathos SN, Li Y. Process engineering of stem cell metabolism for large scale expansion and differentiation in bioreactors. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
67
|
Sart S, Schneider YJ, Li Y, Agathos SN. Stem cell bioprocess engineering towards cGMP production and clinical applications. Cytotechnology 2014; 66:709-22. [PMID: 24500393 DOI: 10.1007/s10616-013-9687-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022] Open
Abstract
Stem cells, including mesenchymal stem cells and pluripotent stem cells, are becoming an indispensable tool for various biomedical applications including drug discovery, disease modeling, and tissue engineering. Bioprocess engineering, targeting large scale production, provides a platform to generate a controlled microenvironment that could potentially recreate the stem cell niche to promote stem cell proliferation or lineage-specific differentiation. This survey aims at defining the characteristics of stem cell populations currently in use and the present-day limits in their applications for therapeutic purposes. Furthermore, a bioprocess engineering strategy based on bioreactors and 3-D cultures is discussed in order to achieve the improved stem cell yield, function, and safety required for production under current good manufacturing practices.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St, Tallahassee, FL, 32310, USA
| | | | | | | |
Collapse
|
68
|
dos Santos F, Campbell A, Fernandes-Platzgummer A, Andrade PZ, Gimble JM, Wen Y, Boucher S, Vemuri MC, da Silva CL, Cabral JM. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnol Bioeng 2014; 111:1116-27. [DOI: 10.1002/bit.25187] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/13/2013] [Accepted: 01/07/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Francisco dos Santos
- Department of Bioengineering and IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Técnico; Universidade de Lisboa; Lisboa Portugal
| | | | - Ana Fernandes-Platzgummer
- Department of Bioengineering and IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Técnico; Universidade de Lisboa; Lisboa Portugal
| | - Pedro Z. Andrade
- Department of Bioengineering and IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Técnico; Universidade de Lisboa; Lisboa Portugal
| | - Jeffrey M. Gimble
- New Orleans BioInnovation Center, LA and Pennington Biomedical Research Center; Louisiana State University System; Baton Rouge Louisiana
| | - Yuan Wen
- Life Technologies Corp.; Carlsbad California
| | | | | | - Cláudia L. da Silva
- Department of Bioengineering and IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Técnico; Universidade de Lisboa; Lisboa Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Técnico; Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
69
|
Sart S, Tsai AC, Li Y, Ma T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:365-80. [PMID: 24168395 DOI: 10.1089/ten.teb.2013.0537] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) are primary candidates in cell therapy and tissue engineering and are being tested in clinical trials for a wide range of diseases. Originally isolated and expanded as plastic adherent cells, MSCs have intriguing properties of in vitro self-assembly into three-dimensional (3D) aggregates reminiscent of skeletal condensation in vivo. Recent studies have shown that MSC 3D aggregation improved a range of biological properties, including multilineage potential, secretion of therapeutic factors, and resistance against ischemic condition. Hence, the formation of 3D MSC aggregates has been explored as a novel strategy to improve cell delivery, functional activation, and in vivo retention to enhance therapeutic outcomes. This article summarizes recent reports of MSC aggregate self-assembly, characterization of biological properties, and their applications in preclinical models. The cellular and molecular mechanisms underlying MSC aggregate formation and functional activation are discussed, and the areas that warrant further investigation are highlighted. These analyses are combined to provide perspectives for identifying the controlling mechanisms and refining the methods of aggregate fabrication and expansion for clinical applications.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | | | | | | |
Collapse
|
70
|
Gardel LS, Serra LA, Reis RL, Gomes ME. Use of perfusion bioreactors and large animal models for long bone tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:126-46. [PMID: 23924374 DOI: 10.1089/ten.teb.2013.0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.
Collapse
Affiliation(s)
- Leandro S Gardel
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | |
Collapse
|
71
|
Grottkau BE, Lin Y. Osteogenesis of Adipose-Derived Stem Cells. Bone Res 2013; 1:133-45. [PMID: 26273498 DOI: 10.4248/br201302003] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Current treatment options for skeletal repair, including immobilization, rigid fixation, alloplastic materials and bone grafts, have significant limitations. Bone tissue engineering offers a promising method for the repair of bone deficieny caused by fractures, bone loss and tumors. The use of adipose derived stem cells (ASCs) has received attention because of the self-renewal ability, high proliferative capacity and potential of osteogenic differentiation in vitro and in vivo studies of bone regeneration. Although cell therapies using ASCs are widely promising in various clinical fields, no large human clinical trials exist for bone tissue engineering. The aim of this review is to introduce how they are harvested, examine the characterization of ASCs, to review the mechanisms of osteogenic differentiation, to analyze the effect of mechanical and chemical stimuli on ASC osteodifferentiation, to summarize the current knowledge about usage of ASC in vivo studies and clinical trials, and finally to conclude with a general summary of the field and comments on its future direction.
