51
|
Landeros A, Stutz T, Keys KL, Alekseyenko A, Sinsheimer JS, Lange K, Sehl ME. BioSimulator.jl: Stochastic simulation in Julia. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 167:23-35. [PMID: 30501857 PMCID: PMC6388686 DOI: 10.1016/j.cmpb.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Biological systems with intertwined feedback loops pose a challenge to mathematical modeling efforts. Moreover, rare events, such as mutation and extinction, complicate system dynamics. Stochastic simulation algorithms are useful in generating time-evolution trajectories for these systems because they can adequately capture the influence of random fluctuations and quantify rare events. We present a simple and flexible package, BioSimulator.jl, for implementing the Gillespie algorithm, τ-leaping, and related stochastic simulation algorithms. The objective of this work is to provide scientists across domains with fast, user-friendly simulation tools. METHODS We used the high-performance programming language Julia because of its emphasis on scientific computing. Our software package implements a suite of stochastic simulation algorithms based on Markov chain theory. We provide the ability to (a) diagram Petri Nets describing interactions, (b) plot average trajectories and attached standard deviations of each participating species over time, and (c) generate frequency distributions of each species at a specified time. RESULTS BioSimulator.jl's interface allows users to build models programmatically within Julia. A model is then passed to the simulate routine to generate simulation data. The built-in tools allow one to visualize results and compute summary statistics. Our examples highlight the broad applicability of our software to systems of varying complexity from ecology, systems biology, chemistry, and genetics. CONCLUSION The user-friendly nature of BioSimulator.jl encourages the use of stochastic simulation, minimizes tedious programming efforts, and reduces errors during model specification.
Collapse
Affiliation(s)
- Alfonso Landeros
- Department of Biomathematics, David Geffen School of Medicine at UCLA, USA.
| | - Timothy Stutz
- Department of Biomathematics, David Geffen School of Medicine at UCLA, USA.
| | - Kevin L Keys
- Department of Medicine, University of California, San Francisco, CA, USA.
| | | | - Janet S Sinsheimer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, USA.
| | - Kenneth Lange
- Department of Biomathematics, David Geffen School of Medicine at UCLA, USA.
| | - Mary E Sehl
- Department of Biomathematics, David Geffen School of Medicine at UCLA, USA.
| |
Collapse
|
52
|
Berro J. "Essentially, all models are wrong, but some are useful"-a cross-disciplinary agenda for building useful models in cell biology and biophysics. Biophys Rev 2018; 10:1637-1647. [PMID: 30421276 PMCID: PMC6297095 DOI: 10.1007/s12551-018-0478-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Intuition alone often fails to decipher the mechanisms underlying the experimental data in Cell Biology and Biophysics, and mathematical modeling has become a critical tool in these fields. However, mathematical modeling is not as widespread as it could be, because experimentalists and modelers often have difficulties communicating with each other, and are not always on the same page about what a model can or should achieve. Here, we present a framework to develop models that increase the understanding of the mechanisms underlying one's favorite biological system. Development of the most insightful models starts with identifying a good biological question in light of what is known and unknown in the field, and determining the proper level of details that are sufficient to address this question. The model should aim not only to explain already available data, but also to make predictions that can be experimentally tested. We hope that both experimentalists and modelers who are driven by mechanistic questions will find these guidelines useful to develop models with maximum impact in their field.
