51
|
Caldwell RA, Grove DE, Houck SA, Cyr DM. Increased folding and channel activity of a rare cystic fibrosis mutant with CFTR modulators. Am J Physiol Lung Cell Mol Physiol 2011; 301:L346-52. [PMID: 21642448 DOI: 10.1152/ajplung.00044.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal recessive genetic disease caused by mutations in the CFTR gene. The gene product is a PKA-regulated anion channel that is important for fluid and electrolyte transport in the epithelia of lung, gut, and ducts of the pancreas and sweat glands. The most common CFTR mutation, ΔF508, causes a severe, but correctable, folding defect and gating abnormality, resulting in negligible CFTR function and disease. There are also a large number of rare CF-related mutations where disease is caused by CFTR misfolding. Yet the extent to which defective biogenesis of these CFTR mutants can be corrected is not clear. CFTRV232D is one such mutant that exhibits defective folding and trafficking. CFTRΔF508 misfolding is difficult to correct, but defective biogenesis of CFTRV232D is corrected to near wild-type levels by small-molecule folding correctors in development as CF therapeutics. To determine if CFTRV232D protein is competent as a Cl(-) channel, we utilized single-channel recordings from transfected human embryonic kidney (HEK-293) cells. After PKA stimulation, CFTRV232D channels were detected in patches with a unitary Cl(-) conductance indistinguishable from that of CFTR. Yet the frequency of detecting CFTRV232D channels was reduced to ∼20% of patches compared with 60% for CFTR. The folding corrector Corr-4a increased the CFTRV232D channel detection rate and activity to levels similar to CFTR. CFTRV232D-corrected channels were inhibited with CFTR(inh-172) and stimulated fourfold by the CFTR channel potentiator VRT-532. These data suggest that CF patients with rare mutations that cause CFTR misfolding, such as CFTRV232D, may benefit from treatment with folding correctors and channel potentiators in development to restore CFTRΔF508 function.
Collapse
Affiliation(s)
- Ray A Caldwell
- Dept. of Cell and Developmental Biology, Univ. of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
52
|
Khushoo A, Yang Z, Johnson AE, Skach WR. Ligand-driven vectorial folding of ribosome-bound human CFTR NBD1. Mol Cell 2011; 41:682-92. [PMID: 21419343 DOI: 10.1016/j.molcel.2011.02.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/03/2010] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
The mechanism by which protein folding is coupled to biosynthesis is a critical, but poorly understood, aspect of protein conformational diseases. Here we use fluorescence resonance energy transfer (FRET) to characterize tertiary structural transitions of nascent polypeptides and show that the first nucleotide-binding domain (NBD1) of human CFTR, whose folding is defective in cystic fibrosis, folds via a cotranslational multistep pathway as it is synthesized on the ribosome. Folding begins abruptly as NBD1 residues 389-500 emerge from the ribosome exit tunnel, initiating compaction of a small, N-terminal α/β-subdomain. Real-time kinetics of synchronized nascent chains revealed that subdomain folding is rapid, occurs coincident with synthesis, and is facilitated by direct ATP binding to the nascent polypeptide. These findings localize the major CF defect late in the NBD1 folding pathway and establish a paradigm wherein a cellular ligand promotes vectorial domain folding by facilitating an energetically favored local peptide conformation.