Collapse
Affiliation(s)
- Brian E Grottkau
- Department of Orthopaedic Surgery, MassGeneral Hospital for Children and the Pediatric Orthopaedic Laboratory for Tissue Engineering and Regenerative Medicine, Harvard Medical School , Boston, Massachusetts, USA
| | - Yunfeng Lin
- Department of Orthopaedic Surgery, MassGeneral Hospital for Children and the Pediatric Orthopaedic Laboratory for Tissue Engineering and Regenerative Medicine, Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
72
|
Weyand B, Kasper C, Israelowitz M, Gille C, von Schroeder HP, Reimers K, Vogt PM. A differential pressure laminar flow reactor supports osteogenic differentiation and extracellular matrix formation from adipose mesenchymal stem cells in a macroporous ceramic scaffold. Biores Open Access 2013; 1:145-56. [PMID: 23515420 PMCID: PMC3559213 DOI: 10.1089/biores.2012.9901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We present a laminar flow reactor for bone tissue engineering that was developed based on a computational fluid dynamics model. The bioreactor design permits a laminar flow field through its specific internal shape. An integrated bypass system that prevents pressure build-up through bypass openings for pressure release allows for a constant pressure environment during the changing of permeability values that are caused by cellular growth within a porous scaffold. A macroporous ceramic scaffold, composed of zirconium dioxide, was used as a test biomaterial that studies adipose stem cell behavior within a controlled three-dimensional (3D) flow and pressure environment. The topographic structure of the material provided a basis for stem cell proliferation and differentiation toward the osteogenic lineage. Dynamic culture conditions in the bioreactor supported cell viability during long-term culture and induced cell cluster formation and extra-cellular matrix deposition within the porous scaffold, though no complete closure of the pores with new-formed tissue was observed. We postulate that our system is suitable for studying fluid shear stress effects on stem cell proliferation and differentiation toward bone formation in tissue-engineered 3D constructs.
Collapse
Affiliation(s)
- Birgit Weyand
- Laboratory of Experimental Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
73
|
Thibault RA, Mikos AG, Kasper FK. Scaffold/Extracellular matrix hybrid constructs for bone-tissue engineering. Adv Healthc Mater 2013. [PMID: 23184883 DOI: 10.1002/adhm.201200209] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The limited natural ability of the body to fully repair large bone defects often necessitates the implantation of a replacement material to promote healing. While the current clinical strategies to address such bone defects generally carry associated limitations, bone-tissue engineering approaches seek to minimize any adverse effects and facilitate complete regeneration of the lost tissue. Of particular interest are hybrid constructs that incorporate multiple components found within the native bone matrix to enhance the osteogenicity of biocompatible materials, which might otherwise be non-osteogenic. This Progress Report will focus on such hybrid constructs that incorporate multiple components from native bone matrix for bone-tissue engineering and will highlight the synthesis and characterization of the hybrid constructs, cellular attachment and proliferation within the constructs, in vitro osteogenicity of the constructs, and the biological response to in vivo implantation of the constructs at ectopic and orthotopic sites.
Collapse
|
74
|
Macro and microfluidic flows for skeletal regenerative medicine. Cells 2012; 1:1225-45. [PMID: 24710552 PMCID: PMC3901127 DOI: 10.3390/cells1041225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/07/2012] [Accepted: 12/04/2012] [Indexed: 11/16/2022] Open
Abstract
Fluid flow has a great potential as a cell stimulatory tool for skeletal regenerative medicine, because fluid flow-induced bone cell mechanotransduction in vivo plays a critical role in maintaining healthy bone homeostasis. Applications of fluid flow for skeletal regenerative medicine are reviewed at macro and microscale. Macroflow in two dimensions (2D), in which flow velocity varies along the normal direction to the flow, has explored molecular mechanisms of bone forming cell mechanotransduction responsible for flow-regulated differentiation, mineralized matrix deposition, and stem cell osteogenesis. Though 2D flow set-ups are useful for mechanistic studies due to easiness in in situ and post-flow assays, engineering skeletal tissue constructs should involve three dimensional (3D) flows, e.g., flow through porous scaffolds. Skeletal tissue engineering using 3D flows has produced promising outcomes, but 3D flow conditions (e.g., shear stress vs. chemotransport) and scaffold characteristics should further be tailored. Ideally, data gained from 2D flows may be utilized to engineer improved 3D bone tissue constructs. Recent microfluidics approaches suggest a strong potential to mimic in vivo microscale interstitial flows in bone. Though there have been few microfluidics studies on bone cells, it was demonstrated that microfluidic platform can be used to conduct high throughput screening of bone cell mechanotransduction behavior under biomimicking flow conditions.
