51
|
Li S, Zhou W, Li D, Pan T, Guo J, Zou H, Tian Z, Li K, Xu J, Li X, Li Y. Comprehensive characterization of human-virus protein-protein interactions reveals disease comorbidities and potential antiviral drugs. Comput Struct Biotechnol J 2022; 20:1244-1253. [PMID: 35356543 PMCID: PMC8924640 DOI: 10.1016/j.csbj.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
The protein-protein interactions (PPIs) between human and viruses play important roles in viral infection and host immune responses. Rapid accumulation of experimentally validated human-virus PPIs provides an unprecedented opportunity to investigate the regulatory pattern of viral infection. However, we are still lack of knowledge about the regulatory patterns of human-virus interactions. We collected 27,293 experimentally validated human-virus PPIs, covering 8 virus families, 140 viral proteins and 6059 human proteins. Functional enrichment analysis revealed that the viral interacting proteins were likely to be enriched in cell cycle and immune-related pathways. Moreover, we analysed the topological features of the viral interacting proteins and found that they were likely to locate in central regions of human PPI network. Based on network proximity analyses of diseases genes and human-virus interactions in the human interactome, we revealed the associations between complex diseases and viral infections. Network analysis also implicated potential antiviral drugs that were further validated by text mining. Finally, we presented the Human-Virus Protein-Protein Interaction database (HVPPI, http://bio-bigdata.hrbmu.edu.cn/HVPPI), that provides experimentally validated human-virus PPIs as well as seamlessly integrates online functional analysis tools. In summary, comprehensive understanding the regulatory pattern of human-virus interactome will provide novel insights into fundamental infectious mechanism discovery and new antiviral therapy development.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| | - Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Donghao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| | - Jing Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| | - Haozhe Zou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zhanyu Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
52
|
Li S, Wu S, Wang L, Li F, Jiang H, Bai F. Recent advances in predicting protein-protein interactions with the aid of artificial intelligence algorithms. Curr Opin Struct Biol 2022; 73:102344. [PMID: 35219216 DOI: 10.1016/j.sbi.2022.102344] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are essential in the regulation of biological functions and cell events, therefore understanding PPIs have become a key issue to understanding the molecular mechanism and investigating the design of drugs. Here we highlight the major developments in computational methods developed for predicting PPIs by using types of artificial intelligence algorithms. The first part introduces the source of experimental PPI data. The second part is devoted to the PPI prediction methods based on sequential information. The third part covers representative methods using structural information as the input feature. The last part is methods designed by combining different types of features. For each part, the state-of-the-art computational PPI prediction methods are reviewed in an inclusive view. Finally, we discuss the flaws existing in this area and future directions of next-generation algorithms.
Collapse
Affiliation(s)
- Shiwei Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sanan Wu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fenglei Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Information Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
53
|
PRIP: A Protein-RNA Interface Predictor Based on Semantics of Sequences. Life (Basel) 2022; 12:life12020307. [PMID: 35207594 PMCID: PMC8879494 DOI: 10.3390/life12020307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
RNA–protein interactions play an indispensable role in many biological processes. Growing evidence has indicated that aberration of the RNA–protein interaction is associated with many serious human diseases. The precise and quick detection of RNA–protein interactions is crucial to finding new functions and to uncovering the mechanism of interactions. Although many methods have been presented to recognize RNA-binding sites, there is much room left for the improvement of predictive accuracy. We present a sequence semantics-based method (called PRIP) for predicting RNA-binding interfaces. The PRIP extracted semantic embedding by pre-training the Word2vec with the corpus. Extreme gradient boosting was employed to train a classifier. The PRIP obtained a SN of 0.73 over the five-fold cross validation and a SN of 0.67 over the independent test, outperforming the state-of-the-art methods. Compared with other methods, this PRIP learned the hidden relations between words in the context. The analysis of the semantics relationship implied that the semantics of some words were specific to RNA-binding interfaces. This method is helpful to explore the mechanism of RNA–protein interactions from a semantics point of view.
Collapse
|