51
|
de Abreu MS, Friend AJ, Demin KA, Amstislavskaya TG, Bao W, Kalueff AV. Zebrafish models: do we have valid paradigms for depression? J Pharmacol Toxicol Methods 2018; 94:16-22. [DOI: 10.1016/j.vascn.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/12/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022]
|
52
|
Does the Stress of Laboratory Life and Experimentation on Animals Adversely Affect Research Data? A Critical Review. Altern Lab Anim 2018; 46:291-305. [DOI: 10.1177/026119291804600501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recurrent acute and/or chronic stress can affect all vertebrate species, and can have serious consequences. It is increasingly and widely appreciated that laboratory animals experience significant and repeated stress, which is unavoidable and is caused by many aspects of laboratory life, such as captivity, transport, noise, handling, restraint and other procedures, as well as the experimental procedures applied to them. Such stress is difficult to mitigate, and lack of significant desensitisation/habituation can result in considerable psychological and physiological welfare problems, which are mediated by the activation of various neuroendocrine networks that have numerous and pervasive effects. Psychological damage can be reflected in stereotypical behaviours, including repetitive pacing and circling, and even self-harm. Physical consequences include adverse effects on immune function, inflammatory responses, metabolism, and disease susceptibility and progression. Further, some of these effects are epigenetic, and are therefore potentially transgenerational: the biology of animals whose parents/grandparents were wild-caught and/or have experienced chronic stress in laboratories could be altered, as compared to free-living individuals. It is argued that these effects must have consequences for the reliability of experimental data and their extrapolation to humans, and this may not be recognised sufficiently among those who use animals in experiments.
Collapse
|
53
|
Sykes DJ, Suriyampola PS, Martins EP. Recent experience impacts social behavior in a novel context by adult zebrafish (Danio rerio). PLoS One 2018; 13:e0204994. [PMID: 30335773 PMCID: PMC6193632 DOI: 10.1371/journal.pone.0204994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 09/18/2018] [Indexed: 12/12/2022] Open
Abstract
Many animals exhibit behavioral plasticity as they move between habitats seasonally, reside in fluctuating environments, or respond to human-induced environmental change. We know that physical environment during early development can have a lasting impact on behavior, and on the neural mechanisms that shape behavior. In adults, social context can have similar persistent effects on behavior and the brain. Here, we asked whether physical context impacts adult social behavior in a novel environment. We placed groups of adult zebrafish (Danio rerio) in two different physical contexts. After two weeks, we measured group behavior in a novel context, and found that zebrafish with recent experience in a more-complex physical environment charged each other more often and tended to form tighter shoals than did fish that had been housed in less-complex environments. These differences were present regardless of the novel context in which we assayed behavior, and were not easily explained by differences in activity level. Our results demonstrate the impact of recent experiences on adult behavior, and highlight the importance of physical as well as social history in predicting animal behavior in novel situations.
Collapse
Affiliation(s)
- Delawrence J. Sykes
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Piyumika S. Suriyampola
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Emília P. Martins
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
54
|
Divergent action of fluoxetine in zebrafish according to responsivity to novelty. Sci Rep 2018; 8:13908. [PMID: 30224742 PMCID: PMC6141609 DOI: 10.1038/s41598-018-32263-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/29/2018] [Indexed: 01/13/2023] Open
Abstract
Here we show that the novel object recognition test can discriminate between high (HRN, neophobic) and low (LRN, neophilic) novelty responders in zebrafish populations. Especially when we observe the latency to the first entry in the novel object zone, zebrafish did not maintain these behavioral phenotypes in sequential tests and only the HRN group returned to their initial responsive behavior when exposed to fluoxetine. Our results have important implications for behavioral data analysis since such behavioral differences can potentially increase individual response variability and interfere with the outcomes obtained from various behavioral tasks. Our data reinforce the validity of personality determination in zebrafish since we show clear differences in behavior in response to fluoxetine.
