51
|
Hagg A, Kirschner KN. Open-Source Machine Learning in Computational Chemistry. J Chem Inf Model 2023; 63:4505-4532. [PMID: 37466636 PMCID: PMC10430767 DOI: 10.1021/acs.jcim.3c00643] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 07/20/2023]
Abstract
The field of computational chemistry has seen a significant increase in the integration of machine learning concepts and algorithms. In this Perspective, we surveyed 179 open-source software projects, with corresponding peer-reviewed papers published within the last 5 years, to better understand the topics within the field being investigated by machine learning approaches. For each project, we provide a short description, the link to the code, the accompanying license type, and whether the training data and resulting models are made publicly available. Based on those deposited in GitHub repositories, the most popular employed Python libraries are identified. We hope that this survey will serve as a resource to learn about machine learning or specific architectures thereof by identifying accessible codes with accompanying papers on a topic basis. To this end, we also include computational chemistry open-source software for generating training data and fundamental Python libraries for machine learning. Based on our observations and considering the three pillars of collaborative machine learning work, open data, open source (code), and open models, we provide some suggestions to the community.
Collapse
Affiliation(s)
- Alexander Hagg
- Institute
of Technology, Resource and Energy-Efficient Engineering (TREE), University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
- Department
of Electrical Engineering, Mechanical Engineering and Technical Journalism, University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| | - Karl N. Kirschner
- Institute
of Technology, Resource and Energy-Efficient Engineering (TREE), University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
- Department
of Computer Science, University of Applied
Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| |
Collapse
|
52
|
Roche R, Moussad B, Shuvo MH, Bhattacharya D. E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction. PLoS Comput Biol 2023; 19:e1011435. [PMID: 37651442 PMCID: PMC10499216 DOI: 10.1371/journal.pcbi.1011435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/13/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Artificial intelligence-powered protein structure prediction methods have led to a paradigm-shift in computational structural biology, yet contemporary approaches for predicting the interfacial residues (i.e., sites) of protein-protein interaction (PPI) still rely on experimental structures. Recent studies have demonstrated benefits of employing graph convolution for PPI site prediction, but ignore symmetries naturally occurring in 3-dimensional space and act only on experimental coordinates. Here we present EquiPPIS, an E(3) equivariant graph neural network approach for PPI site prediction. EquiPPIS employs symmetry-aware graph convolutions that transform equivariantly with translation, rotation, and reflection in 3D space, providing richer representations for molecular data compared to invariant convolutions. EquiPPIS substantially outperforms state-of-the-art approaches based on the same experimental input, and exhibits remarkable robustness by attaining better accuracy with predicted structural models from AlphaFold2 than what existing methods can achieve even with experimental structures. Freely available at https://github.com/Bhattacharya-Lab/EquiPPIS, EquiPPIS enables accurate PPI site prediction at scale.
Collapse
Affiliation(s)
- Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bernard Moussad
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Debswapna Bhattacharya
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
53
|
Sunny S, Prakash PB, Gopakumar G, Jayaraj PB. DeepBindPPI: Protein-Protein Binding Site Prediction Using Attention Based Graph Convolutional Network. Protein J 2023; 42:276-287. [PMID: 37198346 PMCID: PMC10191823 DOI: 10.1007/s10930-023-10121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Due to the importance of protein-protein interactions in defence mechanism of living body, attempts were made to investigate its attributes, including, but not limited to, binding affinity, and binding region. Contemporary strategies for binding site prediction largely resort to deep learning techniques but turned out to be low precision models. As laboratory experiments for drug discovery tasks utilize this information, increased false positives devalue the computational methods. This emphasize the need to develop enhanced strategies. DeepBindPPI employs deep learning technique to predict the binding regions of proteins, particularly antigen-antibody interaction sites. The results obtained are applied in a docking environment to confirm their correctness. An integration of graph convolutional network with attention mechanism predicts interacting amino acids with improved precision. The model learns the determining factors in interaction from a general pool of proteins and is then fine-tuned using antigen-antibody data. Comparison of the proposed method with existing techniques shows that the developed model has comparable performance. The use of a separate spatial network clearly improved the precision of the proposed method from 0.4 to 0.5. An attempt to utilize the interface information for docking using the HDOCK server gives promising results, with high-quality structures appearing in the top10 ranks.
