51
|
Liu Y, Wang Z, Wang X, Huang Y. Quantitative analysis of dynamic adhesion properties in human hepatocellular carcinoma cells with fullerenol. Micron 2015; 79:74-83. [DOI: 10.1016/j.micron.2015.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/27/2015] [Accepted: 08/22/2015] [Indexed: 11/17/2022]
|
52
|
Herranz-Diez C, Li Q, Lamprecht C, Mas-Moruno C, Neubauer S, Kessler H, Manero J, Guillem-Martí J, Selhuber-Unkel C. Bioactive compounds immobilized on Ti and TiNbHf: AFM-based investigations of biofunctionalization efficiency and cell adhesion. Colloids Surf B Biointerfaces 2015; 136:704-11. [DOI: 10.1016/j.colsurfb.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/20/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
53
|
Cazaux S, Sadoun A, Biarnes-Pelicot M, Martinez M, Obeid S, Bongrand P, Limozin L, Puech PH. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies. Ultramicroscopy 2015; 160:168-181. [PMID: 26521163 DOI: 10.1016/j.ultramic.2015.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Abstract
A method is presented for combining atomic force microscopy (AFM) force mode and fluorescence microscopy in order to (a) mechanically stimulate immune cells while recording the subsequent activation under the form of calcium pulses, and (b) observe the mechanical response of a cell upon photoactivation of a small G protein, namely Rac. Using commercial set-ups and a robust signal coupling the fluorescence excitation light and the cantilever bending, the applied force and activation signals were very easily synchronized. This approach allows to control the entire mechanical history of a single cell up to its activation and response down to a few hundreds of milliseconds, and can be extended with very minimal adaptations to other cellular systems where mechanotransduction is studied, using either purely mechanical stimuli or via a surface bound specific ligand.
Collapse
Affiliation(s)
- Séverine Cazaux
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Anaïs Sadoun
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Martine Biarnes-Pelicot
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Manuel Martinez
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Sameh Obeid
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Pierre Bongrand
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France; APHM, Hôpital de la Conception, Laboratoire d'Immunologie, Marseille F-13385, France
| | - Laurent Limozin
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Pierre-Henri Puech
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France.
| |
Collapse
|
54
|
Schmidt C, Storsberg J. Nanomaterials-Tools, Technology and Methodology of Nanotechnology Based Biomedical Systems for Diagnostics and Therapy. Biomedicines 2015; 3:203-223. [PMID: 28536408 PMCID: PMC5344240 DOI: 10.3390/biomedicines3030203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/03/2015] [Accepted: 07/09/2015] [Indexed: 12/27/2022] Open
Abstract
Nanomedicine helps to fight diseases at the cellular and molecular level by utilizing unique properties of quasi-atomic particles at a size scale ranging from 1 to 100 nm. Nanoparticles are used in therapeutic and diagnostic approaches, referred to as theranostics. The aim of this review is to illustrate the application of general principles of nanotechnology to select examples of life sciences, molecular medicine and bio-assays. Critical aspects relating to those examples are discussed.
Collapse
Affiliation(s)
- Christian Schmidt
- Fraunhofer-Institute Applied Polymer Research (IAP), Geiselbergstrasse 69, Potsdam D-14476, Germany.
| | - Joachim Storsberg
- Fraunhofer-Institute Applied Polymer Research (IAP), Geiselbergstrasse 69, Potsdam D-14476, Germany.
| |
Collapse
|
55
|
Aguayo S, Donos N, Spratt D, Bozec L. Nanoadhesion of Staphylococcus aureus onto Titanium Implant Surfaces. J Dent Res 2015; 94:1078-84. [PMID: 26130256 DOI: 10.1177/0022034515591485] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adhesion of bacteria to dental implant surfaces is the critical initial step in the process of biofilm colonization; however, the specific nanoadhesive interactions occurring during the first contact between bacterial cells and biomaterial substrates remain poorly understood. In this report, we utilize single-cell force spectroscopy to characterize the dynamics of the initial interaction between living Staphylococcus aureus cells and machined titanium surfaces at the nanoscale. Values for maximum adhesion force were found to increase from 0-s (-0.27 ± 0.30 nN) to 60-s (-9.15 ± 0.78 nN) surface delays, with similar results observed for total adhesion work (7.39 ± 2.38 and 988.06 ± 117.08 aJ, respectively). Single unbinding events observed at higher surface delays were modeled according to the wormlike chain model, obtaining molecular contour-length predictions of 314.06 ± 9.27 nm. Average single-bond rupture forces of -0.95 ± 0.04 nN were observed at increased contact times. Short- and long-range force components of bacterial adhesion were obtained by Poisson analysis of single unbinding event peaks, yielding values of -0.75 ± 0.04 and -0.58 ± 0.15 nN, respectively. Addition of 2-mg/mL chlorhexidine to the buffer solution resulted in the inhibition of specific adhesive events but an increased overall adhesion force and work. These results suggest that initial attachment of S. aureus to smooth titanium is mostly mediated by short-range attractive forces observed at higher surface delays.
