51
|
de Brevern AG. Impact of protein dynamics on secondary structure prediction. Biochimie 2020; 179:14-22. [PMID: 32946990 DOI: 10.1016/j.biochi.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Protein 3D structures support their biological functions. As the number of protein structures is negligible in regards to the number of available protein sequences, prediction methodologies relying only on protein sequences are essential tools. In this field, protein secondary structure prediction (PSSPs) is a mature area, and is considered to have reached a plateau. Nonetheless, proteins are highly dynamical macromolecules, a property that could impact the PSSP methods. Indeed, in a previous study, the stability of local protein conformations was evaluated demonstrating that some regions easily changed to another type of secondary structure. The protein sequences of this dataset were used by PSSPs and their results compared to molecular dynamics to investigate their potential impact on the quality of the secondary structure prediction. Interestingly, a direct link is observed between the quality of the prediction and the stability of the assignment to the secondary structure state. The more stable a local protein conformation is, the better the prediction will be. The secondary structure assignment not taken from the crystallized structures but from the conformations observed during the dynamics slightly increase the quality of the secondary structure prediction. These results show that evaluation of PSSPs can be done differently, but also that the notion of dynamics can be included in development of PSSPs and other approaches such as de novo approaches.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- Biologie Intégrée Du Globule Rouge UMR_S1134, Inserm, Université de Paris, Univ. de la Réunion, Univ. des Antilles, F-75739, Paris, France; Laboratoire D'Excellence GR-Ex, F-75739, Paris, France; Institut National de la Transfusion Sanguine (INTS), F-75739, Paris, France; IBL, F-75015, Paris, France.
| |
Collapse
|
52
|
Othman H, Bouslama Z, Brandenburg JT, da Rocha J, Hamdi Y, Ghedira K, Srairi-Abid N, Hazelhurst S. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Biochem Biophys Res Commun 2020; 527:702-708. [PMID: 32410735 PMCID: PMC7221370 DOI: 10.1016/j.bbrc.2020.05.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/23/2022]
Abstract
The spread of COVID-19 caused by the SARS-CoV-2 outbreak has been growing since its first identification in December 2019. The publishing of the first SARS-CoV-2 genome made a valuable source of data to study the details about its phylogeny, evolution, and interaction with the host. Protein-protein binding assays have confirmed that Angiotensin-converting enzyme 2 (ACE2) is more likely to be the cell receptor through which the virus invades the host cell. In the present work, we provide an insight into the interaction of the viral spike Receptor Binding Domain (RBD) from different coronavirus isolates with host ACE2 protein. By calculating the binding energy score between RBD and ACE2, we highlighted the putative jump in the affinity from a progenitor form of SARS-CoV-2 to the current virus responsible for COVID-19 outbreak. Our result was consistent with previously reported phylogenetic analysis and corroborates the opinion that the interface segment of the spike protein RBD might be acquired by SARS-CoV-2 via a complex evolutionary process rather than a progressive accumulation of mutations. We also highlighted the relevance of Q493 and P499 amino acid residues of SARS-CoV-2 RBD for binding to human ACE2 and maintaining the stability of the interface. Moreover, we show from the structural analysis that it is unlikely for the interface residues to be the result of genetic engineering. Finally, we studied the impact of eight different variants located at the interaction surface of ACE2, on the complex formation with SARS-CoV-2 RBD. We found that none of them is likely to disrupt the interaction with the viral RBD of SARS-CoV-2.
Collapse
Affiliation(s)
- Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Zied Bouslama
- Laboratory of Veterinary Epidemiology and Microbiology LR16IPT03, Institut Pasteur of Tunis. University of Tunis El Manar, Tunis, Tunisia
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jorge da Rocha
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Najet Srairi-Abid
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT08 Venins et Biomolécules Thérapeutiques, 1002, Tunis, Tunisia
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
53
|
Kurcinski M, Pawel Ciemny M, Oleniecki T, Kuriata A, Badaczewska-Dawid AE, Kolinski A, Kmiecik S. CABS-dock standalone: a toolbox for flexible protein-peptide docking. Bioinformatics 2020; 35:4170-4172. [PMID: 30865258 PMCID: PMC6792116 DOI: 10.1093/bioinformatics/btz185] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/30/2019] [Accepted: 03/12/2019] [Indexed: 12/02/2022] Open
Abstract
Summary CABS-dock standalone is a multiplatform Python package for protein–peptide docking with backbone flexibility. The main feature of the CABS-dock method is its ability to simulate significant backbone flexibility of the entire protein–peptide system in a reasonable computational time. In the default mode, the package runs a simulation of fully flexible peptide searching for a binding site on the surface of a flexible protein receptor. The flexibility level of the molecules may be defined by the user. Furthermore, the CABS-dock standalone application provides users with full control over the docking simulation from the initial setup to the analysis of results. The standalone version is an upgrade of the original web server implementation—it introduces a number of customizable options, provides support for large-sized systems and offers a framework for deeper analysis of docking results. Availability and implementation CABS-dock standalone is distributed under the MIT licence, which is free for academic and non-profit users. It is implemented in Python and Fortran. The CABS-dock standalone source code, wiki with documentation and examples of use and installation instructions for Linux, macOS and Windows are available in the CABS-dock standalone repository at https://bitbucket.org/lcbio/cabsdock.