Collapse
Affiliation(s)
- Sharon Sunny
- Department of CSE, National Institute of Technology, Calicut, Kerala 673601 India
| | | | - G. Gopakumar
- Department of CSE, National Institute of Technology, Calicut, Kerala 673601 India
| | - P. B. Jayaraj
- Department of CSE, National Institute of Technology, Calicut, Kerala 673601 India
| |
Collapse
|
54
|
Lee M. Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review. Molecules 2023; 28:5169. [PMID: 37446831 DOI: 10.3390/molecules28135169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Deep learning, a potent branch of artificial intelligence, is steadily leaving its transformative imprint across multiple disciplines. Within computational biology, it is expediting progress in the understanding of Protein-Protein Interactions (PPIs), key components governing a wide array of biological functionalities. Hence, an in-depth exploration of PPIs is crucial for decoding the intricate biological system dynamics and unveiling potential avenues for therapeutic interventions. As the deployment of deep learning techniques in PPI analysis proliferates at an accelerated pace, there exists an immediate demand for an exhaustive review that encapsulates and critically assesses these novel developments. Addressing this requirement, this review offers a detailed analysis of the literature from 2021 to 2023, highlighting the cutting-edge deep learning methodologies harnessed for PPI analysis. Thus, this review stands as a crucial reference for researchers in the discipline, presenting an overview of the recent studies in the field. This consolidation helps elucidate the dynamic paradigm of PPI analysis, the evolution of deep learning techniques, and their interdependent dynamics. This scrutiny is expected to serve as a vital aid for researchers, both well-established and newcomers, assisting them in maneuvering the rapidly shifting terrain of deep learning applications in PPI analysis.
Collapse
Affiliation(s)
- Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
55
|
Huang Y, Wuchty S, Zhou Y, Zhang Z. SGPPI: structure-aware prediction of protein-protein interactions in rigorous conditions with graph convolutional network. Brief Bioinform 2023; 24:6995378. [PMID: 36682013 DOI: 10.1093/bib/bbad020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 01/23/2023] Open
Abstract
While deep learning (DL)-based models have emerged as powerful approaches to predict protein-protein interactions (PPIs), the reliance on explicit similarity measures (e.g. sequence similarity and network neighborhood) to known interacting proteins makes these methods ineffective in dealing with novel proteins. The advent of AlphaFold2 presents a significant opportunity and also a challenge to predict PPIs in a straightforward way based on monomer structures while controlling bias from protein sequences. In this work, we established Structure and Graph-based Predictions of Protein Interactions (SGPPI), a structure-based DL framework for predicting PPIs, using the graph convolutional network. In particular, SGPPI focused on protein patches on the protein-protein binding interfaces and extracted the structural, geometric and evolutionary features from the residue contact map to predict PPIs. We demonstrated that our model outperforms traditional machine learning methods and state-of-the-art DL-based methods using non-representation-bias benchmark datasets. Moreover, our model trained on human dataset can be reliably transferred to predict yeast PPIs, indicating that SGPPI can capture converging structural features of protein interactions across various species. The implementation of SGPPI is available at https://github.com/emerson106/SGPPI.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Biomedical Informatics, Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Center for Non-Coding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Institute of Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
| | - Yuan Zhou
- Department of Biomedical Informatics, Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Center for Non-Coding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ziding Zhang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
56
|