Collapse
|
55
|
Is Heightened-Shoaling a Good Candidate for Positive Emotional Behavior in Zebrafish? Animals (Basel) 2018; 8:ani8090152. [PMID: 30149557 PMCID: PMC6162706 DOI: 10.3390/ani8090152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Despite increasing interest in fish welfare, we still know very little about positive emotions in fish. This study had two aims: (1) to characterize a previously undescribed social behavior in zebrafish, “heightened-shoaling”, and (2) to evaluate whether heightened-shoaling may be a good candidate for future research into positive emotional behavior in zebrafish. Observing six groups of zebrafish housed in 110 L tanks furnished with a sloping gravel substrate, rocks, and artificial plants (10 fish/tank), we found that heightened-shoaling is marked by tight group cohesion, high behavioral synchrony (all fish engaging in the same behaviors at the same time), and low agonism. Episodes of heightened-shoaling occurred in all six groups, but rarely at the same time (only once out of 31 episodes), suggesting that the onset of heightened-shoaling is driven by internal group dynamics rather than external influences. Heightened-shoaling also appeared to be self-reinforcing as it had sustained durations—typically lasting for over 7 min and sometimes lasting for nearly half-an-hour. Collectively, these results are similar to the patterns that typify positive emotional behavior in other animals, for example, social grooming and social play. As the first description of heightened-shoaling, this research extends our knowledge of the range of zebrafish social dynamics and suggests a promising area for future research on positive emotions in fish. Abstract Zebrafish, a highly-social species of freshwater fish, are widely studied across many fields of laboratory science including developmental biology, neuroscience, and genomics. Nevertheless, as standard housing for zebrafish typically consists of small and simplistic environments, less is known about their social behavioral repertoire in more naturalistic settings. In particular, spontaneously occurring, socio-positive affiliative behaviors (e.g., social coordination and cohesion) that may be indicative of positive emotional experiences have rarely been reported or studied deliberately in zebrafish. Housing adult zebrafish (10 fish/tank) in large semi-natural tanks (110 L; n = 6) with sloping gravel substrate, rocks, and artificial plants, we observed a previously undescribed behavior: Distinct periods of spontaneous, synchronized, compact aggregations, what we call “heightened-shoaling”. This project aimed to quantify the characteristics of this distinctive behavior and compare parameters of heightened-shoaling to baseline periods (normal behavior) and pre-feed periods (feed-anticipatory behavior). First, across 4 days, we selected video-clips (100 s each) from within (i) instances of heightened-shoaling (n = 9), (ii) baseline periods (n = 18), and (iii) pre-feed periods (n = 18). For each of these video clips, we scan sampled every 10 s to determine fish orientations and location within the tank and agonistic behavior. Next, we used an all-occurrence sampling method to record the timing and duration of all episodes of heightened-shoaling behavior when tank-lights were on (8:00 h to 18:00 h) across 10 days. From the scan-sampling data, we found that compared to baseline periods, heightened-shoaling was characterized by increased shoal cohesion (p < 0.0001), increased adherence to the horizontal plane (p < 0.0001), decreased agonism (p < 0.0001), and no diving behavior (lower positions within the water column signal negative effect in zebrafish, p > 0.1). From the all-occurrence sampling data, we found 31 episodes of heightened-shoaling with instances observed in all six tanks and only a single case in which heightened-shoaling occurred in two tanks at the same time. The median episode duration was 7.6 min (Range 1.3–28.6). As the first systematic description of heightened-shoaling behavior, this research contributes to our knowledge of the range of zebrafish social dynamics living in naturalistic environments. Moreover, as a spontaneously occurring, protracted, affiliative behavior, heightened-shoaling appears to be a good candidate for future research into positive emotional behavior in zebrafish.
Collapse
|
56
|
de Abreu MS, Giacomini ACVV, Zanandrea R, Dos Santos BE, Genario R, de Oliveira GG, Friend AJ, Amstislavskaya TG, Kalueff AV. Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology 2018; 92:1-12. [PMID: 29609110 DOI: 10.1016/j.psyneuen.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Despite the high prevalence of neural and immune disorders, their etiology and molecular mechanisms remain poorly understood. As the zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in biomedical research, mounting evidence suggests these fish as a useful tool to study neural and immune mechanisms and their interplay. Here, we discuss zebrafish neuro-immune mechanisms and their pharmacological and genetic modulation, the effect of stress on cytokines, as well as relevant models of microbiota-brain interplay. As many human brain diseases are based on complex interplay between the neural and the immune system, here we discuss zebrafish models, as well as recent successes and challenges, in this rapidly expanding field. We particularly emphasize the growing utility of zebrafish models in translational immunopsychiatry research, as they improve our understanding of pathogenetic neuro-immune interactions, thereby fostering future discovery of potential therapeutic agents.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rodrigo Zanandrea
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | | | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Research Institute of Physiology and Basic Medicine SB RAS, and Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Russian Research Center for Radiology and Surgical Technologies, Pesochny, Russia; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine SB RAS, Novosibirsk, Russia.