Collapse
Affiliation(s)
- Mateusz Kurcinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Maciej Pawel Ciemny
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.,Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Tymoteusz Oleniecki
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Aleksander Kuriata
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | - Andrzej Kolinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
54
|
Stetz G, Astl L, Verkhivker GM. Exploring Mechanisms of Communication Switching in the Hsp90-Cdc37 Regulatory Complexes with Client Kinases through Allosteric Coupling of Phosphorylation Sites: Perturbation-Based Modeling and Hierarchical Community Analysis of Residue Interaction Networks. J Chem Theory Comput 2020; 16:4706-4725. [PMID: 32492340 DOI: 10.1021/acs.jctc.0c00280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding molecular principles underlying chaperone-based modulation of kinase client activity is critically important to dissect functions and activation mechanisms of many oncogenic proteins. The recent experimental studies have suggested that phosphorylation sites in the Hsp90 and Cdc37 proteins can serve as conformational communication switches of chaperone regulation and kinase interactions. However, a mechanism of allosteric coupling between phosphorylation sites in the Hsp90 and Cdc37 during client binding is poorly understood, and the molecular signatures underpinning specific roles of phosphorylation sites in the Hsp90 regulation remain unknown. In this work, we employed a combination of evolutionary analysis, coarse-grained molecular simulations together with perturbation-based network modeling and scanning of the unbound and bound Hsp90 and Cdc37 structures to quantify allosteric effects of phosphorylation sites and identify unique signatures that are characteristic for communication switches of kinase-specific client binding. By using network-based metrics of the dynamic intercommunity bridgeness and community centrality, we characterize specific signatures of phosphorylation switches involved in allosteric regulation. Through perturbation-based analysis of the dynamic residue interaction networks, we show that mutations of kinase-specific phosphorylation switches can induce long-range effects and lead to a global rewiring of the allosteric network and signal transmission in the Hsp90-Cdc37-kinase complex. We determine a specific group of phosphorylation sites in the Hsp90 where mutations may have a strong detrimental effect on allosteric interaction network, providing insight into the mechanism of phosphorylation-induced communication switching. The results demonstrate that kinase-specific phosphorylation switches of communications in the Hsp90 may be partly predisposed for their regulatory role based on preexisting allosteric propensities.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
55
|
Kuriata A, Iglesias V, Kurcinski M, Ventura S, Kmiecik S. Aggrescan3D standalone package for structure-based prediction of protein aggregation properties. Bioinformatics 2020; 35:3834-3835. [PMID: 30825368 DOI: 10.1093/bioinformatics/btz143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
SUMMARY Aggrescan3D (A3D) standalone is a multiplatform Python package for structure-based prediction of protein aggregation properties and rational design of protein solubility. A3D allows the re-design of protein solubility by combining structural aggregation propensity and stability predictions, as demonstrated by a recent experimental study. It also enables predicting the impact of protein conformational fluctuations on the aggregation properties. The standalone A3D version is an upgrade of the original web server implementation-it introduces a number of customizable options, automated analysis of multiple mutations and offers a flexible computational framework for merging it with other computational tools. AVAILABILITY AND IMPLEMENTATION A3D standalone is distributed under the MIT license, which is free for academic and non-profit users. It is implemented in Python. The A3D standalone source code, wiki with documentation and examples of use, and installation instructions for Linux, macOS and Windows are available in the A3D standalone repository at https://bitbucket.org/lcbio/aggrescan3d.