Rehman AU, Khurshid B, Ali Y, Rasheed S, Wadood A, Ng HL, Chen HF, Wei Z, Luo R, Zhang J. Computational approaches for the design of modulators targeting protein-protein interactions. Expert Opin Drug Discov 2023; 18:315-333. [PMID: 36715303 PMCID: PMC10149343 DOI: 10.1080/17460441.2023.2171396] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Protein-protein interactions (PPIs) are intriguing targets for designing novel small-molecule inhibitors. The role of PPIs in various infectious and neurodegenerative disorders makes them potential therapeutic targets . Despite being portrayed as undruggable targets, due to their flat surfaces, disorderedness, and lack of grooves. Recent progresses in computational biology have led researchers to reconsider PPIs in drug discovery. AREAS COVERED In this review, we introduce in-silico methods used to identify PPI interfaces and present an in-depth overview of various computational methodologies that are successfully applied to annotate the PPIs. We also discuss several successful case studies that use computational tools to understand PPIs modulation and their key roles in various physiological processes. EXPERT OPINION Computational methods face challenges due to the inherent flexibility of proteins, which makes them expensive, and result in the use of rigid models. This problem becomes more significant in PPIs due to their flexible and flat interfaces. Computational methods like molecular dynamics (MD) simulation and machine learning can integrate the chemical structure data into biochemical and can be used for target identification and modulation. These computational methodologies have been crucial in understanding the structure of PPIs, designing PPI modulators, discovering new drug targets, and predicting treatment outcomes.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, Graduate Program in Chemical and Materials Physics, University of California Irvine, Irvine, California, USA
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, Zhejiang, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Ho-Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, Zhejiang, China
| | - Zhiqiang Wei
- Medicinal Chemistry and Bioinformatics Center, Ocean University of China, Qingdao, Shandong, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, Graduate Program in Chemical and Materials Physics, University of California Irvine, Irvine, California, USA
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, Zhejiang, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
57
|
Aybey E, Gümüş Ö. SENSDeep: An Ensemble Deep Learning Method for Protein-Protein Interaction Sites Prediction. Interdiscip Sci 2023; 15:55-87. [PMID: 36346583 DOI: 10.1007/s12539-022-00543-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE The determination of which amino acid in a protein interacts with other proteins is important in understanding the functional mechanism of that protein. Although there are experimental methods to detect protein-protein interaction sites (PPISs), these are costly, time-consuming, and require expertise. Therefore, many computational methods have been proposed to accelerate this type of research, but they are generally insufficient to predict PPISs accurately. There is a need for development in this field. METHODS In this study, we introduce a new PPISs prediction method. This method is a sequence-based Stacking ENSemble Deep (SENSDeep) learning method that has an ensemble learning model including the models of RNN, CNN, GRU sequence to sequence (GRUs2s), GRU sequence to sequence with an attention layer (GRUs2satt) and a multilayer perceptron. Two embedded features, secondary structure, and protein sequence information are added to the training data set in addition to twelve existing features to improve the prediction performance of the method. RESULTS SENSDeep trained on the training data set without two extra features obtains a better performance on some of the independent testing data sets than that of the other methods in the literature, especially on scoring metrics of sensitivity, F1, MCC, and AUPRC, having increments up to 63.5%, 19.3%, 18.5%, 11.4%, respectively. It is shown that the added extra features improve the performance of the method by having almost the same performance with less data as the method trained on the data set without these added features. On the other hand, different sizes of the sliding window are tried on the data sets and an optimal sliding window size for SENSDeep is found. Moreover, SENSDeep has also been compared to structure-based methods. Some of these methods have been found to perform better. Using SENSDeep obtained by training with both training data sets, PPISs prediction examples of various proteins that are not in these training data sets are also presented. Furthermore, execution times for SENSDeep and its submodels are shown. AVAILABILITY AND IMPLEMENTATION https://github.com/enginaybey/SENSDeep.
Collapse
Affiliation(s)
- Engin Aybey
- Department of Health Bioinformatics, Ege University, 35100, Bornova, Izmir, Turkey.