Collapse
Affiliation(s)
- Amardeep Khushoo
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
53
|
Suaud L, Miller K, Alvey L, Yan W, Robay A, Kebler C, Kreindler JL, Guttentag S, Hubbard MJ, Rubenstein RC. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells. J Biol Chem 2011; 286:21239-53. [PMID: 21525008 DOI: 10.1074/jbc.m111.240267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sodium 4-phenylbutyrate (4PBA) improves the intracellular trafficking of ΔF508-CFTR in cystic fibrosis (CF) epithelial cells. The underlying mechanism is uncertain, but 4PBA modulates the expression of some cytosolic molecular chaperones. To identify other 4PBA-regulated proteins that might regulate ΔF508-CFTR trafficking, we performed a differential display RT-PCR screen on IB3-1 CF bronchiolar epithelial cells exposed to 4PBA. One transcript up-regulated by 4PBA encoded ERp29, a luminal resident of the endoplasmic reticulum (ER) thought to be a novel molecular chaperone. We tested the hypothesis that ERp29 is a 4PBA-regulated ER chaperone that influences ΔF508-CFTR trafficking. ERp29 mRNA and protein expression was significantly increased (∼1.5-fold) in 4PBA-treated IB3-1 cells. In Xenopus oocytes, ERp29 overexpression increased the functional expression of both wild-type and ΔF508-CFTR over 3-fold and increased wild-type cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane expression. In CFBE41o- WT-CFTR cells, expression of and short circuit currents mediated by CFTR decreased upon depletion of ERp29 as did maturation of newly synthesized CFTR. In IB3-1 cells, ΔF508-CFTR co-immunoprecipitated with endogenous ERp29, and overexpression of ERp29 led to increased ΔF508-CFTR expression at the plasma membrane. These data suggest that ERp29 is a 4PBA-regulated ER chaperone that regulates WT-CFTR biogenesis and can promote ΔF508-CFTR trafficking in CF epithelial cells.
Collapse
Affiliation(s)
- Laurence Suaud
- Division of Pulmonary Medicine and Cystic Fibrosis Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Balch WE, Roth DM, Hutt DM. Emergent properties of proteostasis in managing cystic fibrosis. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004499. [PMID: 21421917 DOI: 10.1101/cshperspect.a004499] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cystic fibrosis (CF) is a consequence of defective recognition of the multimembrane spanning protein cystic fibrosis conductance transmembrane regulator (CFTR) by the protein homeostasis or proteostasis network (PN) (Hutt and Balch (2010). Like many variant proteins triggering misfolding diseases, mutant CFTR has a complex folding and membrane trafficking itinerary that is managed by the PN to maintain proteome balance and this balance is disrupted in human disease. The biological pathways dictating the folding and function of CFTR in health and disease are being studied by numerous investigators, providing a unique opportunity to begin to understand and therapeutically address the role of the PN in disease onset, and its progression during aging. We discuss the general concept that therapeutic management of the emergent properties of the PN to control the energetics of CFTR folding biology may provide significant clinical benefit.
Collapse
Affiliation(s)
- William E Balch
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
55
|
Noy E, Senderowitz H. Combating cystic fibrosis: in search for CF transmembrane conductance regulator (CFTR) modulators. ChemMedChem 2011; 6:243-51. [PMID: 21275046 DOI: 10.1002/cmdc.201000488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Indexed: 11/05/2022]
Affiliation(s)
- Efrat Noy
- Department of Chemistry, Bar Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
56
|
Grove DE, Rosser MFN, Watkins RL, Cyr DM. Analysis of CFTR folding and degradation in transiently transfected cells. Methods Mol Biol 2011; 741:219-232. [PMID: 21594788 PMCID: PMC4460993 DOI: 10.1007/978-1-61779-117-8_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Misfolding and premature degradation of F508del-CFTR is the major cause of cystic fibrosis. Components of the ubiquitin-proteasome system function on the surface of the endoplasmic reticulum to select misfolded proteins for degradation. The folding status of F508del-CFTR is monitored by at least two ER quality control checkpoints. The ER-associated Derlin-1/RMA1 E3 complex appears to recognize folding defects in CFTR that involve misassembly of NBD1 into a complex with the R-domain. In contrast, the cytosolic Hsp70/CHIP E3 complex appears to sense folding defects that occur after synthesis of NBD2. Herein we describe methods that allow for the study of how modulation of these ER quality control factors by siRNA impacts CFTR folding and degradation. The experimental system described employs transiently transfected HEK293 cells and is utilized to monitor the biogenesis of CFTR by both Western blot and pulse chase studies. Methods to detect complexes formed between CFTR folding intermediates and ER quality control factors will also be described.
