51
|
Mazzola V, Vuilleumier P, Latorre V, Petito A, Gallese V, Popolizio T, Arciero G, Bondolfi G. Effects of emotional contexts on cerebello-thalamo-cortical activity during action observation. PLoS One 2013; 8:e75912. [PMID: 24086664 PMCID: PMC3784399 DOI: 10.1371/journal.pone.0075912] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/16/2013] [Indexed: 11/27/2022] Open
Abstract
Several studies investigated the neural and functional mechanisms underlying action observation in contexts with objects. However, actions seen in everyday life are often embedded in emotional contexts. The neural systems integrating emotion cues in action observation are still poorly understood. Previous findings suggest that the processing of both action and emotion information recruits motor control areas within the cerebello-thalamo-cortical pathways. It is therefore hard to determine whether social emotional contexts influence action processing via a direct modulation of motor representations coding for the observed action or via the affective state and implicit motor preparedness elicited in observers in response to emotional contexts. Here we designed a novel fMRI task to identify neural networks engaged by the affective appraisal of a grasping action seen in two different emotional contexts, while keeping the action kinematics constant. Results confirmed that observing the same acts of grasping but in different emotional contexts modulated activity in supplementary motor area, ventrolateral thalamus, anterior cerebellum. Moreover, changes in functional connectivity between left supplementary motor area and parahippocampus in different emotional contexts suggested a direct neural pathway through which emotional contexts may drive the neural motor system. Taken together, these findings shed new light on the malleability of motor system as a function of emotional contexts.
Collapse
Affiliation(s)
- Viridiana Mazzola
- Swiss Center for Affective Sciences (CISA), University of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neurology, University Hospital & Department of Neuroscience, Medical School University of Geneva, Geneva, Switzerland
| | - Valeria Latorre
- Institute of Post-Rationalist Psychology (IPRA), Rome, Italy
| | - Annamaria Petito
- Institute of Psychiatry and Clinical Psychology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Gallese
- Department of Neuroscience, Section of Physiology University of Parma & Italian Institute of Technology (IIT) Brain Center for Social and Motor Cognition, Parma, Italy
| | - Teresa Popolizio
- Department of Neuroradiology, “Casa Sollievo della Sofferenza” IRCCSS, San Giovanni Rotondo (FG), Foggia, Italy
| | - Giampiero Arciero
- Institute of Post-Rationalist Psychology (IPRA), Rome, Italy
- Institute of Psychiatry and Clinical Psychology, Department of Medical Sciences, University of Foggia, Foggia, Italy
- Department of Neuroscience, Section of Physiology University of Parma & Italian Institute of Technology (IIT) Brain Center for Social and Motor Cognition, Parma, Italy
- Department of Neuroradiology, “Casa Sollievo della Sofferenza” IRCCSS, San Giovanni Rotondo (FG), Foggia, Italy
- Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - Guido Bondolfi
- Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
52
|
Hubsch C, Roze E, Popa T, Russo M, Balachandran A, Pradeep S, Mueller F, Brochard V, Quartarone A, Degos B, Vidailhet M, Kishore A, Meunier S. Defective cerebellar control of cortical plasticity in writer's cramp. ACTA ACUST UNITED AC 2013; 136:2050-62. [PMID: 23801734 DOI: 10.1093/brain/awt147] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A large body of evidence points to a role of basal ganglia dysfunction in the pathophysiology of dystonia, but recent studies indicate that cerebellar dysfunction may also be involved. The cerebellum influences sensorimotor adaptation by modulating sensorimotor plasticity of the primary motor cortex. Motor cortex sensorimotor plasticity is maladaptive in patients with writer's cramp. Here we examined whether putative cerebellar dysfunction in dystonia is linked to these patients' maladaptive plasticity. To that end we compared the performances of