51
|
Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet 2019; 19:329-346. [PMID: 29599501 DOI: 10.1038/s41576-018-0003-4] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several new genomics technologies have become available that offer long-read sequencing or long-range mapping with higher throughput and higher resolution analysis than ever before. These long-range technologies are rapidly advancing the field with improved reference genomes, more comprehensive variant identification and more complete views of transcriptomes and epigenomes. However, they also require new bioinformatics approaches to take full advantage of their unique characteristics while overcoming their complex errors and modalities. Here, we discuss several of the most important applications of the new technologies, focusing on both the currently available bioinformatics tools and opportunities for future research.
Collapse
Affiliation(s)
- Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hayan Lee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Charlotte A Darby
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. .,Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
52
|
Marks P, Garcia S, Barrio AM, Belhocine K, Bernate J, Bharadwaj R, Bjornson K, Catalanotti C, Delaney J, Fehr A, Fiddes IT, Galvin B, Heaton H, Herschleb J, Hindson C, Holt E, Jabara CB, Jett S, Keivanfar N, Kyriazopoulou-Panagiotopoulou S, Lek M, Lin B, Lowe A, Mahamdallie S, Maheshwari S, Makarewicz T, Marshall J, Meschi F, O'Keefe CJ, Ordonez H, Patel P, Price A, Royall A, Ruark E, Seal S, Schnall-Levin M, Shah P, Stafford D, Williams S, Wu I, Xu AW, Rahman N, MacArthur D, Church DM. Resolving the full spectrum of human genome variation using Linked-Reads. Genome Res 2019; 29:635-645. [PMID: 30894395 PMCID: PMC6442396 DOI: 10.1101/gr.234443.118] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
Large-scale population analyses coupled with advances in technology have demonstrated that the human genome is more diverse than originally thought. To date, this diversity has largely been uncovered using short-read whole-genome sequencing. However, these short-read approaches fail to give a complete picture of a genome. They struggle to identify structural events, cannot access repetitive regions, and fail to resolve the human genome into haplotypes. Here, we describe an approach that retains long range information while maintaining the advantages of short reads. Starting from ∼1 ng of high molecular weight DNA, we produce barcoded short-read libraries. Novel informatic approaches allow for the barcoded short reads to be associated with their original long molecules producing a novel data type known as "Linked-Reads". This approach allows for simultaneous detection of small and large variants from a single library. In this manuscript, we show the advantages of Linked-Reads over standard short-read approaches for reference-based analysis. Linked-Reads allow mapping to 38 Mb of sequence not accessible to short reads, adding sequence in 423 difficult-to-sequence genes including disease-relevant genes STRC, SMN1, and SMN2 Both Linked-Read whole-genome and whole-exome sequencing identify complex structural variations, including balanced events and single exon deletions and duplications. Further, Linked-Reads extend the region of high-confidence calls by 68.9 Mb. The data presented here show that Linked-Reads provide a scalable approach for comprehensive genome analysis that is not possible using short reads alone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Adrian Fehr
- 10x Genomics, Pleasanton, California 94566, USA
| | | | | | | | | | | | - Esty Holt
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London SM2 5NG, United Kingdom
| | | | | | | | | | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Bill Lin
- 10x Genomics, Pleasanton, California 94566, USA
| | - Adam Lowe
- 10x Genomics, Pleasanton, California 94566, USA
| | - Shazia Mahamdallie
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London SM2 5NG, United Kingdom
| | | | | | - Jamie Marshall
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | - Elise Ruark
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London SM2 5NG, United Kingdom
| | - Sheila Seal
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London SM2 5NG, United Kingdom
| | | | - Preyas Shah
- 10x Genomics, Pleasanton, California 94566, USA
| | | | | | - Indira Wu
- 10x Genomics, Pleasanton, California 94566, USA
| | | | - Nazneen Rahman
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London SM2 5NG, United Kingdom
| | - Daniel MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
53
|
Comprehensive structural variation genome map of individuals carrying complex chromosomal rearrangements. PLoS Genet 2019; 15:e1007858. [PMID: 30735495 PMCID: PMC6368290 DOI: 10.1371/journal.pgen.1007858] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/28/2018] [Indexed: 11/19/2022] Open
Abstract
Complex chromosomal rearrangements (CCRs) are rearrangements involving more than two chromosomes or more than two breakpoints. Whole genome sequencing (WGS) allows for outstanding high resolution characterization on the nucleotide level in unique sequences of such rearrangements, but problems remain for mapping breakpoints in repetitive regions of the genome, which are known to be prone to rearrangements. Hence, multiple complementary WGS experiments are sometimes needed to solve the structures of CCRs. We have studied three individuals with CCRs: Case 1 and Case 2 presented with de novo karyotypically balanced, complex interchromosomal rearrangements (46,XX,t(2;8;15)(q35;q24.1;q22) and 46,XY,t(1;10;5)(q32;p12;q31)), and Case 3 presented with a de novo, extremely complex intrachromosomal rearrangement on chromosome 1. Molecular cytogenetic investigation revealed cryptic deletions in the breakpoints of chromosome 2 and 8 in Case 1, and on chromosome 10 in Case 2, explaining their clinical symptoms. In Case 3, 26 breakpoints were identified using WGS, disrupting five known disease genes. All rearrangements were subsequently analyzed using optical maps, linked-read WGS, and short-read WGS. In conclusion, we present a case series of three unique de novo CCRs where we by combining the results from the different technologies fully solved the structure of each rearrangement. The power in combining short-read WGS with long-molecule sequencing or optical mapping in these unique de novo CCRs in a clinical setting is demonstrated.
Collapse
|
55
|
Hehir-Kwa JY, Tops BBJ, Kemmeren P. The clinical implementation of copy number detection in the age of next-generation sequencing. Expert Rev Mol Diagn 2018; 18:907-915. [PMID: 30221560 DOI: 10.1080/14737159.2018.1523723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The role of copy number variants (CNVs) in disease is now well established. In parallel NGS technologies, such as long-read technologies, there is continual development and data analysis methods continue to be refined. Clinical exome sequencing data is now a reality for many diagnostic laboratories in both congenital genetics and oncology. This provides the ability to detect and report both SNVs and structural variants, including CNVs, using a single assay for a wide range of patient cohorts. Areas covered: Currently, whole-genome sequencing is mainly restricted to research applications and clinical utility studies. Furthermore, detecting the full-size spectrum of CNVs as well as somatic events remains difficult for both exome and whole-genome sequencing. As a result, the full extent of genomic variants in an individual's genome is still largely unknown. Recently, new sequencing technologies have been introduced which maintain the long-range genomic context, aiding the detection of CNVs and structural variants. Expert commentary: The development of long-read sequencing promises to resolve many CNV and SV detection issues but is yet to become established. The current challenge for clinical CNV detection is how to fully exploit all the data which is generated by high throughput sequencing technologies.
Collapse
Affiliation(s)
- Jayne Y Hehir-Kwa
- a Princess Máxima Center for Pediatric Oncology , Utrecht , Netherlands
| | - Bastiaan B J Tops
- a Princess Máxima Center for Pediatric Oncology , Utrecht , Netherlands
| | - Patrick Kemmeren
- a Princess Máxima Center for Pediatric Oncology , Utrecht , Netherlands
| |
Collapse
|