Collapse
Affiliation(s)
- Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
- Nanobiology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
53
|
Johnson ME. Modeling the Self-Assembly of Protein Complexes through a Rigid-Body Rotational Reaction-Diffusion Algorithm. J Phys Chem B 2018; 122:11771-11783. [PMID: 30256109 DOI: 10.1021/acs.jpcb.8b08339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The reaction-diffusion equations provide a powerful framework for modeling nonequilibrium, cell-scale dynamics over the long time scales that are inaccessible by traditional molecular modeling approaches. Single-particle reaction-diffusion offers the highest resolution technique for tracking such dynamics, but it has not been applied to the study of protein self-assembly due to its treatment of reactive species as single-point particles. Here, we develop a relatively simple but accurate approach for building rigid structure and rotation into single-particle reaction-diffusion methods, providing a rate-based method for studying protein self-assembly. Our simplifying assumption is that reactive collisions can be evaluated purely on the basis of the separations between the sites, and not their orientations. The challenge of evaluating reaction probabilities can then be performed using well-known equations based on translational diffusion in both 3D and 2D, by employing an effective diffusion constant we derive here. We show how our approach reproduces both the kinetics of association, which is altered by rotational diffusion, and the equilibrium of reversible association, which is not. Importantly, the macroscopic kinetics of association can be predicted on the basis of the microscopic parameters of our structurally resolved model, allowing for critical comparisons with theory and other rate-based simulations. We demonstrate this method for efficient, rate-based simulations of self-assembly of clathrin trimers, highlighting how formation of regular lattices impacts the kinetics of association.
Collapse
Affiliation(s)
- Margaret E Johnson
- TC Jenkins Department of Biophysics , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
54
|
Abstract
Interacting-particle reaction dynamics (iPRD) simulates the spatiotemporal evolution of particles that experience interaction forces and can react with one another. The combination of interaction forces and reactions enables a wide range of complex reactive systems in biology and chemistry to be simulated, but gives rise to new questions such as how to evolve the dynamical equations in a computationally efficient and statistically correct manner. Here we consider reversible reactions such as A + B ⇄ C with interacting particles and derive expressions for the microscopic iPRD simulation parameters such that desired values for the equilibrium constant and the dissociation rate are obtained in the dilute limit. We then introduce a Monte Carlo algorithm that ensures detailed balance in the iPRD time-evolution (iPRD-DB). iPRD-DB guarantees the correct thermodynamics at all concentrations and maintains the desired kinetics in the dilute limit, where chemical rates are well-defined and kinetic measurement experiments usually operate. We show that in dense particle systems, the incorporation of detailed balance is essential to obtain physically realistic solutions. iPRD-DB is implemented in ReaDDy 2.
Collapse
Affiliation(s)
- Christoph Fröhner
- Fachbereich Mathematik und Informatik , Freie Universität Berlin , Arnimallee 6 , 14195 Berlin , Germany
| | - Frank Noé
- Fachbereich Mathematik und Informatik , Freie Universität Berlin , Arnimallee 6 , 14195 Berlin , Germany
| |
Collapse
|
55
|
Shahinuzzaman M, Khetan J, Barua D. A spatio-temporal model reveals self-limiting Fc ɛRI cross-linking by multivalent antigens. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180190. [PMID: 30839725 PMCID: PMC6170560 DOI: 10.1098/rsos.180190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/23/2018] [Indexed: 06/09/2023]
Abstract
Aggregation of cell surface receptor proteins by multivalent antigens is an essential early step for immune cell signalling. A number of experimental and modelling studies in the past have investigated multivalent ligand-mediated aggregation of IgE receptors (FcɛRI) in the plasma membrane of mast cells. However, understanding of the mechanisms of FcɛRI aggregation remains incomplete. Experimental reports indicate that FcɛRI forms relatively small and finite-sized clusters when stimulated by a multivalent ligand. By contrast, modelling studies have shown that receptor cross-linking by a trivalent ligand may lead to the formation of large receptor superaggregates that may potentially give rise to hyperactive cellular responses. In this work, we have developed a Brownian dynamics-based spatio-temporal model to analyse FcɛRI aggregation by a trivalent antigen. Unlike the existing models, which implemented non-spatial simulation approaches, our model explicitly accounts for the coarse-grained site-specific features of the multivalent species (molecules and complexes). The model incorporates membrane diffusion, steric collisions and sub-nanometre-scale site-specific interaction of the time-evolving species of arbitrary structures. Using the model, we investigated temporal evolution of the species and their diffusivities. Consistent with a recent experimental report, our model predicted sharp decay in species mobility in the plasma membrane in response receptor cross-linking by a multivalent antigen. We show that, due to such decay in the species mobility, post-stimulation receptor aggregation may become self-limiting. Our analysis reveals a potential regulatory mechanism suppressing hyperactivation of immune cells in response to multivalent antigens.