Collapse
|
75
|
Katayama A, Arano T, Sato T, Ikada Y, Yoshinari M. Radial-flow bioreactor enables uniform proliferation of human mesenchymal stem cells throughout a three-dimensional scaffold. Tissue Eng Part C Methods 2012; 19:109-16. [PMID: 22834782 DOI: 10.1089/ten.tec.2011.0722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) obtained from human bone marrow are pluripotent and have been expanded and differentiated into several kinds of mesodermal tissue in vitro. To create bioartificial tissues and organs for implantation, it is necessary to induce proliferation in such cells. In this study, a radial-flow bioreactor (RFB) was used to induce three-dimensional (3D) expansion of human MSCs (hMSCs) on a large scaffold. The effect of this expansion on cellular characteristics was investigated. To produce precultured sheets, the hMSCs were first seeded onto type 1 collagen sheets and incubated for 12 h, after which they were placed in the RFB for fabrication of scaffolds. The culture medium was circulated at 3 mL/min, and the cells were dynamically cultured for 1 week at 37°C. As a control, static cultivation in a culture dish was also carried out. Cellular expansion and characteristics were analyzed. Alkaline phosphatase (ALP) activity in the hMSCs was also investigated after dynamic culture in an osteogenesis induction medium to explore their potential for osteogenic differentiation. At 1 week of dynamic cultivation, a >60% increase was observed in a number of cells together with a uniform distribution throughout the scaffolds compared with under static conditions; no change in hMSC markers was observed. The hMSCs retained the ability for osteogenic differentiation after culture in the RFB. The present results indicate that 3D dynamic culture in an RFB enables uniform expansion of hMSCs with no change in cellular characteristics, suggesting the usefulness of this technique in tissue engineering.
Collapse
Affiliation(s)
- Aiko Katayama
- Department of Crown and Bridge Prosthodontics, Division of Oral Implants Research, Oral Health Science Center, Tokyo Dental College, Chiba, Japan
| | | | | | | | | |
Collapse
|
76
|
Perfusion flow enhances osteogenic gene expression and the infiltration of osteoblasts and endothelial cells into three-dimensional calcium phosphate scaffolds. Int J Biomater 2012; 2012:915620. [PMID: 22988460 PMCID: PMC3440867 DOI: 10.1155/2012/915620] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/04/2012] [Indexed: 01/08/2023] Open
Abstract
Maintaining cellular viability in vivo and in vitro is a critical issue in three-dimensional bone tissue engineering. While the use of osteoblast/endothelial cell cocultures on three-dimensional constructs has shown promise for increasing in vivo vascularization, in vitro maintenance of cellular viability remains problematic. This study used perfusion flow to increase osteogenic and angiogenic gene expression, decrease hypoxic gene expression, and increase cell and matrix coverage in osteoblast/endothelial cell co-cultures. Mouse osteoblast-like cells (MC3T3-E1) were cultured alone and in co-culture with mouse microvascular endothelial cells (EOMA) on three-dimensional scaffolds for 1, 2, 7, and 14 days with or without perfusion flow. mRNA levels were determined for several osteogenic, angiogenic, and hypoxia-related genes, and histological analysis was performed. Perfusion flow downregulated hypoxia-related genes (HIF-1α, VEGF, and OPN) at early timepoints, upregulated osteogenic genes (ALP and OCN) at 7 days, and downregulated RUNX-2 and VEGF mRNA at 14 days in osteoblast monocultures. Perfusion flow increased cell number, coverage of the scaffold perimeter, and matrix area in the center of scaffolds at 14 days. Additionally, perfusion flow increased the length of endothelial cell aggregations within co-cultures. These suggest perfusion stimulated co-cultures provide a means of increasing osteogenic and angiogenic activity.