patients and healthy control subjects in a reaching task involving a visuomotor conflict generated by imposing a random deviation (-40° to 40°) on the direction of movement of the mouse/cursor. Such a task is known to involve the cerebellum. We also compared, between patients and healthy control subjects, how the cerebellum modulates the extent and duration of an ongoing sensorimotor plasticity in the motor cortex. The cerebellar cortex was excited or inhibited by means of repeated transcranial magnetic stimulation before artificial sensorimotor plasticity was induced in the motor cortex by paired associative stimulation. Patients with writer's cramp were slower than the healthy control subjects to reach the target and, after having repeatedly adapted their trajectories to the deviations, they were less efficient than the healthy control subjects to perform reaching movement without imposed deviation. It was interpreted as impaired washing-out abilities. In healthy subjects, cerebellar cortex excitation prevented the paired associative stimulation to induce a sensorimotor plasticity in the primary motor cortex, whereas cerebellar cortex inhibition led the paired associative stimulation to be more efficient in inducing the plasticity. In patients with writer's cramp, cerebellar cortex excitation and inhibition were both ineffective in modulating sensorimotor plasticity. In patients with writer's cramp, but not in healthy subjects, behavioural parameters reflecting their capacity for adapting to the rotation and for washing-out of an earlier adaptation predicted the efficacy of inhibitory cerebellar conditioning to influence sensorimotor plasticity: the better the online adaptation, the smaller the influence of cerebellar inhibitory stimulation on motor cortex plasticity. Altered cerebellar encoding of incoming afferent volleys may result in decoupling the motor component from the afferent information flow, and also in maladjusted sensorimotor calibration. The loss of cerebellar control over sensorimotor plasticity might also lead to building up an incorrect motor program to specific adaptation tasks such as writing.
Collapse
Affiliation(s)
- Cecile Hubsch
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Blood AJ. Imaging studies in focal dystonias: a systems level approach to studying a systems level disorder. Curr Neuropharmacol 2013; 11:3-15. [PMID: 23814533 PMCID: PMC3580788 DOI: 10.2174/157015913804999513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/16/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022] Open
Abstract
Focal dystonias are dystonias that affect one part of the body, and are sometimes task-specific. Brain imaging and transcranial magnetic stimulation techniques have been valuable in defining the pathophysiology of dystonias in general, and are particularly amenable to studying focal dystonias. Over the past few years, several common themes have emerged in the imaging literature, and this review summarizes these findings and suggests some ways in which these distinct themes might all point to one common systems-level mechanism for dystonia. These themes include (1) the role of premotor regions in focal dystonia, (2) the role of the sensory system and sensorimotor integration in focal dystonia, (3) the role of decreased inhibition/increased excitation in focal dystonia, and (4) the role of brain imaging in evaluating and guiding treatment of focal dystonias. The data across these themes, together with the features of dystonia itself, are consistent with a hypothesis that all dystonias reflect excessive output of postural control/stabilization systems in the brain, and that the mechanisms for dystonia reflect amplification of an existing functional system, rather than recruitment of the wrong motor programs. Imaging is currently being used to test treatment effectiveness, and to visually guide treatment of dystonia, such as placement of deep brain stimulation electrodes. In the future, it is hoped that imaging may be used to individualize treatments across behavioral, pharmacologic, and surgical domains, thus optimizing both the speed and effectiveness of treatment for any given individual with focal dystonia.