Collapse
Affiliation(s)
- Diane E Grove
- Department of Cell and Developmental Biology, School of Medicine, The UNC-Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
57
|
Schmidt A, Mendoza JL, Thomas PJ. Biochemical and biophysical approaches to probe CFTR structure. Methods Mol Biol 2011; 741:365-76. [PMID: 21594797 DOI: 10.1007/978-1-61779-117-8_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cystic fibrosis transmembrane regulator (CFTR) is a multi-domain integral membrane protein central to epithelial fluid secretion (see Chapter 21). Its activity is defective in the recessive genetic disease cystic fibrosis (CF). The most common CF-causing mutation is F508del in the first nucleotide binding domain (NBD1) of CFTR. This mutation is found on at least one allele of more than 90% of all CF patients. It is known to interfere with the trafficking/maturation of CFTR through the secretory pathway, leading to a loss-of-function at the plasma membrane. Notably, correction of the trafficking defect by addition of intragenic second-site suppressor mutations, or the alteration of bulk solvent conditions, such as by reducing the temperature or adding osmolytes, leads to appearance of functional channels at the membrane--thus, the rescued F508del-CFTR retains measurable function. High-resolution structural models of NBD1 from X-ray crystallographic data indicate that F508 is exposed on the surface of the domain in a position predicted by homologous ABC transporter structures to lie at the interface with the intracellular loops (ICLs) connecting the transmembrane spans. Determining the relative impact of the F508del mutation directly on NBD1 folding or on steps of domain assembly or both domain folding and assembly requires methods for evaluating the structure and stability of the isolated domain.
Collapse
Affiliation(s)
- André Schmidt
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| | | | | |
Collapse
|
58
|
Grove DE, Fan CY, Ren HY, Cyr DM. The endoplasmic reticulum-associated Hsp40 DNAJB12 and Hsc70 cooperate to facilitate RMA1 E3-dependent degradation of nascent CFTRDeltaF508. Mol Biol Cell 2010; 22:301-14. [PMID: 21148293 PMCID: PMC3031462 DOI: 10.1091/mbc.e10-09-0760] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A specialized Hsp40 protein, DNAJB12, was found to function on the cytoplasmic face of the ER with the RMA1 E3 ligase to regulate the folding efficiency of CFTR. Relative contributions of folding kinetics versus protein quality control (QC) activity in the partitioning of non-native proteins between life and death are not clear. Cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis serves as an excellent model to study this question because folding of nascent CFTR is inefficient and deletion of F508 causes accumulation of CFTRΔF508 in a kinetically trapped, but foldable state. Herein, a novel endoplasmic reticulum (ER)-associated Hsp40, DNAJB12 (JB12) is demonstrated to play a role in control of CFTR folding efficiency. JB12 cooperates with cytosolic Hsc70 and the ubiquitin ligase RMA1 to target CFTR and CFTRΔF508 for degradation. Modest elevation of JB12 decreased nascent CFTR and CFTRΔF508 accumulation while increasing association of Hsc70 with ER forms of CFTR and the RMA1 E3 complex. Depletion of JB12 increased CFTR folding efficiency up to threefold and permitted a pool of CFTRΔF508 to fold and escape the ER. Introduction of the V510D misfolding suppressor mutation into CFTRΔF508 modestly increased folding efficiency, whereas combined inactivation of JB12 and suppression of intrinsic folding defects permitted CFTRΔF508 to fold at 50% of wild-type efficiency. Therapeutic correction of CFTRΔF508 misfolding in cystic fibrosis patients may require repair of defective folding kinetics and suppression of ER QC factors, such as JB12.