Collapse
|
77
|
Kim J, Ma T. Bioreactor strategy in bone tissue engineering: pre-culture and osteogenic differentiation under two flow configurations. Tissue Eng Part A 2012; 18:2354-64. [PMID: 22690750 DOI: 10.1089/ten.tea.2011.0674] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since robust osteogenic differentiation and mineralization are integral to the engineering of bone constructs, understanding the impact of the cellular microenvironments on human mesenchymal stem cell (hMSCs) osteogenic differentiation is crucial to optimize bioreactor strategy. Two perfusion flow conditions were utilized in order to understand the impact of the flow configuration on hMSC construct development during both pre-culture (PC) in growth media and its subsequent osteogenic induction (OI). The media in the in-house perfusion bioreactor was controlled to perfuse either around (termed parallel flow [PF]) the construct surfaces or penetrate through the construct (termed transverse flow [TF]) for 7 days of the PC followed by 7 days of the OI. The flow configuration during the PC not only changed growth kinetics but also influenced cell distribution and potency of osteogenic differentiation and mineralization during the subsequent OI. While shear stress resulted from the TF stimulated cell proliferation during PC, the convective removal of de novo extracellular matrix (ECM) proteins and growth factors (GFs) reduced cell proliferation on OI. In contrast, the effective retention of de novo ECM proteins and GFs in the PC constructs under the PF maintained cell proliferation under the OI but resulted in localized cell aggregations, which influenced their osteogenic differentiation. The results revealed the contrasting roles of the convective flow as a mechanical stimulus, the redistribution of the cells and macromolecules in 3D constructs, and their divergent impacts on cellular events, leading to bone construct formation. The results suggest that the modulation of the flow configuration in the perfusion bioreactor is an effective strategy that regulates the construct properties and maximizes the functional outcome.
Collapse
Affiliation(s)
- Junho Kim
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, USA
| | | |
Collapse
|
78
|
Yeatts AB, Choquette DT, Fisher JP. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta Gen Subj 2012; 1830:2470-80. [PMID: 22705676 DOI: 10.1016/j.bbagen.2012.06.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/03/2012] [Accepted: 06/07/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. SCOPE OF REVIEW This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. MAJOR CONCLUSIONS The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. GENERAL SIGNIFICANCE Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Andrew B Yeatts
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
79
|
Zhang S, Cheng J, Qin YX. Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force. PLoS One 2012; 7:e38343. [PMID: 22701628 PMCID: PMC3368843 DOI: 10.1371/journal.pone.0038343] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/03/2012] [Indexed: 01/27/2023] Open
Abstract
Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF) (duration, one minute) on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm(2), suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | | | | |
Collapse
|
80
|
Maes F, Claessens T, Moesen M, Van Oosterwyck H, Van Ransbeeck P, Verdonck P. Computational models for wall shear stress estimation in scaffolds: A comparative study of two complete geometries. J Biomech 2012; 45:1586-92. [DOI: 10.1016/j.jbiomech.2012.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 03/19/2012] [Accepted: 04/09/2012] [Indexed: 12/24/2022]
|
81
|
Pisanti P, Yeatts AB, Cardea S, Fisher JP, Reverchon E. Tubular perfusion system culture of human mesenchymal stem cells on poly-L-lactic acid scaffolds produced using a supercritical carbon dioxide-assisted process. J Biomed Mater Res A 2012; 100:2563-72. [PMID: 22528808 DOI: 10.1002/jbm.a.34191] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/14/2012] [Accepted: 03/19/2012] [Indexed: 11/12/2022]
Abstract
In vitro human mesenchymal stem cell (hMSC) proliferation and differentiation is dependent on scaffold design parameters and specific culture conditions. In this study, we investigate how scaffold microstructure influences hMSC behavior in a perfusion bioreactor system. Poly-L-lactic acid (PLLA) scaffolds are fabricated using supercritical carbon dioxide (SC-CO(2)) gel drying. This production method results in scaffolds fabricated with nanostructure. To introduce a microporous structure, porogen leaching was used in addition to this technique to produce scaffolds of average pore size of 100, 250, and 500 μm. These scaffolds were then cultured in static culture in well plates or dynamic culture in the tubular perfusion system (TPS) bioreactor. Results indicated that hMSCs were able to attach and maintain viability on all scaffolds with higher proliferation in the 250 μm and 500 μm pore sizes of bioreactor cultured scaffolds and 100 μm pore size of statically cultured scaffolds. Osteoblastic differentiation was enhanced in TPS culture as compared to static culture with the highest alkaline phosphatase expression observed in the 250 μm pore size group. Bone morphogenetic protein-2 was also analyzed and expression levels were highest in the 250 μm and 500 μm pore size bioreactor cultured samples. These results demonstrate cellular response to pore size as well as the ability of dynamic culture to enhance these effects.
