51
|
Chen HI, Jgamadze D, Serruya MD, Cullen DK, Wolf JA, Smith DH. Neural Substrate Expansion for the Restoration of Brain Function. Front Syst Neurosci 2016; 10:1. [PMID: 26834579 PMCID: PMC4724716 DOI: 10.3389/fnsys.2016.00001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023] Open
Abstract
Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.
Collapse
Affiliation(s)
- H Isaac Chen
- Department of Neurosurgery, University of PennsylvaniaPhiladelphia, PA, USA; Philadelphia Veterans Affairs Medical CenterPhiladelphia, PA, USA
| | - Dennis Jgamadze
- Department of Neurosurgery, University of Pennsylvania Philadelphia, PA, USA
| | - Mijail D Serruya
- Department of Neurology, Thomas Jefferson University Philadelphia, PA, USA
| | - D Kacy Cullen
- Department of Neurosurgery, University of PennsylvaniaPhiladelphia, PA, USA; Philadelphia Veterans Affairs Medical CenterPhiladelphia, PA, USA
| | - John A Wolf
- Department of Neurosurgery, University of PennsylvaniaPhiladelphia, PA, USA; Philadelphia Veterans Affairs Medical CenterPhiladelphia, PA, USA
| | - Douglas H Smith
- Department of Neurosurgery, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
52
|
Harris JP, Struzyna LA, Murphy PL, Adewole DO, Kuo E, Cullen DK. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain. J Neural Eng 2016; 13:016019. [PMID: 26760138 DOI: 10.1088/1741-2560/13/1/016019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. APPROACH We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. MAIN RESULTS The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter-white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. SIGNIFICANCE Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain. The micro-TENN approach may offer the ability to treat several disorders that disrupt the connectome, including Parkinson's disease, traumatic brain injury, stroke, and brain tumor excision.
Collapse
Affiliation(s)
- J P Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
53
|
Adewole DO, Serruya MD, Harris JP, Burrell JC, Petrov D, Chen HI, Wolf JA, Cullen DK. The Evolution of Neuroprosthetic Interfaces. Crit Rev Biomed Eng 2016; 44:123-52. [PMID: 27652455 PMCID: PMC5541680 DOI: 10.1615/critrevbiomedeng.2016017198] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ideal neuroprosthetic interface permits high-quality neural recording and stimulation of the nervous system while reliably providing clinical benefits over chronic periods. Although current technologies have made notable strides in this direction, significant improvements must be made to better achieve these design goals and satisfy clinical needs. This article provides an overview of the state of neuroprosthetic interfaces, starting with the design and placement of these interfaces before exploring the stimulation and recording platforms yielded from contemporary research. Finally, we outline emerging research trends in an effort to explore the potential next generation of neuroprosthetic interfaces.
Collapse
Affiliation(s)
- Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Mijail D. Serruya
- Department of Neurology, Jefferson University, Philadelphia, PA, USA
| | - James P. Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - H. Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
54
|
Struzyna LA, Wolf JA, Mietus CJ, Adewole DO, Chen HI, Smith DH, Cullen DK. Rebuilding Brain Circuitry with Living Micro-Tissue Engineered Neural Networks. Tissue Eng Part A 2015; 21:2744-56. [PMID: 26414439 DOI: 10.1089/ten.tea.2014.0557] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prominent neuropathology following trauma, stroke, and various neurodegenerative diseases includes neuronal degeneration as well as loss of long-distance axonal connections. While cell replacement and axonal pathfinding strategies are often explored independently, there is no strategy capable of simultaneously replacing lost neurons and re-establishing long-distance axonal connections in the central nervous system. Accordingly, we have created micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of long integrated axonal tracts spanning discrete neuronal populations. These living micro-TENNs reconstitute the architecture of long-distance axonal tracts, and thus may serve as an effective substrate for targeted neurosurgical reconstruction of damaged pathways in the brain. Cerebral cortical neurons or dorsal root ganglia neurons were precisely delivered into the tubular constructs, and properties of the hydrogel exterior and extracellular matrix internal column (180-500 μm diameter) were optimized for robust neuronal survival and to promote axonal extensions across the 2.0 cm tube length. The very small diameter permits minimally invasive delivery into the brain. In this study, preformed micro-TENNs were stereotaxically injected into naive rats to bridge deep thalamic structures with the cerebral cortex to assess construct survival and integration. We found that micro-TENN neurons survived at least 1 month and maintained their long axonal architecture along the cortical-thalamic axis. Notably, we also found neurite penetration from micro-TENN neurons into the host cortex, with evidence of synapse formation. These micro-TENNs represent a new strategy to facilitate nervous system repair by recapitulating features of neural pathways to restore or modulate damaged brain circuitry.
