51
|
Abstract
The nuclear lamins are type V intermediate filament proteins that are critically important for the structural properties of the nucleus. In addition, they are involved in the regulation of numerous nuclear processes, including DNA replication, transcription and chromatin organization. The developmentally regulated expression of lamins suggests that they are involved in cellular differentiation. Their assembly dynamic properties throughout the cell cycle, particularly in mitosis, are influenced by posttranslational modifications. Lamins may regulate nuclear functions by direct interactions with chromatin and determining the spatial organization of chromosomes within the nuclear space. They may also regulate chromatin functions by interacting with factors that epigenetically modify the chromatin or directly regulate replication or transcription.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
52
|
Liu Q, Kim DI, Syme J, LuValle P, Burke B, Roux KJ. Dynamics of lamin-A processing following precursor accumulation. PLoS One 2010; 5:e10874. [PMID: 20526372 PMCID: PMC2878336 DOI: 10.1371/journal.pone.0010874] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/06/2010] [Indexed: 11/18/2022] Open
Abstract
Lamin A (LaA) is a component of the nuclear lamina, an intermediate filament meshwork that underlies the inner nuclear membrane (INM) of the nuclear envelope (NE). Newly synthesized prelamin A (PreA) undergoes extensive processing involving C-terminal farnesylation followed by proteolysis yielding non-farnesylated mature lamin A. Different inhibitors of these processing events are currently used therapeutically. Hutchinson-Gilford Progeria Syndrome (HGPS) is most commonly caused by mutations leading to an accumulation of a farnesylated LaA isoform, prompting a clinical trial using farnesyltransferase inhibitors (FTI) to reduce this modification. At therapeutic levels, HIV protease inhibitors (PI) can unexpectedly inhibit the final processing step in PreA maturation. We have examined the dynamics of LaA processing and associated cellular effects during PI or FTI treatment and following inhibitor washout. While PI reversibility was rapid, with respect to both LaA maturation and associated cellular phenotype, recovery from FTI treatment was more gradual. FTI reversibility is influenced by both cell type and rate of proliferation. These results suggest a less static lamin network than has previously been observed.
Collapse
Affiliation(s)
- Qian Liu
- Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Dae In Kim
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Janet Syme
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Phyllis LuValle
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
- Institute of Medical Biology, Immunos, Singapore, Singapore
| | - Kyle J. Roux
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
53
|
Meissner D, Odman-Naresh J, Vogelpohl I, Merzendorfer H. A novel role of the yeast CaaX protease Ste24 in chitin synthesis. Mol Biol Cell 2010; 21:2425-33. [PMID: 20505074 PMCID: PMC2903671 DOI: 10.1091/mbc.e10-01-0080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ste24 is a membrane-integral CaaX metalloprotease residing in the endoplasmic reticulum (ER). In yeast, the only known substrate of Ste24 is the mating factor a precursor. A global screening for protein-protein interactions indicated that Ste24 interacts with chitin synthesis deficient (Chs)3, an enzyme required for chitin synthesis. We confirmed this interaction by yeast two-hybrid analyses and mapped the interacting cytoplasmic domains. Next, we investigated the influence of Ste24 on chitin synthesis. In sterile (ste)24Delta mutants, we observed resistance to calcofluor white (CFW), which was also apparent when the cells expressed a catalytically inactive version of Ste24. In addition, ste24Delta cells showed a decrease in chitin levels and Chs3-green fluorescent protein localized less frequently at the bud neck. Overexpression of STE24 resulted in hypersensitivity to CFW and a slight increase in chitin levels. The CFW phenotype of ste24Delta cells could be rescued by its human and insect orthologues. Although Chs3 binds to Ste24, it seems not to be a substrate for this protease. Instead, our data suggest that Chs3 and Ste24 form a complex in the ER that facilitates protease action on prenylated Chs4, a known activator of Chs3 with a C-terminal CaaX motif, leading to a more efficient localization of Chs3 at the plasma membrane.
Collapse
Affiliation(s)
- Derek Meissner
- Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
54
|
Barrowman J, Michaelis S. ZMPSTE24, an integral membrane zinc metalloprotease with a connection to progeroid disorders. Biol Chem 2009; 390:761-73. [DOI: 10.1515/bc.2009.080] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
ZMPSTE24 is an integral membrane zinc metalloprotease originally discovered in yeast as an enzyme (called Ste24p) required for maturation of the mating pheromone a-factor. Surprisingly, ZMPSTE24 has recently emerged as a key protease involved in human progeroid disorders. ZMPSTE24 has only one identified mammalian substrate, the precursor of the nuclear scaffold protein lamin A. ZMPSTE24 performs a critical endoproteolytic cleavage step that removes the hydrophobic farnesyl-modified tail of prelamin A. Failure to do so has drastic consequences for human health and longevity. Here, we discuss the discovery of the yeast and mammalian ZMPSTE24 orthologs and review the unexpected connection between ZMPSTE24 and premature aging.