Collapse
Affiliation(s)
- Diane E Grove
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
59
|
Henderson MJ, Singh OV, Zeitlin PL. Applications of proteomic technologies for understanding the premature proteolysis of CFTR. Expert Rev Proteomics 2010; 7:473-86. [PMID: 20653504 DOI: 10.1586/epr.10.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ATP-dependent anion channel. Disease-causing mutations can affect channel biogenesis, trafficking or function, and result in reduced ion transport at the apical surface of many tissues. The most common CFTR mutation is a deletion of phenylalanine at position 508 (DeltaF508), which results in a misfolded protein that is prematurely targeted for degradation. This article focuses on how proteomic approaches have been utilized to explore the mechanisms of premature proteolysis in CF. Additionally, we emphasize the potential for proteomic-based technologies in expanding our understanding of CF pathophysiology and therapeutic approaches.
Collapse
Affiliation(s)
- Mark J Henderson
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
60
|
Eraso P, Mazón MJ, Portillo F. A dominant negative mutant of PMA1 interferes with the folding of the wild type enzyme. Traffic 2010; 11:37-47. [PMID: 19929866 DOI: 10.1111/j.1600-0854.2009.01005.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Misfolded proteins are usually arrested in the endoplasmic reticulum (ER) and degraded by the ER-associated degradation (ERAD) machinery. Several mutant alleles of PMA1, the gene coding for the plasma membrane H (+)-ATPase, render misfolded proteins that are subjected to ERAD. A subset of misfolded PMA1 mutants exhibits a dominant negative effect on yeast growth since, when co-expressed with the wild type allele, both proteins are retained in the ER and degraded. We have used a PMA1-D378T dominant lethal allele to analyse the mechanism underlying the retention of the wild type enzyme by the dominant negative mutant. A genetic screen was performed for isolation of intragenic suppressors of PMA1-D378T allele. This analysis pointed to transmembrane helix 10 (TM10) as an important element in the establishment of the dominant lethality. Deletion of the TM10 was able to suppress not only the PMA1-D378T but all the dominant lethal alleles tested. Biochemical analyses suggest that dominant lethal proteins obstruct, through TM10, the correct folding of the wild type enzyme leading to its retention and degradation by ERAD.
Collapse
Affiliation(s)
- Pilar Eraso
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | | | | |
Collapse
|
61
|
He L, Aleksandrov LA, Cui L, Jensen TJ, Nesbitt KL, Riordan JR. Restoration of domain folding and interdomain assembly by second-site suppressors of the DeltaF508 mutation in CFTR. FASEB J 2010; 24:3103-12. [PMID: 20233947 DOI: 10.1096/fj.09-141788] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deletion of PHE508 (DeltaF508) from the first nucleotide-binding domain (NBD1) of CFTR, which causes most cystic fibrosis, disrupts the folding and assembly of the protein. Although the folding pathways and yield of isolated NBD1 are altered, its global structure is not, and details of the changes in the rest of the protein remain unclear. To gain further insight into how the whole mutant protein is altered, we have determined the influence of known second-site suppressor mutations in NBD1 on the conformation of this domain and key interfaces between domains. We found that the suppressors restored maturation of only those processing mutations located in NBD1, but not in other domains, including those in the C-terminal cytoplasmic loop of the second membrane-spanning domain, which forms an interface with the NBD1 surface. Nevertheless, the suppressors promoted the formation of this interface and others in the absence of F508. The suppressors restored maturation in a DeltaF508 construct from which NBD2 was absent but to a lesser extent than in the full-length, indicating that DeltaF508 disrupts interactions involving NBD2, as well as other domains. Rescue of DeltaF508-CFTR by suppressors required the biosynthesis of the entire full-length protein in continuity, as it did not occur when N- and C-terminal "halves" were coexpressed. Simultaneous with these interdomain perturbations, DeltaF508 resulted in suppressor reversed alterations in accessibility of residues both in the F508-containing NBD1 surface loop and in the Q loop within the domain core. Thus, in the context of the full-length protein, DeltaF508 mutation causes detectable changes in NBD1 conformation, as well as interdomain interactions.