| |
Collapse
|
57
|
Zahid H, Tsang B, Ahmed H, Lee RCY, Tran S, Gerlai R. Diazepam fails to alter anxiety-like responses but affects motor function in a white-black test paradigm in larval zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:127-136. [PMID: 29360490 DOI: 10.1016/j.pnpbp.2018.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 11/30/2022]
Abstract
The growing popularity of zebrafish in psychopharmacology and behavioral brain research is partly due to the practicality and simplicity of drug administration in this species. Several drugs may be administered to zebrafish by immersing the fish in the drug solution. Furthermore, numerous drugs developed for mammals, including humans, have been found to show a similar effect profile in the zebrafish. Thus, the zebrafish has been suggested as a potentially useful animal screening tool. Despite decades of drug development, anxiety still represents a major unmet medical need, and the search for anxiolytic compounds is continuing. The zebrafish has been proposed for high throughput screens for anxiolytic compounds, and the effects of anxiolytic compounds on the behavior of zebrafish have started to be explored. Diazepam (Valium®) is a frequently prescribed human anxiolytic, a GABAA receptor agonist, has also started to be tested in zebrafish, but with occasional contradicting results. Here, we investigate the effects of diazepam in larval (6-day post-fertilization old) zebrafish in a black-white preference paradigm. We found significant white preference and thigmotaxis (edge preference) in our control fish, anxiety-like responses that habituated over time. However, unexpectedly, we observed no anxiolytic effects of diazepam on these behaviors, and only detected significant motor activity reducing effect of the drug. We discuss the complex interpretation of light/dark tests in zebrafish, and also speculate about the possibility of differential GABAergic mechanisms that diazepam affects in larval vs adult zebrafish.
Collapse
Affiliation(s)
- Hifsa Zahid
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Hira Ahmed
- Department of Psychology, University of Toronto Mississauga, Canada
| | | | - Steven Tran
- Department of Cell and System Biology, University of Toronto, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell and System Biology, University of Toronto, Canada.
| |
Collapse
|
58
|
Geary B, Magee K, Cash P, Husi H, Young IS, Whitfield PD, Doherty MK. Acute stress alters the rates of degradation of cardiac muscle proteins. J Proteomics 2018; 191:124-130. [PMID: 29577999 DOI: 10.1016/j.jprot.2018.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 12/18/2022]
Abstract
Stressful experiences can have detrimental effects on many aspects of health and wellbeing. The zebrafish (Danio rerio) is a widely used model for stress research and a stress phenotype can be induced by manipulating the environmental conditions and social interactions. In this study we have combined a zebrafish stress model with the measurement of degradation rates of soluble cardiac muscle proteins. The results showed that the greater the stress response in the zebrafish the lower the level of overall protein degradation. On comparing the rates of degradation for individual proteins it was found that four main pathways were altered in response to stress conditions with decreased degradation for proteins involved in glucose metabolism, gluconeogenesis, the ubiquitin-proteasome system (UPS) and peroxisomal proliferator-activated receptor (PPAR) signalling pathways. Taken together, these data indicate that under stress conditions zebrafish preserve cardiac muscle proteins required for the 'fight or flight' response together with proteins that play a role in stress mitigation. SIGNIFICANCE: This study is the first to investigate the impact of stressful experiences on the dynamics of protein turnover in cardiac muscle. Using an established zebrafish model of human stress it has been possible to map key pathways at the protein level. The results show that the rates of degradation of cardiac proteins involved in glucose metabolism, UPS activity, hypoxia and PPAR signalling are decreased in stressed zebrafish. These findings indicate that proteins involved in the 'fight or flight' response to stress are conserved by the heart together with proteins that play a role in stress mitigation. This work provides the basis for more detailed investigations aimed at understanding the molecular effects of stress, which has implications for human health and disease.
Collapse
Affiliation(s)
- Bethany Geary
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK
| | - Kieran Magee
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Phillip Cash
- Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | - Holger Husi
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK
| | - Iain S Young
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Phillip D Whitfield
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK
| | - Mary K Doherty
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK.
| |
Collapse
|
59
|
Song C, Liu BP, Zhang YP, Peng Z, Wang J, Collier AD, Echevarria DJ, Savelieva KV, Lawrence RF, Rex CS, Meshalkina DA, Kalueff AV. Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:384-394. [PMID: 28847526 DOI: 10.1016/j.pnpbp.2017.08.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Abstract
Chronic stress is the major pathogenetic factor of human anxiety and depression. Zebrafish (Danio rerio) have become a novel popular model species for neuroscience research and CNS drug discovery. The utility of zebrafish for mimicking human affective disorders is also rapidly growing. Here, we present a new zebrafish model of clinically relevant, prolonged unpredictable strong chronic stress (PUCS). The 5-week PUCS induced overt anxiety-like and motor retardation-like behaviors in adult zebrafish, also elevating whole-body cortisol and proinflammatory cytokines - interleukins IL-1β and IL-6. PUCS also elevated whole-body levels of the anti-inflammatory cytokine IL-10 and increased the density of dendritic spines in zebrafish telencephalic neurons. Chronic treatment of fish with an antidepressant fluoxetine (0.1mg/L for 8days) normalized their behavioral and endocrine phenotypes, as well as corrected stress-elevated IL-1β and IL-6 levels, similar to clinical and rodent data. The CNS expression of the bdnf gene, the two genes of its receptors (trkB, p75), and the gfap gene of glia biomarker, the glial fibrillary acidic protein, was unaltered in all three groups. However, PUCS elevated whole-body BDNF levels and the telencephalic dendritic spine density (which were corrected by fluoxetine), thereby somewhat differing from the effects of chronic stress in rodents. Together, these findings support zebrafish as a useful in-vivo model of chronic stress, also calling for further cross-species studies of both shared/overlapping and distinct neurobiological responses to chronic stress.