Collapse
Affiliation(s)
| | | | - Dipak Barua
- Author for correspondence: Dipak Barua e-mail:
| |
Collapse
|
56
|
Kochanczyk M, Hlavacek WS, Lipniacki T. SPATKIN: a simulator for rule-based modeling of biomolecular site dynamics on surfaces. Bioinformatics 2018; 33:3667-3669. [PMID: 29036531 DOI: 10.1093/bioinformatics/btx456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Summary Rule-based modeling is a powerful approach for studying biomolecular site dynamics. Here, we present SPATKIN, a general-purpose simulator for rule-based modeling in two spatial dimensions. The simulation algorithm is a lattice-based method that tracks Brownian motion of individual molecules and the stochastic firing of rule-defined reaction events. Because rules are used as event generators, the algorithm is network-free, meaning that it does not require to generate the complete reaction network implied by rules prior to simulation. In a simulation, each molecule (or complex of molecules) is taken to occupy a single lattice site that cannot be shared with another molecule (or complex). SPATKIN is capable of simulating a wide array of membrane-associated processes, including adsorption, desorption and crowding. Models are specified using an extension of the BioNetGen language, which allows to account for spatial features of the simulated process. Availability and implementation The C ++ source code for SPATKIN is distributed freely under the terms of the GNU GPLv3 license. The source code can be compiled for execution on popular platforms (Windows, Mac and Linux). An installer for 64-bit Windows and a macOS app are available. The source code and precompiled binaries are available at the SPATKIN Web site (http://pmbm.ippt.pan.pl/software/spatkin). Contact spatkin.simulator@gmail.com. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marek Kochanczyk
- Institute of Fundamental Technological Research, Warsaw 02-106, Poland
| | - William S Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Warsaw 02-106, Poland
| |
Collapse
|
57
|
Earnest TM, Cole JA, Luthey-Schulten Z. Simulating biological processes: stochastic physics from whole cells to colonies. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:052601. [PMID: 29424367 DOI: 10.1088/1361-6633/aaae2c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a 'minimal cell'. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.
Collapse
Affiliation(s)
- Tyler M Earnest
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, United States of America. National Center for Supercomputing Applications, University of Illinois, Urbana, IL, 61801, United States of America
| | | | | |
Collapse
|
58
|
Widmer LA, Stelling J. Bridging intracellular scales by mechanistic computational models. Curr Opin Biotechnol 2018; 52:17-24. [PMID: 29486391 DOI: 10.1016/j.copbio.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/11/2018] [Indexed: 12/31/2022]
Abstract
The impact of intracellular spatial organization beyond classical compartments on processes such as cell signaling is increasingly recognized. A quantitative, mechanistic understanding of cellular systems therefore needs to account for different scales in at least three coordinates: time, molecular abundances, and space. Mechanistic mathematical models may span all these scales, but corresponding multi-scale models need to resolve mechanistic details on small scales while maintaining computational tractability for larger ones. This typically results in models that combine different levels of description: from a microscopic representation of chemical reactions up to continuum dynamics in space and time. We highlight recent progress in bridging these model classes and outline current challenges in multi-scale models such as active transport and dynamic geometries.
