51
|
Choi B, Cui ZK, Kim S, Fan J, Wu BM, Lee M. Glutamine-chitosan modified calcium phosphate nanoparticles for efficient siRNA delivery and osteogenic differentiation. J Mater Chem B 2015; 3:6448-6455. [PMID: 26413302 DOI: 10.1039/c5tb00843c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RNA interference (RNAi)-based therapy using small interfering RNA (siRNA) exhibits great potential to treat diseases. Although calcium phosphate (CaP)-based systems are attractive options to deliver nucleic acids due to their good biocompatibility and high affinity with nucleic acids, they are limited by uncontrollable particle formation and inconsistent transfection efficiencies. In this study, we developed a stable CaP nanocarrier system with enhanced intracellular uptake by adding highly cationic, glutamine-conjugated oligochitosan (Gln-OChi). CaP nanoparticles coated with Gln-OChi (CaP/Gln-OChi) significantly enhanced gene transfection and knockdown efficiency in both immortalized cell line (HeLa) and primary mesenchymal stem cells (MSCs) with minimal cytotoxicity. The osteogenic bioactivity of siRNA-loaded CaP/Gln-OChi particles was further confirmed in three-dimensional environments by using photocrosslinkable chitosan hydrogels encapsulating MSCs and particles loaded with siRNA targeting noggin, a bone morphogenetic protein antagonist. These findings suggest that our CaP/Gln-OChi nanocarrier provides an efficient and safe gene delivery system for therapeutic applications.
Collapse
Affiliation(s)
- Bogyu Choi
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Zhong-Kai Cui
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Soyon Kim
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, USA
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Benjamin M Wu
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA ; Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA ; Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
52
|
Oryan A, Alidadi S, Moshiri A, Bigham-Sadegh A. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors 2014; 40:459-81. [PMID: 25283434 DOI: 10.1002/biof.1177] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
Healing and regeneration of large bone defects leading to non-unions is a great concern in orthopedic surgery. Since auto- and allografts have limitations, bone tissue engineering and regenerative medicine (TERM) has attempted to solve this issue. In TERM, healing promotive factors are necessary to regulate the several important events during healing. An ideal treatment strategy should provide osteoconduction, osteoinduction, osteogenesis, and osteointegration of the graft or biomaterials within the healing bone. Since many materials have osteoconductive properties, only a few biomaterials have osteoinductive properties which are important for osteogenesis and osteointegration. Bone morphogenetic proteins (BMPs) are potent inductors of the osteogenic and angiogenic activities during bone repair. The BMPs can regulate the production and activity of some growth factors which are necessary for the osteogenesis. Since the introduction of BMP, it has added a valuable tool to the surgeon's possibilities and is most commonly used in bone defects. Despite significant evidences suggesting their potential benefit on bone healing, there are some evidences showing their side effects such as ectopic bone formation, osteolysis and problems related to cost effectiveness. Bone tissue engineering may create a local environment, using the delivery systems, which enables BMPs to carry out their activities and to lower cost and complication rate associated with BMPs. This review represented the most important concepts and evidences regarding the role of BMPs on bone healing and regeneration from basic to clinical application. The major advantages and disadvantages of such biologic compounds together with the BMPs substitutes are also discussed.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|
53
|
Cho HJ, Perikamana SKM, Lee JH, Lee J, Lee KM, Shin CS, Shin H. Effective immobilization of BMP-2 mediated by polydopamine coating on biodegradable nanofibers for enhanced in vivo bone formation. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11225-11235. [PMID: 24942379 DOI: 10.1021/am501391z] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although bone morphogenic proteins (BMPs) have been widely used for bone regeneration, the ideal delivery system with optimized dose and minimized side effects is still active area of research. In this study, we developed bone morphogenetic protein-2(BMP-2) immobilized poly(l-lactide) (PLLA) nanofibers inspired by polydopamine, which could be ultimately used as membranes for guided bone regeneration, and investigated their effect on guidance of in vitro cell behavior and in vivo bone formation. Surface chemical analysis of the nanofibers confirmed successful immobilization of BMP-2 mediated by polydopamine, and about 90% of BMP-2 was stably retained on the nanofiber surface for at least 28 days. The alkaline phosphatase activity and calcium mineralization of human mesenchymal stem cells (hMSCs) after 14 days of in vitro culture was significantly enhanced on nanofibers immobilized with BMP-2. More importantly, BMP-2 at a relatively small dose was highly active following implantation to the critical-sized defect in the cranium of mice; radiographic analysis demonstrated that 77.8 ± 11.7% of newly formed bone was filled within the defect for a BMP-2-immobilized groups at the concentration of 124 ± 9 ng/cm(2), as compared to 5.9 ± 1.0 and 34.1 ± 5.5% recovery, for a defect-only and a polydopamine-only group, respectively. Scanning and transmission electron microscopy of samples from the BMP-2 immobilized group showed fibroblasts and osteoblasts with nanofiber strands in the middle of regenerated bone tissue, revealing the importance of interaction between implanted nanofibers and the neighboring extracellular environment. Taken together, our data support that the presentation of BMP-2 on the surface of nanofibers as immobilized by utilizing polydopamine chemistry may be an effective method to direct bone growth at relatively low local concentration.
Collapse
Affiliation(s)
- Hyeong-jin Cho
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University , Seoul 133-791, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|