Collapse
Affiliation(s)
- Aleksander Kuriata
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mateusz Kurcinski
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
56
|
Tahir ul Qamar M, Shokat Z, Muneer I, Ashfaq UA, Javed H, Anwar F, Bari A, Zahid B, Saari N. Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach. Vaccines (Basel) 2020; 8:E288. [PMID: 32521680 PMCID: PMC7350008 DOI: 10.3390/vaccines8020288] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is primarily associated with respiratory disorders globally. Despite the availability of information, there is still no competitive vaccine available for RSV. Therefore, the present study has been designed to develop a multiepitope-based subunit vaccine (MEV) using a reverse vaccinology approach to curb RSV infections. Briefly, two highly antigenic and conserved proteins of RSV (glycoprotein and fusion protein) were selected and potential epitopes of different categories (B-cell and T-cell) were identified from them. Eminently antigenic and overlapping epitopes, which demonstrated strong associations with their respective human leukocyte antigen (HLA) alleles and depicted collective ~70% coverage of the world's populace, were shortlisted. Finally, 282 amino acids long MEV construct was established by connecting 13 major histocompatibility complex (MHC) class-I with two MHC class-II epitopes with appropriate adjuvant and linkers. Adjuvant and linkers were added to increase the immunogenic stimulation of the MEV. Developed MEV was stable, soluble, non-allergenic, non-toxic, flexible and highly antigenic. Furthermore, molecular docking and molecular dynamics (MD) simulations analyses were carried out. Results have shown a firm and robust binding affinity of MEV with human pathogenic toll-like receptor three (TLR3). The computationally mediated immune response of MEV demonstrated increased interferon-γ production, a significant abundance of immunoglobulin and activation of macrophages which are essential for immune-response against RSV. Moreover, MEV codons were optimized and in silico cloning was performed, to ensure its increased expression. These outcomes proposed that the MEV developed in this study will be a significant candidate against RSV to control and prevent RSV-related disorders if further investigated experimentally.
Collapse
Affiliation(s)
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Iqra Muneer
- School of Life Sciences, University of Science and Technology of China, Hefei 230052, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Hamna Javed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Amna Bari
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Barira Zahid
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China;
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
57
|
Kuriata A, Iglesias V, Pujols J, Kurcinski M, Kmiecik S, Ventura S. Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Res 2020; 47:W300-W307. [PMID: 31049593 PMCID: PMC6602499 DOI: 10.1093/nar/gkz321] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/29/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022] Open
Abstract
Protein aggregation is a hallmark of a growing number of human disorders and constitutes a major bottleneck in the manufacturing of therapeutic proteins. Therefore, there is a strong need of in-silico methods that can anticipate the aggregative properties of protein variants linked to disease and assist the engineering of soluble protein-based drugs. A few years ago, we developed a method for structure-based prediction of aggregation properties that takes into account the dynamic fluctuations of proteins. The method has been made available as the Aggrescan3D (A3D) web server and applied in numerous studies of protein structure-aggregation relationship. Here, we present a major update of the A3D web server to version 2.0. The new features include: extension of dynamic calculations to significantly larger and multimeric proteins, simultaneous prediction of changes in protein solubility and stability upon mutation, rapid screening for functional protein variants with improved solubility, a REST-ful service to incorporate A3D calculations in automatic pipelines, and a new, enhanced web server interface. A3D 2.0 is freely available at: http://biocomp.chem.uw.edu.pl/A3D2/
Collapse
Affiliation(s)
- Aleksander Kuriata
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Valentin Iglesias
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica I Biologia Molecular Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica I Biologia Molecular Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mateusz Kurcinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica I Biologia Molecular Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
58
|
Acharya V, Chakraborty HJ, Rout AK, Balabantaray S, Behera BK, Das BK. Structural Characterization of Open Reading Frame-Encoded Functional Genes from Tilapia Lake Virus (TiLV). Mol Biotechnol 2020; 61:945-957. [PMID: 31664705 DOI: 10.1007/s12033-019-00217-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, large-scale mortalities are observed in tilapia due to infection with a novel orthomyxo-like virus named, tilapia lake virus (TiLV) which is marked to be a severe threat to universal tilapia industry. Currently, there are knowledge gaps relating to the antiviral peptide as well as there are no affordable vaccines or drugs available against TiLV yet. To understand the spreading of infection of TiLV in different organs of Oreochromis niloticus, RT-PCR analysis has been carried out. The gene segments of TiLV were retrieved from the NCBI database for computational biology analysis. The 14 functional genes were predicted from the 10 gene segments of TiLV. Phylogenetic analysis was employed to find out a better understanding for the evolution of tilapia lake virus genes. Out of 14 proteins, only six proteins show transmembrane helix region. Moreover, molecular modeling and molecular dynamics simulations of the predicted proteins revealed structural stability of the protein stabilized after 10-ns simulation. Overall, our study provided a basic bioinformatics on functional proteome of TiLV. Further, this study could be useful for development of novel peptide-based therapeutics to control TiLV infection.