Collapse
Affiliation(s)
- Laura A Struzyna
- 1 Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Philadelphia Veterans Affairs Medical Center , Philadelphia, Pennsylvania.,3 Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, Pennsylvania
| | - John A Wolf
- 1 Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Philadelphia Veterans Affairs Medical Center , Philadelphia, Pennsylvania
| | - Constance J Mietus
- 1 Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Dayo O Adewole
- 1 Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Philadelphia Veterans Affairs Medical Center , Philadelphia, Pennsylvania.,3 Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, Pennsylvania
| | - H Isaac Chen
- 1 Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Philadelphia Veterans Affairs Medical Center , Philadelphia, Pennsylvania
| | - Douglas H Smith
- 1 Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - D Kacy Cullen
- 1 Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Philadelphia Veterans Affairs Medical Center , Philadelphia, Pennsylvania
| |
Collapse
|
55
|
Struzyna LA, Harris JP, Katiyar KS, Chen HI, Cullen DK. Restoring nervous system structure and function using tissue engineered living scaffolds. Neural Regen Res 2015; 10:679-85. [PMID: 26109930 PMCID: PMC4468747 DOI: 10.4103/1673-5374.156943] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2015] [Indexed: 12/23/2022] Open
Abstract
Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways – the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals – is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered “living scaffolds”, which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration – mimicking key developmental mechanisms– or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.
Collapse
Affiliation(s)
- Laura A Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Center for Neurotrauma, Neurodegeneration, and Restoration, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - James P Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Center for Neurotrauma, Neurodegeneration, and Restoration, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Kritika S Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - H Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Center for Neurotrauma, Neurodegeneration, and Restoration, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Center for Neurotrauma, Neurodegeneration, and Restoration, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| |
Collapse
|
56
|
Romanelli SM, Fath KR, Phekoo AP, Knoll GA, Banerjee IA. Layer-by-layer assembly of peptide based bioorganic-inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 51:316-28. [PMID: 25842141 DOI: 10.1016/j.msec.2015.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/30/2015] [Accepted: 03/13/2015] [Indexed: 12/16/2022]
Abstract
In this work we have developed a new family of biocomposite scaffolds for bone tissue regeneration by utilizing self-assembled fluorenylmethyloxycarbonyl protected Valyl-cetylamide (FVC) nanoassemblies as templates. To tailor the assemblies for enhanced osteoblast attachment and proliferation, we incorporated (a) Type I collagen, (b) a hydroxyapatite binding peptide sequence (EDPHNEVDGDK) derived from dentin sialophosphoprotein and (c) the osteoinductive bone morphogenetic protein-4 (BMP-4) to the templates by layer-by-layer assembly. The assemblies were then incubated with hydroxyapatite nanocrystals blended with varying mass percentages of TiO2 nanoparticles and coated with alginate to form three dimensional scaffolds for potential applications in bone tissue regeneration. The morphology was examined by TEM and SEM and the binding interactions were probed by FITR spectroscopy. The scaffolds were found to be non-cytotoxic, adhered to mouse preosteoblast MC3T3-E1 cells and promoted osteogenic differentiation as indicated by the results obtained by alkaline phosphatase assay. Furthermore, they were found to be biodegradable and possessed inherent antibacterial capability. Thus, we have developed a new family of tissue-engineered biocomposite scaffolds with potential applications in bone regeneration.
Collapse
Affiliation(s)
- Steven M Romanelli
- Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458, United States
| | - Karl R Fath
- The City University of New York, Queens College, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367, United States; The Graduate Center, The City University of New York, 365 Fifth Avenue, NY 10016, United States
| | - Aruna P Phekoo
- The City University of New York, Queens College, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367, United States
| | - Grant A Knoll
- Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458, United States
| | - Ipsita A Banerjee
- Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458, United States.