- Rectorate, Marmara University, 34722, Kadıköy, Istanbul, Turkey.
| | - Özgür Gümüş
- Department of Computer Engineering, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
58
|
A graph neural network model for deciphering the biological mechanisms of plant electrical signal classification. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
59
|
Zheng J, Yang X, Zhang Z. Using PlaPPISite to Predict and Analyze Plant Protein-Protein Interaction Sites. Methods Mol Biol 2023; 2690:385-399. [PMID: 37450161 DOI: 10.1007/978-1-0716-3327-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Proteome-wide characterization of protein-protein interactions (PPIs) is crucial to understand the functional roles of protein machinery within cells systematically. With the accumulation of PPI data in different plants, the interaction details of binary PPIs, such as the three-dimensional (3D) structural contexts of interaction sites/interfaces, are urgently demanded. To meet this requirement, we have developed a comprehensive and easy-to-use database called PlaPPISite ( http://zzdlab.com/plappisite/index.php ) to present interaction details for 13 plant interactomes. Here, we provide a clear guide on how to search and view protein interaction details through the PlaPPISite database. Firstly, the running environment of our database is introduced. Secondly, the input file format is briefly introduced. Moreover, we discussed which information related to interaction sites can be achieved through several examples. In addition, some notes about PlaPPISite are also provided. More importantly, we would like to emphasize the importance of interaction site information in plant systems biology through this user guide of PlaPPISite. In particular, the easily accessible 3D structures of PPIs in the coming post-AlphaFold2 era will definitely boost the application of plant interactome to decipher the molecular mechanisms of many fundamental biological issues.
Collapse
Affiliation(s)
- Jingyan Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaodi Yang
- Department of Hematology, Peking University First Hospital, Beijing, China.
| | - Ziding Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
60
|
Wang S, Chen W, Han P, Li X, Song T. RGN: Residue-Based Graph Attention and Convolutional Network for Protein-Protein Interaction Site Prediction. J Chem Inf Model 2022; 62:5961-5974. [PMID: 36398714 DOI: 10.1021/acs.jcim.2c01092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The prediction of a protein-protein interaction site (PPI site) plays a very important role in the biochemical process, and lots of computational methods have been proposed in the past. However, the majority of the past methods are time consuming and lack accuracy. Hence, coming up with an effective computational method is necessary. In this article, we present a novel computational model called RGN (residue-based graph attention and convolutional network) to predict PPI sites. In our paper, the protein is treated as a graph. The amino acid can be seen as the node in the graph structure. The position-specific scoring matrix, hidden Markov model, hydrogen bond estimation algorithm, and ProtBert are applied as node features. The edges are decided by the spatial distance between the amino acids. Then, we utilize a residue-based graph convolutional network and graph attention network to further extract the deeper feature. Finally, the processed node feature is fed into the prediction layer. We show the superiority of our model by comparing it with the other four protein structure-based methods and five protein sequence-based methods. Our model obtains the best performance on all the evaluation metrics (accuracy, precision, recall, F1 score, Matthews correlation coefficient, area under the receiver operating characteristic curve, and area under the precision recall curve). We also conduct a case study to demonstrate that extracting the protein information from the protein structure perspective is effective and points out the difficult aspect of PPI site prediction.