Collapse
Affiliation(s)
- Varsha Acharya
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Hirak Jyoti Chakraborty
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Sucharita Balabantaray
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India.
| |
Collapse
|
59
|
Ebo JS, Guthertz N, Radford SE, Brockwell DJ. Using protein engineering to understand and modulate aggregation. Curr Opin Struct Biol 2020; 60:157-166. [PMID: 32087409 PMCID: PMC7132541 DOI: 10.1016/j.sbi.2020.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Protein aggregation occurs through a variety of mechanisms, initiated by the unfolded, non-native, or even the native state itself. Understanding the molecular mechanisms of protein aggregation is challenging, given the array of competing interactions that control solubility, stability, cooperativity and aggregation propensity. An array of methods have been developed to interrogate protein aggregation, spanning computational algorithms able to identify aggregation-prone regions, to deep mutational scanning to define the entire mutational landscape of a protein's sequence. Here, we review recent advances in this exciting and emerging field, focussing on protein engineering approaches that, together with improved computational methods, hold promise to predict and control protein aggregation linked to human disease, as well as facilitating the manufacture of protein-based therapeutics.
Collapse
Affiliation(s)
- Jessica S Ebo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
60
|
Kurcinski M, Badaczewska‐Dawid A, Kolinski M, Kolinski A, Kmiecik S. Flexible docking of peptides to proteins using CABS-dock. Protein Sci 2020; 29:211-222. [PMID: 31682301 PMCID: PMC6933849 DOI: 10.1002/pro.3771] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Molecular docking of peptides to proteins can be a useful tool in the exploration of the possible peptide binding sites and poses. CABS-dock is a method for protein-peptide docking that features significant conformational flexibility of both the peptide and the protein molecules during the peptide search for a binding site. The CABS-dock has been made available as a web server and a standalone package. The web server is an easy to use tool with a simple web interface. The standalone package is a command-line program dedicated to professional users. It offers a number of advanced features, analysis tools and support for large-sized systems. In this article, we outline the current status of the CABS-dock method, its recent developments, applications, and challenges ahead.
Collapse
Affiliation(s)
- Mateusz Kurcinski
- Faculty of Chemistry, Biological and Chemical Research CenterUniversity of WarsawWarsawPoland
| | | | - Michal Kolinski
- Bioinformatics Laboratory, Mossakowski Medical Research CentrePolish Academy of SciencesWarsawPoland
| | - Andrzej Kolinski
- Faculty of Chemistry, Biological and Chemical Research CenterUniversity of WarsawWarsawPoland
| | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research CenterUniversity of WarsawWarsawPoland
| |
Collapse
|
61
|
Badaczewska-Dawid AE, Kolinski A, Kmiecik S. Computational reconstruction of atomistic protein structures from coarse-grained models. Comput Struct Biotechnol J 2019; 18:162-176. [PMID: 31969975 PMCID: PMC6961067 DOI: 10.1016/j.csbj.2019.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
Three-dimensional protein structures, whether determined experimentally or theoretically, are often too low resolution. In this mini-review, we outline the computational methods for protein structure reconstruction from incomplete coarse-grained to all atomistic models. Typical reconstruction schemes can be divided into four major steps. Usually, the first step is reconstruction of the protein backbone chain starting from the C-alpha trace. This is followed by side-chains rebuilding based on protein backbone geometry. Subsequently, hydrogen atoms can be reconstructed. Finally, the resulting all-atom models may require structure optimization. Many methods are available to perform each of these tasks. We discuss the available tools and their potential applications in integrative modeling pipelines that can transfer coarse-grained information from computational predictions, or experiment, to all atomistic structures.