Collapse
Affiliation(s)
- Paola Pisanti
- Department of Industrial Engineering, University of Salerno, Fisciano, Salerno, Italy
| | | | | | | | | |
Collapse
|
82
|
Yeatts AB, Geibel EM, Fears FF, Fisher JP. Human mesenchymal stem cell position within scaffolds influences cell fate during dynamic culture. Biotechnol Bioeng 2012; 109:2381-91. [PMID: 22422570 DOI: 10.1002/bit.24497] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/08/2012] [Accepted: 03/05/2012] [Indexed: 12/24/2022]
Abstract
Cell-based tissue engineering is limited by the size of cell-containing constructs that can be successfully cultured in vitro. This limit is largely a result of the slow diffusion of molecules such as oxygen into the interior of three-dimensional scaffolds in static culture. Bioreactor culture has been shown to overcome these limits. In this study we utilize a tubular perfusion system (TPS) bioreactor for the three-dimensional dynamic culture of human mesenchymal stem cells (hMSCs) in spherical alginate bead scaffolds. The goal of this study is to examine the effect of shear stress in the system and then quantify the proliferation and differentiation of hMSCs in different radial annuli of the scaffold. Shear stress was shown to have a temporal effect on hMSC osteoblastic differentiation with a strong correlation of shear stress, osteopontin, and bone morphogenic protein-2 occurring on day 21, and weaker correlation occurring at early timepoints. Further results revealed an approximate 2.5-fold increase in cell number in the inner annulus of TPS cultured constructs as compared to statically cultured constructs after 21 days. This result demonstrated a nutrient transfer limitation in static culture which can be mitigated by dynamic culture. A significant increase (P < 0.05) in mineralization in the inner and outer annuli of bioreactor cultured 4 mm scaffolds occurred on day 21 with 79 ± 29% and 53 ± 25% mineralization area, respectively, compared to 6 ± 4% and 19 ± 6% mineralization area, respectively, in inner and outer annuli of 4 mm statically cultured scaffolds. Surprising lower mineralization area was observed in 2 mm bioreactor cultured beads which had the highest levels of proliferation. These results may demonstrate a relationship between scaffold position and stem cell fate. In addition the decreased proliferation and matrix production in statically cultured scaffolds compared to bioreactor cultured constructs demonstrate the need for bioreactor systems and the effectiveness of the TPS bioreactor in promoting hMSC proliferation and differentiation in three-dimensional scaffolds.
Collapse
Affiliation(s)
- Andrew B Yeatts
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
83
|
A mathematical model for fluid shear-sensitive 3D tissue construct development. Biomech Model Mechanobiol 2012; 12:19-31. [DOI: 10.1007/s10237-012-0378-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/23/2012] [Indexed: 01/12/2023]
|
84
|
Agha R, Ogawa R, Pietramaggiori G, Orgill DP. A Review of the Role of Mechanical Forces in Cutaneous Wound Healing. J Surg Res 2011; 171:700-8. [DOI: 10.1016/j.jss.2011.07.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/17/2011] [Accepted: 07/07/2011] [Indexed: 12/14/2022]
|
85
|
Kim J, Ma T. Perfusion regulation of hMSC microenvironment and osteogenic differentiation in 3D scaffold. Biotechnol Bioeng 2011; 109:252-61. [PMID: 21965169 DOI: 10.1002/bit.23290] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 01/01/2023]
Abstract
The combination of hMSCs with 3D scaffolds has become an important approach to creating functional bone constructs. Bioreactors are important tools to mitigate mass transfer limitations and to provide controlled physiochemical and biomechanical environments for the 3D bone construct development. Media flow in the bioreactor systems is generally controlled either parallel or transverse with respect to the 3D construct, creating different cellular and biomechanical microenvironments in the 3D constructs. In this study, a custom designed modular perfusion bioreactor system was operated under either the parallel or transverse flow. The influence of the flow patterns on the characteristics of the hMSCs' cellular microenvironment and subsequent construct development was investigated. The parallel flow configuration retained ECM proteins and mitogenic growth factors within the scaffold, effectively preserving hMSC progenicity and proliferation potential (e.g., CFU-F, proliferation, and OCT-4), whereas the transverse flow induced hMSC osteogenic differentiation with higher ALP activity and calcium deposition and up-regulation of osteogenic bone markers (e.g., BMP-2, ALP, RUNX2, OSX, and OC). These results demonstrate the regulatory role of the macroscopic flow on the cellular microenvironment of the 3D hMSC construct, and suggest configuring media flow as a strategy for directing hMSC fate and 3D bone construct development in the perfusion bioreactor.