Collapse
Affiliation(s)
- Shuang Wang
- College of Computer Science and Technology, China University of Petroleum, QingDao266580, China
| | - Wenqi Chen
- College of Computer Science and Technology, China University of Petroleum, QingDao266580, China
| | - Peifu Han
- College of Computer Science and Technology, China University of Petroleum, QingDao266580, China
| | - Xue Li
- College of Computer Science and Technology, China University of Petroleum, QingDao266580, China
| | - Tao Song
- College of Computer Science and Technology, China University of Petroleum, QingDao266580, China.,Department of Artificial Intelligence, Faculty of Computer Science, Polytechnical University of Madrid, Madrid28031, Spain
| |
Collapse
|
61
|
Yuan Q, Chen S, Wang Y, Zhao H, Yang Y. Alignment-free metal ion-binding site prediction from protein sequence through pretrained language model and multi-task learning. Brief Bioinform 2022; 23:6770088. [PMID: 36274238 DOI: 10.1093/bib/bbac444] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/02/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022] Open
Abstract
More than one-third of the proteins contain metal ions in the Protein Data Bank. Correct identification of metal ion-binding residues is important for understanding protein functions and designing novel drugs. Due to the small size and high versatility of metal ions, it remains challenging to computationally predict their binding sites from protein sequence. Existing sequence-based methods are of low accuracy due to the lack of structural information, and time-consuming owing to the usage of multi-sequence alignment. Here, we propose LMetalSite, an alignment-free sequence-based predictor for binding sites of the four most frequently seen metal ions in BioLiP (Zn2+, Ca2+, Mg2+ and Mn2+). LMetalSite leverages the pretrained language model to rapidly generate informative sequence representations and employs transformer to capture long-range dependencies. Multi-task learning is adopted to compensate for the scarcity of training data and capture the intrinsic similarities between different metal ions. LMetalSite was shown to surpass state-of-the-art structure-based methods by more than 19.7, 14.4, 36.8 and 12.6% in area under the precision recall on the four independent tests, respectively. Further analyses indicated that the self-attention modules are effective to learn the structural contexts of residues from protein sequence. We provide the data sets, source codes and trained models of LMetalSite at https://github.com/biomed-AI/LMetalSite.
Collapse
Affiliation(s)
- Qianmu Yuan
- School of Computer Science and Engineering at Sun Yat-sen University, Guangzhou 510000, China
| | - Sheng Chen
- School of Computer Science and Engineering at Sun Yat-sen University, Guangzhou 510000, China
| | - Yu Wang
- Peng Cheng National Laboratory at Shenzhen, Guangzhou 510000, China
| | - Huiying Zhao
- Sun Yat-sen Memorial Hospital at Sun Yat-sen University, Guangzhou 510000, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China, and Key Laboratory of Machine Intelligence and Advanced Computing of MOE, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
62
|
Improved inter-residue contact prediction via a hybrid generative model and dynamic loss function. Comput Struct Biotechnol J 2022; 20:6138-6148. [DOI: 10.1016/j.csbj.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
63
|
Soleymani F, Paquet E, Viktor H, Michalowski W, Spinello D. Protein-protein interaction prediction with deep learning: A comprehensive review. Comput Struct Biotechnol J 2022; 20:5316-5341. [PMID: 36212542 PMCID: PMC9520216 DOI: 10.1016/j.csbj.2022.08.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
Most proteins perform their biological function by interacting with themselves or other molecules. Thus, one may obtain biological insights into protein functions, disease prevalence, and therapy development by identifying protein-protein interactions (PPI). However, finding the interacting and non-interacting protein pairs through experimental approaches is labour-intensive and time-consuming, owing to the variety of proteins. Hence, protein-protein interaction and protein-ligand binding problems have drawn attention in the fields of bioinformatics and computer-aided drug discovery. Deep learning methods paved the way for scientists to predict the 3-D structure of proteins from genomes, predict the functions and attributes of a protein, and modify and design new proteins to provide desired functions. This review focuses on recent deep learning methods applied to problems including predicting protein functions, protein-protein interaction and their sites, protein-ligand binding, and protein design.