Collapse
Affiliation(s)
| | | | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
62
|
Biocomputational Analysis and In Silico Characterization of an Angiogenic Protein (RNase5) in Zebrafish (Danio rerio). Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09978-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
63
|
Establishing Computational Approaches Towards Identifying Malarial Allosteric Modulators: A Case Study of Plasmodium falciparum Hsp70s. Int J Mol Sci 2019; 20:ijms20225574. [PMID: 31717270 PMCID: PMC6887781 DOI: 10.3390/ijms20225574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] Open
Abstract
Combating malaria is almost a never-ending battle, as Plasmodium parasites develop resistance to the drugs used against them, as observed recently in artemisinin-based combination therapies. The main concern now is if the resistant parasite strains spread from Southeast Asia to Africa, the continent hosting most malaria cases. To prevent catastrophic results, we need to find non-conventional approaches. Allosteric drug targeting sites and modulators might be a new hope for malarial treatments. Heat shock proteins (HSPs) are potential malarial drug targets and have complex allosteric control mechanisms. Yet, studies on designing allosteric modulators against them are limited. Here, we identified allosteric modulators (SANC190 and SANC651) against P. falciparum Hsp70-1 and Hsp70-x, affecting the conformational dynamics of the proteins, delicately balanced by the endogenous ligands. Previously, we established a pipeline to identify allosteric sites and modulators. This study also further investigated alternative approaches to speed up the process by comparing all atom molecular dynamics simulations and dynamic residue network analysis with the coarse-grained (CG) versions of the calculations. Betweenness centrality (BC) profiles for PfHsp70-1 and PfHsp70-x derived from CG simulations not only revealed similar trends but also pointed to the same functional regions and specific residues corresponding to BC profile peaks.
Collapse
|
64
|
Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications. Int J Mol Sci 2019; 20:ijms20153774. [PMID: 31375023 PMCID: PMC6696403 DOI: 10.3390/ijms20153774] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Molecular dynamics simulations have emerged as a powerful tool to study biological systems at varied length and timescales. The conventional all-atom molecular dynamics simulations are being used by the wider scientific community in routine to capture the conformational dynamics and local motions. In addition, recent developments in coarse-grained models have opened the way to study the macromolecular complexes for time scales up to milliseconds. In this review, we have discussed the principle, applicability and recent development in coarse-grained models for biological systems. The potential of coarse-grained simulation has been reviewed through state-of-the-art examples of protein folding and structure prediction, self-assembly of complexes, membrane systems and carbohydrates fiber models. The multiscale simulation approaches have also been discussed in the context of their emerging role in unravelling hierarchical level information of biosystems. We conclude this review with the future scope of coarse-grained simulations as a constantly evolving tool to capture the dynamics of biosystems.
Collapse
|
65
|
Ciemny MP, Badaczewska-Dawid AE, Pikuzinska M, Kolinski A, Kmiecik S. Modeling of Disordered Protein Structures Using Monte Carlo Simulations and Knowledge-Based Statistical Force Fields. Int J Mol Sci 2019; 20:E606. [PMID: 30708941 PMCID: PMC6386871 DOI: 10.3390/ijms20030606] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
The description of protein disordered states is important for understanding protein folding mechanisms and their functions. In this short review, we briefly describe a simulation approach to modeling protein interactions, which involve disordered peptide partners or intrinsically disordered protein regions, and unfolded states of globular proteins. It is based on the CABS coarse-grained protein model that uses a Monte Carlo (MC) sampling scheme and a knowledge-based statistical force field. We review several case studies showing that description of protein disordered states resulting from CABS simulations is consistent with experimental data. The case studies comprise investigations of protein⁻peptide binding and protein folding processes. The CABS model has been recently made available as the simulation engine of multiscale modeling tools enabling studies of protein⁻peptide docking and protein flexibility. Those tools offer customization of the modeling process, driving the conformational search using distance restraints, reconstruction of selected models to all-atom resolution, and simulation of large protein systems in a reasonable computational time. Therefore, CABS can be combined in integrative modeling pipelines incorporating experimental data and other modeling tools of various resolution.
Collapse
Affiliation(s)
- Maciej Pawel Ciemny
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | | | - Monika Pikuzinska
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Andrzej Kolinski
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
66
|
Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models. Int J Mol Sci 2018; 19:ijms19113496. [PMID: 30404229 PMCID: PMC6274762 DOI: 10.3390/ijms19113496] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Fluctuations of protein three-dimensional structures and large-scale conformational transitions are crucial for the biological function of proteins and their complexes. Experimental studies of such phenomena remain very challenging and therefore molecular modeling can be a good alternative or a valuable supporting tool for the investigation of large molecular systems and long-time events. In this minireview, we present two alternative approaches to the coarse-grained (CG) modeling of dynamic properties of protein systems. We discuss two CG representations of polypeptide chains used for Monte Carlo dynamics simulations of protein local dynamics and conformational transitions, and highly simplified structure-based elastic network models of protein flexibility. In contrast to classical all-atom molecular dynamics, the modeling strategies discussed here allow the quite accurate modeling of much larger systems and longer-time dynamic phenomena. We briefly describe the main features of these models and outline some of their applications, including modeling of near-native structure fluctuations, sampling of large regions of the protein conformational space, or possible support for the structure prediction of large proteins and their complexes.
Collapse
|