Collapse
Affiliation(s)
- Junho Kim
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, USA
| | | |
Collapse
|
86
|
Brindley D, Moorthy K, Lee JH, Mason C, Kim HW, Wall I. Bioprocess forces and their impact on cell behavior: implications for bone regeneration therapy. J Tissue Eng 2011; 2011:620247. [PMID: 21904661 PMCID: PMC3166560 DOI: 10.4061/2011/620247] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/17/2011] [Indexed: 12/15/2022] Open
Abstract
Bioprocess forces such as shear stress experienced during routine cell culture are considered to be harmful to cells. However, the impact of physical forces on cell behavior is an area of growing interest within the tissue engineering community, and it is widely acknowledged that mechanical stimulation including shear stress can enhance osteogenic differentiation. This paper considers the effects of bioprocess shear stress on cell responses such as survival and proliferation in several contexts, including suspension-adapted cells used for recombinant protein and monoclonal antibody manufacture, adherent cells for therapy in suspension, and adherent cells attached to their growth substrates. The enhanced osteogenic differentiation that fluid flow shear stress is widely found to induce is discussed, along with the tissue engineering of mineralized tissue using perfusion bioreactors. Recent evidence that bioprocess forces produced during capillary transfer or pipetting of cell suspensions can enhance osteogenic responses is also discussed.
Collapse
Affiliation(s)
- David Brindley
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | | | | | | | |
Collapse
|
87
|
Prè D, Ceccarelli G, Gastaldi G, Asti A, Saino E, Visai L, Benazzo F, Cusella De Angelis MG, Magenes G. The differentiation of human adipose-derived stem cells (hASCs) into osteoblasts is promoted by low amplitude, high frequency vibration treatment. Bone 2011; 49:295-303. [PMID: 21550433 DOI: 10.1016/j.bone.2011.04.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 12/13/2022]
Abstract
Several studies have demonstrated that tissue culture conditions influence the differentiation of human adipose-derived stem cells (hASCs). Recently, studies performed on SAOS-2 and bone marrow stromal cells (BMSCs) have shown the effectiveness of high frequency vibration treatment on cell differentiation to osteoblasts. The aim of this study was to evaluate the effects of low amplitude, high frequency vibrations on the differentiation of hASCs toward bone tissue. In view of this goal, hASCs were cultured in proliferative or osteogenic media and stimulated daily at 30Hz for 45min for 28days. The state of calcification of the extracellular matrix was determined using the alizarin assay, while the expression of extracellular matrix and associated mRNA was determined by ELISA assays and quantitative RT-PCR (qRT-PCR). The results showed the osteogenic effect of high frequency vibration treatment in the early stages of hASC differentiation (after 14 and 21days). On the contrary, no additional significant differences were observed after 28days cell culture. Transmission Electron Microscopy (TEM) images performed on 21day samples showed evidence of structured collagen fibers in the treated samples. All together, these results demonstrate the effectiveness of high frequency vibration treatment on hASC differentiation toward osteoblasts.
Collapse
Affiliation(s)
- D Prè
- Dipartimento di Informatica e Sistemistica, University of Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Bodle JC, Hanson AD, Loboa EG. Adipose-derived stem cells in functional bone tissue engineering: lessons from bone mechanobiology. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:195-211. [PMID: 21338267 DOI: 10.1089/ten.teb.2010.0738] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application.
Collapse
Affiliation(s)
- Josephine C Bodle
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695-7115, USA
| | | | | |
Collapse
|
89
|
Bjerre L, Bünger C, Baatrup A, Kassem M, Mygind T. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes. J Biomed Mater Res A 2011; 97:251-63. [PMID: 21442726 DOI: 10.1002/jbm.a.33051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/01/2010] [Accepted: 01/04/2011] [Indexed: 01/22/2023]
Abstract
Bone grafts are widely used in orthopaedic reconstructive surgery, but harvesting of autologous grafts is limited due to donor site complications. Bone tissue engineering is a possible alternative source for substitutes, and to date, mainly small scaffold sizes have been evaluated. The aim of this study was to obtain a clinically relevant substitute size using a direct perfusion culture system. Human bone marrowderived mesenchymal stem cells were seeded on coralline hydroxyapatite scaffolds with 200 μm or 500 μm pores, and resulting constructs were cultured in a perfusion bioreactor or in static culture for up to 21 days and analysed for cell distribution and osteogenic differentiation using histological stainings, alkaline phosphatase activity assay, and real-time RT-PCR on bone markers. We found that the number of cells was higher during static culture at most time points and that the final number of cells was higher in 500 μm constructs as compared with 200 μm constructs. Alkaline phosphatase enzyme activity assays and real time RT-PCR on seven osteogenic markers showed that differentiation occurred primarily and earlier in statically cultured constructs with 200 μm pores compared with 500 μm ones. Adhesion and proliferation of the cells was seen on both scaffold sizes, but the vitality and morphology of cells changed unfavorably during perfusion culture. In contrast to previous studies using spinner flask that show increased cellularity and osteogenic properties of cells when cultured dynamically, the perfusion culture in our study did not enhance the osteogenic properties of cell/scaffold constructs. The statically cultured constructs showed increasing cell numbers and abundant osteogenic differentiation probably because of weak initial cell adhesion due to the surface morphology of scaffolds. Our conclusion is that the specific scaffold surface microstructure and culturing system flow dynamics has a great impact on cell distribution and proliferation and on osteogenic differentiation, and the data presented warrant careful selection of in vitro culture settings to meet the specific requirements of the scaffolds and cells, especially when natural biomaterials with varying morphology are used.