Collapse
Affiliation(s)
- Farzan Soleymani
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Eric Paquet
- National Research Council, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Herna Viktor
- School of Electrical Engineering and Computer Science, University of Ottawa, ON, Canada
| | | | - Davide Spinello
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
64
|
Avery C, Patterson J, Grear T, Frater T, Jacobs DJ. Protein Function Analysis through Machine Learning. Biomolecules 2022; 12:1246. [PMID: 36139085 PMCID: PMC9496392 DOI: 10.3390/biom12091246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Machine learning (ML) has been an important arsenal in computational biology used to elucidate protein function for decades. With the recent burgeoning of novel ML methods and applications, new ML approaches have been incorporated into many areas of computational biology dealing with protein function. We examine how ML has been integrated into a wide range of computational models to improve prediction accuracy and gain a better understanding of protein function. The applications discussed are protein structure prediction, protein engineering using sequence modifications to achieve stability and druggability characteristics, molecular docking in terms of protein-ligand binding, including allosteric effects, protein-protein interactions and protein-centric drug discovery. To quantify the mechanisms underlying protein function, a holistic approach that takes structure, flexibility, stability, and dynamics into account is required, as these aspects become inseparable through their interdependence. Another key component of protein function is conformational dynamics, which often manifest as protein kinetics. Computational methods that use ML to generate representative conformational ensembles and quantify differences in conformational ensembles important for function are included in this review. Future opportunities are highlighted for each of these topics.
Collapse
Affiliation(s)
- Chris Avery
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - John Patterson
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Tyler Grear
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Theodore Frater
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Donald J. Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
65
|
ProB-Site: Protein Binding Site Prediction Using Local Features. Cells 2022; 11:cells11132117. [PMID: 35805201 PMCID: PMC9266162 DOI: 10.3390/cells11132117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/16/2023] Open
Abstract
Protein–protein interactions (PPIs) are responsible for various essential biological processes. This information can help develop a new drug against diseases. Various experimental methods have been employed for this purpose; however, their application is limited by their cost and time consumption. Alternatively, computational methods are considered viable means to achieve this crucial task. Various techniques have been explored in the literature using the sequential information of amino acids in a protein sequence, including machine learning and deep learning techniques. The current efficiency of interaction-site prediction still has growth potential. Hence, a deep neural network-based model, ProB-site, is proposed. ProB-site utilizes sequential information of a protein to predict its binding sites. The proposed model uses evolutionary information and predicted structural information extracted from sequential information of proteins, generating three unique feature sets for every amino acid in a protein sequence. Then, these feature sets are fed to their respective sub-CNN architecture to acquire complex features. Finally, the acquired features are concatenated and classified using fully connected layers. This methodology performed better than state-of-the-art techniques because of the selection of the best features and contemplation of local information of each amino acid.
Collapse
|
66
|
Protein–Protein Interaction Prediction for Targeted Protein Degradation. Int J Mol Sci 2022; 23:ijms23137033. [PMID: 35806036 PMCID: PMC9266413 DOI: 10.3390/ijms23137033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Protein–protein interactions (PPIs) play a fundamental role in various biological functions; thus, detecting PPI sites is essential for understanding diseases and developing new drugs. PPI prediction is of particular relevance for the development of drugs employing targeted protein degradation, as their efficacy relies on the formation of a stable ternary complex involving two proteins. However, experimental methods to detect PPI sites are both costly and time-intensive. In recent years, machine learning-based methods have been developed as screening tools. While they are computationally more efficient than traditional docking methods and thus allow rapid execution, these tools have so far primarily been based on sequence information, and they are therefore limited in their ability to address spatial requirements. In addition, they have to date not been applied to targeted protein degradation. Here, we present a new deep learning architecture based on the concept of graph representation learning that can predict interaction sites and interactions of proteins based on their surface representations. We demonstrate that our model reaches state-of-the-art performance using AUROC scores on the established MaSIF dataset. We furthermore introduce a new dataset with more diverse protein interactions and show that our model generalizes well to this new data. These generalization capabilities allow our model to predict the PPIs relevant for targeted protein degradation, which we show by demonstrating the high accuracy of our model for PPI prediction on the available ternary complex data. Our results suggest that PPI prediction models can be a valuable tool for screening protein pairs while developing new drugs for targeted protein degradation.