Collapse
Affiliation(s)
- Anne J Blood
- Mood and Motor Control Laboratory, Laboratory of Neuroimaging and Genetics, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
54
|
Bressman SB, Saunders-Pullman R. Primary dystonia: moribund or viable. Mov Disord 2013; 28:906-13. [PMID: 23893447 DOI: 10.1002/mds.25528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 12/21/2022] Open
Abstract
With increasing understanding of dystonia genetic etiologies and pathophysiology there has been renewed scrutiny and reappraisal of dystonia classification schemes and nomenclature. One important category that includes both clinical and etiologic criteria is primary dystonia. This editorialized review discusses the impact of recent findings on primary dystonia criteria and argues that it remains useful in clinical and research practice. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Susan B Bressman
- Department of Neurology, Beth Israel Medical Center, New York, New York, USA
| | | |
Collapse
|
55
|
Ramdhani RA, Simonyan K. Primary dystonia: conceptualizing the disorder through a structural brain imaging lens. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2013; 3. [PMID: 23610744 PMCID: PMC3629863 DOI: 10.7916/d8h70dj7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/08/2013] [Indexed: 12/14/2022]
Abstract
Background Dystonia is a hyperkinetic movement disorder characterized by involuntary, repetitive twisting movements. The anatomical structures and pathways implicated in its pathogenesis and their relationships to the neurophysiological paradigms of abnormal surround inhibition, maladaptive plasticity, and impaired sensorimotor integration remain unclear. Objective We review the use of high-resolution structural brain imaging using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) techniques for evaluating brain changes in primary torsion dystonia and their relationships to the pathophysiology of this disorder. Methods A PubMed search was conducted to identify relevant literature. Results VBM and DTI studies produced somewhat conflicting results across different forms of primary dystonia and reported increases, decreases, or both in gray matter volume and white matter integrity. However, despite the discrepancies, these studies are consistent in revealing brain abnormalities in dystonia that extend beyond the basal ganglia and involve the sensorimotor cortex and cerebellum. Discussion Although limited to date, structural magnetic resonance imaging (MRI) studies combined with functional brain imaging and neurophysiological modalities begin to establish structural-functional relationships at different levels of the abnormal basal ganglia, cortical, and cerebellar networks and provide clues into the pathophysiological mechanisms that underlie primary dystonia. Cross-disciplinary studies are needed for further investigations of the interplay between structural-functional brain abnormalities and environmental and genetic risk factors in dystonia patients.
Collapse
Affiliation(s)
- Ritesh A Ramdhani
- Departments of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States of America
| | | |
Collapse
|
56
|
Belvisi D, Suppa A, Marsili L, Di Stasio F, Parvez AK, Agostino R, Fabbrini G, Berardelli A. Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia. Exp Neurol 2013; 240:64-74. [DOI: 10.1016/j.expneurol.2012.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/04/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
|
57
|
Avanzino L, Abbruzzese G. How does the cerebellum contribute to the pathophysiology of dystonia? ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.baga.2012.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
58
|
Abstract
PURPOSE OF REVIEW This review considers the recent literature pertaining to the clinical features, genetics, neuropathology and treatment of dystonia syndromes. RECENT FINDINGS The term dystonia indicates at the same time a clinical phenotype and a collection of neurological syndromes mainly of genetic origin. The physical signs contributing to the phenomenology of dystonia have been recently assembled into a coherent set. The molecular genetics of primary dystonia syndromes (DYT1 and DYT6) have been the object of extensive analysis, providing converging views on their causative mechanisms. The relationship between genotype, phenotype, and endophenotypes has been explored for hereditary and sporadic dystonia syndromes. Neurophysiological studies on DYT1 and DYT6 patients, as well as on nonmanifesting carriers, have demonstrated the presence of altered synaptic plasticity. Several recent data indicate a role of dopamine and acetylcholine (ACh) transmission in the pathophysiology of primary dystonia. SUMMARY Recent findings have led to novel, testable hypotheses on cellular mechanisms and physiopathological abnormalities underlying dystonia. Neurophysiological studies, imaging data and animal models support the view that corticostriatal, cerebellar, and dopaminergic dysfunctions converge to produce the pathophysiological abnormalities of dystonia.