Collapse
Affiliation(s)
- Lea Bjerre
- Department of Othopaedics, Orthopaedic Research Laboratory, Laboratory for Molecular Orthopaedics, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
90
|
Fluid dynamics analysis of a novel micropatterned cell bioreactor. Ann Biomed Eng 2011; 39:1592-605. [PMID: 21249451 DOI: 10.1007/s10439-011-0250-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
Abstract
Although flow-based bioreactor has been widely used to provide sufficient mass transportation and nutrient supply for cell proliferation, differentiation, and apoptosis, the underlying mechanism of cell responses to applied flow at single cell level remains unclear. This study has developed a novel bioreactor that combines flow bioreactor with microfabrication technique to isolate individual cells onto micropatterned substrate. A mechanical model has also been developed to quantify the flow field or the microenvironment around the single cell; flow dynamics has been analyzed on five geometrically different patterns of circle-, cube-, 1:2 ellipse-, 1:3 ellipse-, and rectangle-shaped "virtual cells." The results of this study have demonstrated that the flow field is highly pattern dependent, and all the hydrodynamic development length, cell spacing, and orientation of inlet velocity vector are crucial for maintaining a fully developed flow. This study has provided a theoretical basis for optimizing the design of micropatterned flow bioreactor and a novel approach to understand the cell mechanotransduction and cell-surface interaction at single cell level.
Collapse
|
91
|
Delaine-Smith RM, Reilly GC. The effects of mechanical loading on mesenchymal stem cell differentiation and matrix production. VITAMINS AND HORMONES 2011; 87:417-80. [PMID: 22127254 DOI: 10.1016/b978-0-12-386015-6.00039-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells or stromal cells (MSCs) have the potential to be used therapeutically in tissue engineering and regenerative medicine to replace or restore the function of damaged tissues. Therefore, considerable effort has been ongoing in the research community to optimize culture conditions for predifferentiation of MSCs. All mesenchymal tissues are subjected to mechanical forces in vivo and all fully differentiated mesenchymal lineage cells respond to mechanical stimulation in vivo and in vitro. Therefore, it is not surprising that MSCs are highly mechanosensitive. We present a summary of current methods of mechanical stimulation of MSCs and an overview of the outcomes of the different mechanical culture techniques tested. Tissue engineers and stem cell researchers should be able to harness this mechanosensitivity to modulate MSC differentiation and matrix production; however, more research needs to be undertaken to understand the complex interactions between the mechanosensitive and biochemically stimulated differentiation pathways.
Collapse
Affiliation(s)
- Robin M Delaine-Smith
- The Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
92
|
Yeatts AB, Fisher JP. Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells. Tissue Eng Part C Methods 2010; 17:337-48. [PMID: 20929287 DOI: 10.1089/ten.tec.2010.0172] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In vitro culture techniques must be improved to increase the feasibility of cell-based tissue engineering strategies. To enhance nutrient transport we have developed a novel bioreactor, the tubular perfusion system (TPS), to culture human mesenchymal stem cells (hMSCs) in three-dimensional scaffolds. This system utilizes an elegant design to create a more effective environment for cell culture. In our design, hMSCs in the TPS bioreactor are encapsulated in alginate beads that are tightly packed in a tubular growth chamber. The medium is perfused by a peristaltic pump through the growth chamber and around the tightly packed scaffolds enhancing nutrient transfer while exposing the cells to shear stress. Results demonstrate that bioreactor culture supports early osteoblastic differentiation of hMSCs as shown by alkaline phosphatase gene expression. After 14 and 28 days of culture significant increases in the gene expression levels of osteocalcin, osteopontin, and bone morphogenetic protein-2 were observed with bioreactor culture, and expression of these markers was shown to increase with media flow rate. These results demonstrate the TPS bioreactor as an effective means to culture hMSCs and provide insight to the effect of long-term shear stresses on differentiating hMSCs.