Collapse
|
67
|
Hephzibah Cathryn R, Udhaya Kumar S, Younes S, Zayed H, George Priya Doss C. A review of bioinformatics tools and web servers in different microarray platforms used in cancer research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:85-164. [PMID: 35871897 DOI: 10.1016/bs.apcsb.2022.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the past decade, conventional lab work strategies have gradually shifted from being limited to a laboratory setting towards a bioinformatics era to help manage and process the vast amounts of data generated by omics technologies. The present work outlines the latest contributions of bioinformatics in analyzing microarray data and their application to cancer. We dissect different microarray platforms and their use in gene expression in cancer models. We highlight how computational advances empowered the microarray technology in gene expression analysis. The study on protein-protein interaction databases classified into primary, derived, meta-database, and prediction databases describes the strategies to curate and predict novel interaction networks in silico. In addition, we summarize the areas of bioinformatics where neural graph networks are currently being used, such as protein functions, protein interaction prediction, and in silico drug discovery and development. We also discuss the role of deep learning as a potential tool in the prognosis, diagnosis, and treatment of cancer. Integrating these resources efficiently, practically, and ethically is likely to be the most challenging task for the healthcare industry over the next decade; however, we believe that it is achievable in the long term.
Collapse
Affiliation(s)
- R Hephzibah Cathryn
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
68
|
Casadio R, Martelli PL, Savojardo C. Machine learning solutions for predicting protein–protein interactions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rita Casadio
- Biocomputing Group University of Bologna Bologna Italy
| | | | | |
Collapse
|
69
|
Pan J, You ZH, Li LP, Huang WZ, Guo JX, Yu CQ, Wang LP, Zhao ZY. DWPPI: A Deep Learning Approach for Predicting Protein–Protein Interactions in Plants Based on Multi-Source Information With a Large-Scale Biological Network. Front Bioeng Biotechnol 2022; 10:807522. [PMID: 35387292 PMCID: PMC8978800 DOI: 10.3389/fbioe.2022.807522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
The prediction of protein–protein interactions (PPIs) in plants is vital for probing the cell function. Although multiple high-throughput approaches in the biological domain have been developed to identify PPIs, with the increasing complexity of PPI network, these methods fall into laborious and time-consuming situations. Thus, it is essential to develop an effective and feasible computational method for the prediction of PPIs in plants. In this study, we present a network embedding-based method, called DWPPI, for predicting the interactions between different plant proteins based on multi-source information and combined with deep neural networks (DNN). The DWPPI model fuses the protein natural language sequence information (attribute information) and protein behavior information to represent plant proteins as feature vectors and finally sends these features to a deep learning–based classifier for prediction. To validate the prediction performance of DWPPI, we performed it on three model plant datasets: Arabidopsis thaliana (A. thaliana), mazie (Zea mays), and rice (Oryza sativa). The experimental results with the fivefold cross-validation technique demonstrated that DWPPI obtains great performance with the AUC (area under ROC curves) values of 0.9548, 0.9867, and 0.9213, respectively. To further verify the predictive capacity of DWPPI, we compared it with some different state-of-the-art machine learning classifiers. Moreover, case studies were performed with the AC149810.2_FGP003 protein. As a result, 14 of the top 20 PPI pairs identified by DWPPI with the highest scores were confirmed by the literature. These excellent results suggest that the DWPPI model can act as a promising tool for related plant molecular biology.