Collapse
Affiliation(s)
- Lihua He
- Department of Biochemistry and Biophysics and Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
62
|
Koulov AV, LaPointe P, Lu B, Razvi A, Coppinger J, Dong MQ, Matteson J, Laister R, Arrowsmith C, Yates JR, Balch WE. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol Biol Cell 2010; 21:871-84. [PMID: 20089831 PMCID: PMC2836968 DOI: 10.1091/mbc.e09-12-1017] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We propose a general model for the role of the Hsp90 ATPase cycle in proteostasis in which Aha1 regulates the dwell time of Hsp90 with client by integrating chaperone function and client folding energetics by modulating ATPase sensitive N-terminal dimer structural transitions. The activator of Hsp90 ATPase 1, Aha1, has been shown to participate in the Hsp90 chaperone cycle by stimulating the low intrinsic ATPase activity of Hsp90. To elucidate the structural basis for ATPase stimulation of human Hsp90 by human Aha1, we have developed novel mass spectrometry approaches that demonstrate that the N- and C-terminal domains of Aha1 cooperatively bind across the dimer interface of Hsp90 to modulate the ATP hydrolysis cycle and client activity in vivo. Mutations in both the N- and C-terminal domains of Aha1 impair its ability to bind Hsp90 and stimulate its ATPase activity in vitro and impair in vivo the ability of the Hsp90 system to modulate the folding and trafficking of wild-type and variant (ΔF508) cystic fibrosis transmembrane conductance regulator (CFTR) responsible for the inherited disease cystic fibrosis (CF). We now propose a general model for the role of Aha1 in the Hsp90 ATPase cycle in proteostasis whereby Aha1 regulates the dwell time of Hsp90 with client. We suggest that Aha1 activity integrates chaperone function with client folding energetics by modulating ATPase sensitive N-terminal dimer structural transitions, thereby protecting transient folding intermediates in vivo that could contribute to protein misfolding systems disorders such as CF when destabilized.
Collapse
Affiliation(s)
- Atanas V Koulov
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Roy G, Chalfin EM, Saxena A, Wang X. Interplay between ER exit code and domain conformation in CFTR misprocessing and rescue. Mol Biol Cell 2009; 21:597-609. [PMID: 20032308 PMCID: PMC2820424 DOI: 10.1091/mbc.e09-05-0427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Multiple mutations in cystic fibrosis transmembrane conductance regulator (CFTR) impair its exit from the endoplasmic reticulum (ER). We compared two processing mutants: DeltaF508 and the ER exit code mutant DAA. Although both have severe kinetic processing defect, DAA but not DeltaF508 has substantial accumulation in its mature form, leading to higher level of processing at the steady state. DAA has much less profound conformational abnormalities. It has lower Hsp70 association and higher post-ER stability than DeltaF508. The ER exit code is necessary for DeltaF508 residual export and rescue. R555K, a mutation that rescues DeltaF508 misprocessing, improves Sec24 association and enhances its post-ER stability. Using in situ limited proteolysis, we demonstrated a clear change in trypsin sensitivity in DeltaF508 NBD1, which is reversed, together with that of other domains, by low temperature, R555K or both. We observed a conversion of the proteolytic pattern of DAA from the one resembling DeltaF508 to the one similar to wild-type CFTR during its maturation. Low temperature and R555K are additive in improving DeltaF508 conformational maturation and processing. Our data reveal a dual contribution of ER exit code and domain conformation to CFTR misprocessing and underscore the importance of conformational repair in effective rescue of DeltaF508.