Collapse
Affiliation(s)
- Andrew B Yeatts
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|
93
|
Bernhardt A, Lode A, Peters F, Gelinsky M. Optimization of culture conditions for osteogenically-induced mesenchymal stem cells in β-tricalcium phosphate ceramics with large interconnected channels. J Tissue Eng Regen Med 2010; 5:444-53. [PMID: 20848550 DOI: 10.1002/term.331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 04/27/2010] [Indexed: 01/24/2023]
Abstract
The aim of this study was to optimize culture conditions for human mesenchymal stem cells (hMSCs) in β-tricalcium phosphate ceramics with large interconnected channels. Fully interconnected macrochannels comprising pore diameters of 750 µm and 1400 µm were inserted into microporous β-tricalcium phosphate (β-TCP) scaffolds by milling. Human bone marrow-derived MSCs were seeded into the scaffolds and cultivated for up to 3 weeks in both static and perfusion culture in the presence of osteogenic supplements (dexamethasone, β-glycerophosphate, ascorbate). It was confirmed by scanning electron microscopic investigations and histological staining that the perfusion culture resulted in uniform distribution of cells inside the whole channel network, whereas the statically cultivated cells were primarily found at the surface of the ceramic samples. It was also determined that perfusion with standard medium containing 10% fetal calf serum (FCS) led to a strong increase (seven-fold) of cell numbers compared with static cultivation observed after 3 weeks. Perfusion with low-serum medium (2% FCS) resulted in moderate proliferation rates which were comparable to those achieved in static culture, although the specific alkaline phosphatase (ALP) activity increased by a factor of more than 3 compared to static cultivation. Gene expression analysis of the ALP gene also revealed higher levels of ALP mRNA in low-serum perfused samples compared to statically cultivated constructs. In contrast, gene expression of the late osteogenic marker bone sialoprotein II (BSPII) was decreased for perfused samples compared to statically cultivated samples.
Collapse
Affiliation(s)
- Anne Bernhardt
- Max Bergmann Centre of Biomaterials and Institute for Materials Science, Technische Universität Dresden, Germany.
| | | | | | | |
Collapse
|
94
|
Hadjizadeh A, Mohebbi-Kalhori D. Porous hollow membrane sheet for tissue engineering applications. J Biomed Mater Res A 2010; 93:1140-50. [PMID: 19768796 DOI: 10.1002/jbm.a.32608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In spite of the present advances in the scaffolds fabrication and bioreactor systems, the ability to create functional thick tissue masses in vitro is still a great tissue engineering challenge. To overcome this problem, the fabrication of a capillary bed, for nutrient supply to and waste product removal from the tissue engineering construct as it grows, is essential. However, the technical construction of a capillary-like architecture is complex and challenging. This study reports, for the very first time, a simple method to design and fabricate a porous hollow membrane sheet (PHMsh) to provide both a capillary bed and a scaffold to support tissue growth. The PHMsh composed of a flexible porous sheet involving parallel porous channels and can be used as flat-, rolled-, or sandwiched-shape scaffold. The PHMsh was fabricated from poly(epsilon-caprolactone) polymer solution using solvent casting methods (i.e., immersion precipitation and air casting). Optical microscopy and scanning electron microscopy were used for the morphological analyses. The PHMsh was surface treated using n-hepthylamine plasma polymer (HApp) and X-ray photoelectron spectroscopy confirmed successful surface coating. Human umbilical vein endothelial cells (HUVECs) and fibroblast cells were used to evaluate the capability of PHMsh toward cell adhesion. The HApp coating enhanced both HUVEC and fibroblast cells adhesion. The obtained preliminary results demonstrated the successful fabrication of the PHMsh, with potential application for tissue engineering scaffolds, particularly in large tissue mass generation under perfusion systems in vitro, which is our future research direction.
Collapse
Affiliation(s)
- Afra Hadjizadeh
- Department of Chemical Engineering and Biotechnology, University of Sherbrooke, 2500 University Boulevard, Sherbrooke, Québec, Canada J1K 2R1.
| | | |
Collapse
|
95
|
Yang C, Yuan G, Zhang J, Tang Z, Zhang X, Dai K. Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation. Biomed Mater 2010; 5:045005. [PMID: 20571183 DOI: 10.1088/1748-6041/5/4/045005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this study, adult human bone marrow-derived stromal cells (hBMSCs) were cultured in extracts of magnesium (Mg) and the Mg alloys AZ91D and NZ30K for 12 days. We studied the indirect effects of Mg alloys on hBMSC viability. Alkaline phosphatase activity and the expression of osteogenic differentiation marker genes were used to evaluate the effects of the Mg alloys on the osteogenic differentiation of hBMSCs. The results indicate that <or=10 mM concentration of Mg in the extracts did not inhibit the viability and osteogenic differentiation of hBMSCs. However, the results suggest that the high pH of the extracts, which is a result of the rapid corrosion of Mg and the Mg alloys, is unfavorable to the viability and osteogenic differentiation of hBMSCs.
Collapse
Affiliation(s)
- Chunxi Yang
- Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | | | | | | | | | | |
Collapse
|