Collapse
Affiliation(s)
- Cai Song
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China; Graduate Institute of Neural and Cognitive Science, China Medical University and Hospital, Taichung 00001, Taiwan.
| | - Bai-Ping Liu
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Yong-Ping Zhang
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Zhilan Peng
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - JiaJia Wang
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Adam D Collier
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - David J Echevarria
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Katerina V Savelieva
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - Robert F Lawrence
- Afraxis, Inc. 6605 Nancy Ridge Rd. Suite 224, San Diego, CA 92121, USA
| | - Christopher S Rex
- Afraxis, Inc. 6605 Nancy Ridge Rd. Suite 224, San Diego, CA 92121, USA
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 3960002, Russia
| | - Allan V Kalueff
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China; ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 3960002, Russia; Ural Federal University, Ekaterinburg 620002, Russia.
| |
Collapse
|
60
|
Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol 2018; 299:157-171. [DOI: 10.1016/j.expneurol.2017.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
|
61
|
Mahabir S, Gerlai R. The Importance of Holding Water: Salinity and Chemosensory Cues Affect Zebrafish Behavior. Zebrafish 2017; 14:444-458. [DOI: 10.1089/zeb.2017.1472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Samantha Mahabir
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| |
Collapse
|
62
|
Vogt MA, Pfeiffer N, Le Guisquet AM, Brandwein C, Brizard B, Gass P, Belzung C, Chourbaji S. May the use of different background strains 'strain' the stress-related phenotype of GR +/- mice? Behav Brain Res 2017; 335:71-79. [PMID: 28782590 DOI: 10.1016/j.bbr.2017.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023]
Abstract
Genetically altered mice are available on different background strains. While respective backcrosses are often performed for pragmatic reasons, e.g. references, comparability, or existing protocols, the interaction between the mutations per se and the background strain often remains a neglected factor. The heterozygous mutation of the glucocorticoid receptor gene (GR) represents a well-examined model for depressive-like behavior in mice. To address the question in how far a robust depressive-like phenotype on a distinct background strain may allow a generalized conclusion, we analyzed respective phenotypes in two commonly used inbred strains: i.) C57BL/6N and ii.) BALB/c. Beside the use of different genetic models, we also extended our approach by applying two alternative paradigms to induce a depressive-like phenotype. Our study therefore comprised the model of 'unpredictable chronic mild stress' (UCMS) for four weeks and 'learned helplessness' (LH), which were used to study the role of GR, a key player in the development of depression. In the course of the experiment two cohorts of male GR+/- mice on either C57BL/6N or BALB/c background strain underwent a behavioral test battery to assess basal and depressive-like features. While both stress paradigms were functional in inducing depressive-like changes, the results were strictly strain-dependent. The genetic consequences became even more obvious under non-stress conditions with significant effects detected in BALB/c mice, which indicates a different basal stress predisposition due to differences in the genetic background.
Collapse
Affiliation(s)
- Miriam A Vogt
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany; Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany.
| | - Natascha Pfeiffer
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Anne Marie Le Guisquet
- Brain & Imaging (INSERM - UMR 930), Université François Rabelais de Tours, Tours, France
| | - Christiane Brandwein
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Bruno Brizard
- Brain & Imaging (INSERM - UMR 930), Université François Rabelais de Tours, Tours, France
| | - Peter Gass
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Catherine Belzung
- Brain & Imaging (INSERM - UMR 930), Université François Rabelais de Tours, Tours, France
| | - Sabine Chourbaji
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany; Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| |
Collapse
|
63
|
Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol 2017; 174:1925-1944. [PMID: 28217866 PMCID: PMC5466539 DOI: 10.1111/bph.13754] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
| | - Adam D Collier
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
| | - Darya A Meshalkina
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
| | - Elana V Kysil
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
| | | | | | | | - Jason E Warnick
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Department of Behavioral SciencesArkansas Tech UniversityRussellvilleARUSA
| | - Allan V Kalueff
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
- Ural Federal UniversityEkaterinburgRussia
- Research Institute of Marine Drugs and Nutrition, College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangGuangdongChina
| | - David J Echevarria
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
| |
Collapse
|
64
|
Nishimura Y. [Using zebrafish in drug discovery for nervous system disorders]. Nihon Yakurigaku Zasshi 2017; 150:88-91. [PMID: 28794304 DOI: 10.1254/fpj.150.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|