Collapse
Affiliation(s)
- S Aguayo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - N Donos
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, UK
| | - D Spratt
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - L Bozec
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
56
|
Aguayo S, Donos N, Spratt D, Bozec L. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells. NANOTECHNOLOGY 2015; 26:062001. [PMID: 25598514 DOI: 10.1088/0957-4484/26/6/062001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.
Collapse
Affiliation(s)
- S Aguayo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | | |
Collapse
|
57
|
Yu M, Strohmeyer N, Wang J, Müller DJ, Helenius J. Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:157-66. [PMID: 25671160 PMCID: PMC4311671 DOI: 10.3762/bjnano.6.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/10/2014] [Indexed: 05/23/2023]
Abstract
Mammalian cells regulate adhesion by expressing and regulating a diverse array of cell adhesion molecules on their cell surfaces. Since different cell types express distinct sets of cell adhesion molecules, substrate-specific adhesion is cell type- and condition-dependent. Single-cell force spectroscopy is used to quantify the contribution of cell adhesion molecules to adhesion of cells to specific substrates at both the cell and single molecule level. However, the low throughput of single-cell adhesion experiments greatly limits the number of substrates that can be examined. In order to overcome this limitation, segmented polydimethylsiloxane (PDMS) masks were developed, allowing the measurement of cell adhesion to multiple substrates. To verify the utility of the masks, the adhesion of four different cell lines, HeLa (Kyoto), prostate cancer (PC), mouse kidney fibroblast and MDCK, to three extracellular matrix proteins, fibronectin, collagen I and laminin 332, was examined. The adhesion of each cell line to different matrix proteins was found to be distinct; no two cell lines adhered equally to each of the proteins. The PDMS masks improved the throughput limitation of single-cell force spectroscopy and allowed for experiments that previously were not feasible. Since the masks are economical and versatile, they can aid in the improvement of various assays.
Collapse
Affiliation(s)
- Miao Yu
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jinghe Wang
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
58
|
Diao M, Taran E, Mahler S, Nguyen AV. A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions. Adv Colloid Interface Sci 2014; 212:45-63. [PMID: 25245273 DOI: 10.1016/j.cis.2014.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/01/2014] [Accepted: 08/28/2014] [Indexed: 01/17/2023]
Abstract
Bioleaching is a technology for the recovery of metals from minerals by means of microorganisms, which accelerate the oxidative dissolution of the mineral by regenerating ferric ions. Bioleaching processes take place at the interface of bacteria, sulfide mineral and leaching solution. The fundamental forces between a bioleaching bacterium and mineral surface are central to understanding the intricacies of interfacial phenomena, such as bacterial adhesion or detachment from minerals and the mineral dissolution. This review focuses on the current state of knowledge in the colloidal aspect of bacteria-mineral interactions, particularly for bioleaching bacteria. Special consideration is given to the microscopic structure of bacterial cells and the atomic force microscopy technique used in the quantification of fundamental interaction forces at nanoscale.
Collapse
Affiliation(s)
- Mengxue Diao
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elena Taran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen Mahler
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
59
|
Schubert R, Strohmeyer N, Bharadwaj M, Ramanathan SP, Krieg M, Friedrichs J, Franz CM, Muller DJ. Assay for characterizing the recovery of vertebrate cells for adhesion measurements by single-cell force spectroscopy. FEBS Lett 2014; 588:3639-48. [PMID: 24928443 DOI: 10.1016/j.febslet.2014.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
Single-cell force spectroscopy (SCFS) is becoming a widely used method to quantify the adhesion of a living cell to a substrate, another cell or tissue. The high sensitivity of SCFS permits determining the contributions of individual cell adhesion molecules (CAMs) to the adhesion force of an entire cell. However, to prepare adherent cells for SCFS, they must first be detached from tissue-culture flasks or plates. EDTA and trypsin are often applied for this purpose. Because cellular properties can be affected by this treatment, cells need to recover before being further characterized by SCFS. Here we introduce atomic force microscopy (AFM)-based SCFS to measure the mechanical and adhesive properties of HeLa cells and mouse embryonic kidney fibroblasts while they are recovering after detachment from tissue-culture. We find that mechanical and adhesive properties of both cell lines recover quickly (<10 min) after detachment using EDTA, while trypsin-detached fibroblasts require >60 min to fully recover. Our assay introduced to characterize the recovery of mammalian cells after detachment can in future be used to estimate the recovery behavior of other adherent cell types.
Collapse
Affiliation(s)
- Rajib Schubert
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mitasha Bharadwaj
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Subramanian P Ramanathan
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden, Institute for Biofunctional Polymer Materials, Hohe Str. 6, 01069 Dresden, Germany
| | - Clemens M Franz
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1a, 76131 Karlsruhe, Germany
| | - Daniel J Muller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
60
|
The F-actin and adherence-dependent mechanical differentiation of normal epithelial cells after TGF-β1-induced EMT (tEMT) using a microplate measurement system. Biomed Microdevices 2014; 16:465-78. [DOI: 10.1007/s10544-014-9849-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|