Collapse
Affiliation(s)
- Lukas Andreas Widmer
- Department of Biosystems Science and Engineering and Swiss Institute of Bioinformatics, ETH Zürich, Basel, Switzerland; Systems Biology PhD Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and Swiss Institute of Bioinformatics, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
59
|
Li X, Holmes WR. Biophysical attributes that affect CaMKII activation deduced with a novel spatial stochastic simulation approach. PLoS Comput Biol 2018; 14:e1005946. [PMID: 29401454 PMCID: PMC5814094 DOI: 10.1371/journal.pcbi.1005946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/15/2018] [Accepted: 12/19/2017] [Indexed: 12/02/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) holoenzymes play a critical role in decoding Ca2+ signals in neurons. Understanding how this occurs has been the focus of numerous studies including many that use models. However, CaMKII is notoriously difficult to simulate in detail because of its multi-subunit nature, which causes a combinatorial explosion in the number of species that must be modeled. To study the Ca2+-calmodulin-CaMKII reaction network with detailed kinetics while including the effect of diffusion, we have customized an existing stochastic particle-based simulator, Smoldyn, to manage the problem of combinatorial explosion. With this new method, spatial and temporal aspects of the signaling network can be studied without compromising biochemical details. We used this new method to examine how calmodulin molecules, both partially loaded and fully loaded with Ca2+, choose pathways to interact with and activate CaMKII under various Ca2+ input conditions. We found that the dependence of CaMKII phosphorylation on Ca2+ signal frequency is intrinsic to the network kinetics and the activation pattern can be modulated by the relative amount of Ca2+ to calmodulin and by the rate of Ca2+ diffusion. Depending on whether Ca2+ influx is saturating or not, calmodulin molecules could choose different routes within the network to activate CaMKII subunits, resulting in different frequency dependence patterns. In addition, the size of the holoenzyme produces a subtle effect on CaMKII activation. The more extended the subunits are organized, the easier for calmodulin molecules to access and activate the subunits. The findings suggest that particular intracellular environmental factors such as crowding and calmodulin availability can play an important role in decoding Ca2+ signals and can give rise to distinct CaMKII activation patterns in dendritic spines, Ca2+ channel nanodomains and cytoplasm.
Collapse
Affiliation(s)
- Ximing Li
- Department of Biological Sciences, Neuroscience Program, Ohio University, Athens, Ohio, United States of America
| | - William R. Holmes
- Department of Biological Sciences, Neuroscience Program, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|
60
|
Blinov ML, Schaff JC, Vasilescu D, Moraru II, Bloom JE, Loew LM. Compartmental and Spatial Rule-Based Modeling with Virtual Cell. Biophys J 2017; 113:1365-1372. [PMID: 28978431 DOI: 10.1016/j.bpj.2017.08.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 10/18/2022] Open
Abstract
In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator.
Collapse
Affiliation(s)
- Michael L Blinov
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut.
| | - James C Schaff
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Dan Vasilescu
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Ion I Moraru
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Judy E Bloom
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut.
| |
Collapse
|
61
|
Trovato F, Fumagalli G. Molecular simulations of cellular processes. Biophys Rev 2017; 9:941-958. [PMID: 29185136 DOI: 10.1007/s12551-017-0363-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is, nowadays, possible to simulate biological processes in conditions that mimic the different cellular compartments. Several groups have performed these calculations using molecular models that vary in performance and accuracy. In many cases, the atomistic degrees of freedom have been eliminated, sacrificing both structural complexity and chemical specificity to be able to explore slow processes. In this review, we will discuss the insights gained from computer simulations on macromolecule diffusion, nuclear body formation, and processes involving the genetic material inside cell-mimicking spaces. We will also discuss the challenges to generate new models suitable for the simulations of biological processes on a cell scale and for cell-cycle-long times, including non-equilibrium events such as the co-translational folding, misfolding, and aggregation of proteins. A prominent role will be played by the wise choice of the structural simplifications and, simultaneously, of a relatively complex energetic description. These challenging tasks will rely on the integration of experimental and computational methods, achieved through the application of efficient algorithms. Graphical abstract.
Collapse
Affiliation(s)
- Fabio Trovato
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany.
| | - Giordano Fumagalli
- Nephrology and Dialysis Unit, USL Toscana Nord Ovest, 55041, Lido di Camaiore, Lucca, Italy
| |
Collapse
|
62
|
Islam MA, Barua S, Barua D. A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles. BMC SYSTEMS BIOLOGY 2017; 11:113. [PMID: 29178887 PMCID: PMC5702122 DOI: 10.1186/s12918-017-0491-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 11/10/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. RESULTS We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. CONCLUSION Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.
Collapse
Affiliation(s)
- Mohammad Aminul Islam
- Department of Chemical and Biochemical Engineering, University of Missouri Science and Technology, Rolla, Missouri, USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, University of Missouri Science and Technology, Rolla, Missouri, USA
| | - Dipak Barua
- Department of Chemical and Biochemical Engineering, University of Missouri Science and Technology, Rolla, Missouri, USA.
| |
Collapse
|