Collapse
Affiliation(s)
- Jie Pan
- School of Information Engineering, Xijing University, Xi’an, China
| | - Zhu-Hong You
- School of Information Engineering, Xijing University, Xi’an, China
| | - Li-Ping Li
- School of Information Engineering, Xijing University, Xi’an, China
- College of Grassland and Environment Science, Xinjiang Agricultural University, Urumqi, China
- *Correspondence: Li-Ping Li, ; Chang-Qing Yu,
| | - Wen-Zhun Huang
- School of Information Engineering, Xijing University, Xi’an, China
| | - Jian-Xin Guo
- School of Information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an, China
- *Correspondence: Li-Ping Li, ; Chang-Qing Yu,
| | - Li-Ping Wang
- School of Information Engineering, Xijing University, Xi’an, China
| | - Zheng-Yang Zhao
- School of Information Engineering, Xijing University, Xi’an, China
| |
Collapse
|
70
|
Yuan Q, Chen S, Rao J, Zheng S, Zhao H, Yang Y. AlphaFold2-aware protein-DNA binding site prediction using graph transformer. Brief Bioinform 2022; 23:6509729. [PMID: 35039821 DOI: 10.1093/bib/bbab564] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Protein-DNA interactions play crucial roles in the biological systems, and identifying protein-DNA binding sites is the first step for mechanistic understanding of various biological activities (such as transcription and repair) and designing novel drugs. How to accurately identify DNA-binding residues from only protein sequence remains a challenging task. Currently, most existing sequence-based methods only consider contextual features of the sequential neighbors, which are limited to capture spatial information. Based on the recent breakthrough in protein structure prediction by AlphaFold2, we propose an accurate predictor, GraphSite, for identifying DNA-binding residues based on the structural models predicted by AlphaFold2. Here, we convert the binding site prediction problem into a graph node classification task and employ a transformer-based variant model to take the protein structural information into account. By leveraging predicted protein structures and graph transformer, GraphSite substantially improves over the latest sequence-based and structure-based methods. The algorithm is further confirmed on the independent test set of 181 proteins, where GraphSite surpasses the state-of-the-art structure-based method by 16.4% in area under the precision-recall curve and 11.2% in Matthews correlation coefficient, respectively. We provide the datasets, the predicted structures and the source codes along with the pre-trained models of GraphSite at https://github.com/biomed-AI/GraphSite. The GraphSite web server is freely available at https://biomed.nscc-gz.cn/apps/GraphSite.
Collapse
Affiliation(s)
- Qianmu Yuan
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Sheng Chen
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Jiahua Rao
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Shuangjia Zheng
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Huiying Zhao
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
- Key Laboratory of Machine Intelligence and Advanced Computing of MOE, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
71
|
Zhang F, Zhao B, Shi W, Li M, Kurgan L. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning. Brief Bioinform 2021; 23:6461158. [PMID: 34905768 DOI: 10.1093/bib/bbab521] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/30/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022] Open
Abstract
Proteins with intrinsically disordered regions (IDRs) are common among eukaryotes. Many IDRs interact with nucleic acids and proteins. Annotation of these interactions is supported by computational predictors, but to date, only one tool that predicts interactions with nucleic acids was released, and recent assessments demonstrate that current predictors offer modest levels of accuracy. We have developed DeepDISOBind, an innovative deep multi-task architecture that accurately predicts deoxyribonucleic acid (DNA)-, ribonucleic acid (RNA)- and protein-binding IDRs from protein sequences. DeepDISOBind relies on an information-rich sequence profile that is processed by an innovative multi-task deep neural network, where subsequent layers are gradually specialized to predict interactions with specific partner types. The common input layer links to a layer that differentiates protein- and nucleic acid-binding, which further links to layers that discriminate between DNA and RNA interactions. Empirical tests show that this multi-task design provides statistically significant gains in predictive quality across the three partner types when compared to a single-task design and a representative selection of the existing methods that cover both disorder- and structure-trained tools. Analysis of the predictions on the human proteome reveals that DeepDISOBind predictions can be encoded into protein-level propensities that accurately predict DNA- and RNA-binding proteins and protein hubs. DeepDISOBind is available at https://www.csuligroup.com/DeepDISOBind/.
Collapse
Affiliation(s)
- Fuhao Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Wenbo Shi
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|