Collapse
|
55
|
Marmiroli S, Bertacchini J, Beretti F, Cenni V, Guida M, De Pol A, Maraldi NM, Lattanzi G. A-type lamins and signaling: the PI 3-kinase/Akt pathway moves forward. J Cell Physiol 2009; 220:553-61. [PMID: 19479937 DOI: 10.1002/jcp.21807] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lamin A/C is a nuclear lamina constituent mutated in a number of human inherited disorders collectively referred to as laminopathies. The occurrence and significance of lamin A/C interplay with signaling molecules is an old question, suggested by pioneer studies performed in vitro. However, this relevant question has remained substantially unanswered, until data obtained in cellular and organismal models of laminopathies have indicated two main aspects of lamin A function. The first aspect is that lamins establish functional interactions with different protein platforms, the second aspect is that lamin A/C activity and altered function may elicit different effects in different cells and tissue types and even in different districts of the same tissue. Both these observations strongly suggest that signaling mechanisms targeting lamin A/C or its binding partners may regulate such a plastic behavior. A number of very recent data show involvement of kinases, as Akt and Erk, or phosphatases, as PP1 and PP2, in lamin A-linked cellular mechanisms. Moreover, altered activation of signaling in laminopathies and rescue of the pathological phenotype in animal models by inhibitors of signaling pathways, strongly suggest that signaling effectors related to lamin A/C may be implicated in the pathogenesis of laminopathies and may represent targets of therapeutic intervention. In face of such an open perspective of basic and applied research, we review current evidence of lamin A/C interplay with signaling molecules, with particular emphasis on the lamin A-Akt interaction and on the biological significance of their relationship.
Collapse
Affiliation(s)
- Sandra Marmiroli
- Department of Anatomy and Histology and CIPro Proteomics Centre, University of Modena and Reggio Emilia, Via Del Pozzo 71, I-41100 Modena, I.G.M.-CNR, Unit of Bologna, c/o IOR, via di Barbiano, Bologna I-40136, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 2009; 119:1825-36. [PMID: 19587457 PMCID: PMC2701866 DOI: 10.1172/jci37679] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The main function of the nuclear lamina, an intermediate filament meshwork lying primarily beneath the inner nuclear membrane, is to provide structural scaffolding for the cell nucleus. However, the lamina also serves other functions, such as having a role in chromatin organization, connecting the nucleus to the cytoplasm, gene transcription, and mitosis. In somatic cells, the main protein constituents of the nuclear lamina are lamins A, C, B1, and B2. Interest in the nuclear lamins increased dramatically in recent years with the realization that mutations in LMNA, the gene encoding lamins A and C, cause a panoply of human diseases ("laminopathies"), including muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. Here, we review the laminopathies and the long strange trip from basic cell biology to therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Loren G. Fong
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Antoine Muchir
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Stephen G. Young
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
57
|
Gao J, Liao J, Yang GY. CAAX-box protein, prenylation process and carcinogenesis. Am J Transl Res 2009; 1:312-325. [PMID: 19956441 PMCID: PMC2776320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 05/21/2009] [Indexed: 05/28/2023]
Abstract
CAAX proteins are widely involved in global cellular functions such as proliferation, differentiation, and carcinogenesis. As an important modulator of biological activity, signal transduction via protein prenylation is a crucial step for most CAAX protein functions, particularly for anchoring these CAAX proteins to cellular membrane system. With a better understanding of the molecular mechanisms of signal transduction and intracellular messaging in this process, CAAX protein prenylation may be of particular importance for elucidating the biologic events in carcinogenesis and provide potential approaches of selectively blocking the downstream signal cascade that allows carcinogenesis. Here, we mainly focus on the prenylation process of the clinically important CAAX box proteins, and their potential as a biomarker or preventive/therapeutic target in carcinogenesis.
Collapse
Affiliation(s)
- Juehua Gao
- Department of Pathology, Northwestern University, Feinberg School of Medicine 303 East Chicago Avenue, Chicago, Illinois, USA
| | | | | |
Collapse
|
58
|
|