Collapse
Affiliation(s)
- Gargi Roy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | | | |
Collapse
|
64
|
Loo TW, Bartlett MC, Clarke DM. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule. Biochemistry 2009; 48:9882-90. [PMID: 19761259 DOI: 10.1021/bi9004842] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deletion of Phe508 in cystic fibrosis transmembrane conductance regulator (DeltaF508 CFTR) causes cystic fibrosis. CFTR consists of two homologous halves with each containing a nucleotide-binding domain (NBD) and a transmembrane domain (TMD). DeltaF508 CFTR appears to be trapped in an incompletely folded state. Small molecules (correctors) promote folding of DeltaF508 CFTR with relatively low efficiency. Understanding the mechanism of repair may lead to the development of more effective correctors. Here we tested the effect of correctors and the DeltaF508 mutation on interactions between the halves of CFTR when expressed as separate polypeptides. Glycosylation of C-half CFTR was defective when expressed alone as a mixture of core and unglycosylated proteins was detected. Coexpression of C-half CFTR with either wild-type N-half or DeltaF508/N-half CFTR, however, increased the amount of core-glycosylated protein, but only coexpression with wild-type N-half promoted maturation of C-half CFTR (Endo H resistant). This suggested that the DeltaF508 mutation inhibited some interactions between N-half and C-half CFTRs. Interaction of A52-tagged wild-type N-half or DeltaF508/N-half CFTR with histidine-tagged C-half CFTR was then followed by nickel-chelate chromatography. Coexpression of A52-tagged wild-type N-half or DeltaF508/N-half CFTR with histidine-tagged C-half CFTR resulted in the wild-type N-half CFTR but not DeltaF508/N-half CFTR protein being retained on the column. Coexpression of DeltaF508/N-half and C-half CFTR in the presence correctors VX-325 and corr-4a, however, restored interactions between the two halves. An interaction that was restored was that between NBD1 and TMD2 as the correctors restored cross-linking of mutant DeltaF508/NBD1(V510C)/TMD2(A1067C). Therefore, correctors promote proper interactions between the two halves of CFTR.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
65
|
Grove DE, Rosser MFN, Ren HY, Naren AP, Cyr DM. Mechanisms for rescue of correctable folding defects in CFTRDelta F508. Mol Biol Cell 2009; 20:4059-69. [PMID: 19625452 DOI: 10.1091/mbc.e08-09-0929] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Premature degradation of CFTRDeltaF508 causes cystic fibrosis (CF). CFTRDeltaF508 folding defects are conditional and folding correctors are being developed as CF therapeutics. How the cellular environment impacts CFTRDeltaF508 folding efficiency and the identity of CFTRDeltaF508's correctable folding defects is unclear. We report that inactivation of the RMA1 or CHIP ubiquitin ligase permits a pool of CFTRDeltaF508 to escape the endoplasmic reticulum. Combined RMA1 or CHIP inactivation and Corr-4a treatment enhanced CFTRDeltaF508 folding to 3-7-fold greater levels than those elicited by Corr-4a. Some, but not all, folding defects in CFTRDeltaF508 are correctable. CHIP and RMA1 recognize different regions of CFTR and a large pool of nascent CFTRDeltaF508 is ubiquitinated by RMA1 before Corr-4a action. RMA1 recognizes defects in CFTRDeltaF508 related to misassembly of a complex that contains MSD1, NBD1, and the R-domain. Corr-4a acts on CFTRDeltaF508 after MSD2 synthesis and was ineffective at rescue of DeltaF508 dependent folding defects in amino-terminal regions. In contrast, misfolding caused by the rare CF-causing mutation V232D in MSD1 was highly correctable by Corr-4a. Overall, correction of folding defects recognized by RMA1 and/or global modulation of ER quality control has the potential to increase CFTRDeltaF508 folding and provide a therapeutic approach for CF.