| |
Collapse
|
57
|
Canavero S. The "Gemini" spinal cord fusion protocol: Reloaded. Surg Neurol Int 2015; 6:18. [PMID: 25709855 PMCID: PMC4322377 DOI: 10.4103/2152-7806.150674] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/17/2014] [Indexed: 01/13/2023] Open
|
58
|
Struzyna LA, Katiyar K, Cullen DK. Living scaffolds for neuroregeneration. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2014; 18:308-318. [PMID: 28736499 PMCID: PMC5520662 DOI: 10.1016/j.cossms.2014.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Neural tissue engineers are exploiting key mechanisms responsible for neural cell migration and axonal path finding during embryonic development to create living scaffolds for neuroregeneration following injury and disease. These mechanisms involve the combined use of haptotactic, chemotactic, and mechanical cues to direct cell movement and re-growth. Living scaffolds provide these cues through the use of cells engineered in a predefined architecture, generally in combination with biomaterial strategies. Although several hurdles exist in the implementation of living regenerative scaffolds, there are considerable therapeutic advantages to using living cells in conjunction with biomaterials. The leading contemporary living scaffolds for neurorepair are utilizing aligned glial cells and neuronal/axonal tracts to direct regenerating axons across damaged tissue to appropriate targets, and in some cases to directly replace the function of lost cells. Future advances in technology, including the use of exogenous stimulation and genetically engineered stem cells, will further the potential of living scaffolds and drive a new era of personalized medicine for neuroregeneration.
Collapse
Affiliation(s)
- Laura A Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kritika Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States
| |
Collapse
|
59
|
Dayawansa S, Wang EW, Liu W, Markman JD, Gelbard HA, Huang JH. Allotransplanted DRG neurons or Schwann cells affect functional recovery in a rodent model of sciatic nerve injury. Neurol Res 2014; 36:1020-1027. [PMID: 24836462 DOI: 10.1179/1743132814y.0000000386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE In this study, the functional recoveries of Sprague-Dawley rats following repair of a complete sciatic nerve transection using allotransplanted dorsal root ganglion (DRG) neurons or Schwann cells were examined using a number of outcome measures. METHODS Four groups were compared: (1) repair with a nerve guide conduit seeded with allotransplanted Schwann cells harvested from Wistar rats, (2) repair with a nerve guide conduit seeded with DRG neurons, (3) repair with solely a nerve guide conduit, and (4) sham-surgery animals where the sciatic nerve was left intact. The results corroborated our previous reported histology findings and measures of immunogenicity. RESULTS The Wistar-DRG-treated group achieved the best recovery, significantly outperforming both the Wistar-Schwann group and the nerve guide conduit group in the Von Frey assay of touch response (P < 0.05). Additionally, Wistar-DRG and Wistar-Schwann seeded repairs showed lower frequency and severity in an autotomy measure of the self-mutilation of the injured leg because of neuralgia. CONCLUSION These results suggest that in complete peripheral nerve transections, surgical repair using nerve guide conduits with allotransplanted DRG and Schwann cells may improve recovery, especially DRG neurons, which elicit less of an immune response.
Collapse
Affiliation(s)
- Samantha Dayawansa
- Department of Neurosurgery, University of Rochester, NY, USA.,Department of Pathology, University of Buffalo, NY, USA
| | - Ernest W Wang
- Department of Neurosurgery, University of Rochester, NY, USA.,Center for Neural Development and Disease, University of Rochester, NY, USA
| | - Weimin Liu
- Department of Neurosurgery, University of Rochester, NY, USA.,Center for Neural Development and Disease, University of Rochester, NY, USA
| | - John D Markman
- Department of Neurosurgery, University of Rochester, NY, USA.,Center for Neural Development and Disease, University of Rochester, NY, USA.,Department of Neurology, University of Rochester, NY, USA
| | - Harris A Gelbard
- Center for Neural Development and Disease, University of Rochester, NY, USA.,Department of Neurology, University of Rochester, NY, USA
| | - Jason H Huang
- Department of Neurosurgery, University of Rochester, NY, USA.,Center for Neural Development and Disease, University of Rochester, NY, USA.,Department of Neurosurgery, Scott & White Health System, Temple, TX, USA
| |
Collapse
|
60
|
Simi A, Amin H, Maccione A, Nieus T, Berdondini L. Integration of microstructured scaffolds, neurons, and multielectrode arrays. PROGRESS IN BRAIN RESEARCH 2014; 214:415-42. [DOI: 10.1016/b978-0-444-63486-3.00017-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
61
|
Marquardt LM, Sakiyama-Elbert SE. Engineering peripheral nerve repair. Curr Opin Biotechnol 2013; 24:887-92. [PMID: 23790730 DOI: 10.1016/j.copbio.2013.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/13/2023]
Abstract
Current approaches for treating peripheral nerve injury have resulted in promising, yet insufficient functional recovery compared to the clinical standard of care, autologous nerve grafts. In order to design a construct that can match the regenerative potential of the autograft, all facets of nerve tissue must be incorporated in a combinatorial therapy. Engineered biomaterial scaffolds in the future will have to promote enhanced regeneration and appropriate reinnervation by targeting the highly sensitive response of regenerating nerves to their surrounding microenvironment.
Collapse
Affiliation(s)
- Laura M Marquardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|