Collapse
Affiliation(s)
- Diane E Grove
- Department of Cell and Developmental Biology and the UNC-Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
66
|
Glozman R, Okiyoneda T, Mulvihill CM, Rini JM, Barriere H, Lukacs GL. N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. ACTA ACUST UNITED AC 2009; 184:847-62. [PMID: 19307599 PMCID: PMC2699153 DOI: 10.1083/jcb.200808124] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
N-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a polytopic membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), independently of lectin-like chaperones. Defective N-glycosylation reduces cell surface expression by impairing both early secretory and endocytic traffic of CFTR. Conformational destabilization of the glycan-deficient CFTR induces ubiquitination, leading to rapid elimination from the cell surface. Ubiquitinated CFTR is directed to lysosomal degradation instead of endocytic recycling in early endosomes mediated by ubiquitin-binding endosomal sorting complex required for transport (ESCRT) adaptors Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) and TSG101. These results suggest that cotranslational N-glycosylation can exert a chaperone-independent profolding change in the energetic of CFTR in vivo as well as outline a paradigm for the peripheral trafficking defect of membrane proteins with impaired glycosylation.
Collapse
Affiliation(s)
- Rina Glozman
- Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
67
|
Lubamba B, Lebacq J, Lebecque P, Vanbever R, Leonard A, Wallemacq P, Leal T. Airway delivery of low-dose miglustat normalizes nasal potential difference in F508del cystic fibrosis mice. Am J Respir Crit Care Med 2009; 179:1022-8. [PMID: 19299496 DOI: 10.1164/rccm.200901-0049oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE N-butyldeoxynojyrimicin (NB-DNJ, miglustat [Zavesca]) an approved drug for treating Gaucher disease, was reported to be able to correct the defective trafficking of the F508del-CFTR protein. OBJECTIVES To evaluate the efficacy of in vivo airway delivery of miglustat for restoring ion transport in cystic fibrosis (CF). METHODS We used nasal transepithelial potential difference (PD) as a measure of sodium and chloride transport. The effect of nasal instillation of a single dose of miglustat was investigated in F508del, cftr knockout and normal homozygous mice. The galactose iminosugar analog N-butyldeoxygalactonojirimycin (NB-DGJ) was used as a placebo. MEASUREMENTS AND MAIN RESULTS In F508del mice, sodium conductance (evaluated by basal hyperpolarization) and chloride conductance (evaluated by perfusing the nasal mucosa with chloride-free solution in the presence of amiloride and forskolin) were normalized 1 hour after an intranasal dose of 50 picomoles of miglustat. Chloride conductance in the presence of 200 microM 4-4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS), an inhibitor of alternative chloride channels, was much higher after miglustat than after placebo. In cftr knockout mice, a normalizing effect was observed on sodium but not on chloride conductance. CONCLUSIONS Our results provide clear evidence that nasal delivery of miglustat, at picomolar doses, normalizes sodium and Cftr-dependent chloride transport in F508del transgenic mice; they highlight the potential of topical miglustat as a therapy for CF.
Collapse
Affiliation(s)
- Bob Lubamba
- Department of Clinical Chemistry, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) architecture consists of two membrane spanning domains (MSD1 and -2), two nucleotide binding domains (NBD1 and -2), and a regulatory (R) domain. Several point mutations lead to the channel misprocessing, with limited structural perturbation of the mutant domain. To gain more insight into the basis of CFTR folding defect, the contribution of domain-wise and cooperative domain folding was assessed by determining 1) the minimal domain combination that is recognized as native and can efficiently escape the endoplasmic reticulum (ER) retention and 2) the impact of mutation on the conformational coupling among domains. One-, two-, three-, and most of the four-domain assemblies were retained at the ER. Solubilization mutations, however, rescued the NBD1 processing defect conceivably by thermodynamic stabilization. The smallest folding unit that traversed the secretory pathway was composed of MSD1-NBD1-R-MSD2 as a linear or split polypeptide. Cystic fibrosis-causing missense mutations in the MSD1, NBD1, MSD2, and NBD2 caused conformational defect in multiple domains. We propose that cooperative posttranslational folding is required for domain stabilization and provides a plausible explanation for the global misfolding caused by point mutations dispersed along the full-length CFTR.
Collapse
Affiliation(s)
- Kai Du
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|