Collapse
|
59
|
Miyamoto R, Ohta E, Kawarai T, Koizumi H, Sako W, Izumi Y, Obata F, Kaji R. Broad spectrum of dystonia associated with a novel thanatosis-associated protein domain-containing apoptosis-associated protein 1 mutation in a Japanese family with dystonia 6, torsion. Mov Disord 2012; 27:1324-5. [DOI: 10.1002/mds.25106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/22/2012] [Accepted: 06/11/2012] [Indexed: 11/12/2022] Open
|
60
|
Kakazu Y, Koh JY, Iwabuchi S, Gonzalez-Alegre P, Harata NC. Miniature release events of glutamate from hippocampal neurons are influenced by the dystonia-associated protein torsinA. Synapse 2012; 66:807-22. [PMID: 22588999 DOI: 10.1002/syn.21571] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/09/2012] [Indexed: 12/23/2022]
Abstract
TorsinA is an evolutionarily conserved AAA+ ATPase, and human patients with an in-frame deletion of a single glutamate (ΔE) codon from the encoding gene suffer from autosomal-dominant, early-onset generalized DYT1 dystonia. Although only 30-40% of carriers of the mutation show overt motor symptoms, most experience enhanced excitability of the central nervous system. The cellular mechanism responsible for this change in excitability is not well understood. Here we show the effects of the ΔE-torsinA mutation on miniature neurotransmitter release from neurons. Neurotransmitter release was characterized in cultured hippocampal neurons obtained from wild-type, heterozygous, and homozygous ΔE-torsinA knock-in mice using two approaches. In the first approach, patch-clamp electrophysiology was used to record glutamate-mediated miniature excitatory postsynaptic currents (mEPSCs) in the presence of the Na⁺ channel blocker tetrodotoxin (TTX) and absence of GABA(A) receptor antagonists. The intervals between mEPSC events were significantly shorter in neurons obtained from the mutant mice than in those obtained from wild-type mice. In the second approach, the miniature exocytosis of synaptic vesicles was detected by imaging the unstimulated release of FM dye from the nerve terminals in the presence of TTX. Cumulative FM dye release was higher in neurons obtained from the mutant mice than in those obtained from wild-type mice. The number of glutamatergic nerve terminals was also assessed, and we found that this number was unchanged in heterozygous relative to wild-type neurons, but slightly increased in homozygous neurons. Notably, in both heterozygous and homozygous neurons, the unitary synaptic charge during each mEPSC event was unchanged. Overall, our results suggest more frequent miniature glutamate release in neurons with ΔE-torsinA mutations. This change may be one of the underlying mechanisms by which the excitability of the central nervous system is enhanced in the context of DYT1 dystonia. Moreover, qualitative differences between heterozygous and homozygous neurons with respect to certain synaptic properties indicate that the abnormalities observed in homozygotes may reflect more than a simple gene dosage effect.
Collapse
Affiliation(s)
- Yasuhiro Kakazu
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
61
|
Baron JC, Jones T. Oxygen metabolism, oxygen extraction and positron emission tomography: Historical perspective and impact on basic and clinical neuroscience. Neuroimage 2012; 61:492-504. [DOI: 10.1016/j.neuroimage.2011.12.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022] Open
|
62
|
Genotype-phenotype correlations in THAP1 dystonia: molecular foundations and description of new cases. Parkinsonism Relat Disord 2012; 18:414-25. [PMID: 22377579 DOI: 10.1016/j.parkreldis.2012.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/27/2012] [Accepted: 02/03/2012] [Indexed: 12/20/2022]
Abstract
An extensive variety of THAP1 sequence variants have been associated with focal, segmental and generalized dystonia with age of onset ranging from 3 to over 60 years. In previous work, we screened 1114 subjects with mainly adult-onset primary dystonia (Neurology 2010; 74:229-238) and identified 6 missense mutations in THAP1. For this report, we screened 750 additional subjects for mutations in coding regions of THAP1 and interrogated all published descriptions of THAP1 phenotypes (gender, age of onset, anatomical distribution of dystonia, family history and site of onset) to explore the possibility of THAP1 genotype-phenotype correlations and facilitate a deeper understanding of THAP1 pathobiology. We identified 5 additional missense mutations in THAP1 (p.A7D, p.K16E, p.S21C, p.R29Q, and p.I80V). Three of these variants are associated with appendicular tremors, which were an isolated or presenting sign in some of the affected subjects. Abductor laryngeal dystonia and mild blepharospasm can be manifestations of THAP1 mutations in some individuals. Overall, mean age of onset for THAP1 dystonia is 16.8 years and the most common sites of onset are the arm and neck, and the most frequently affected anatomical site is the neck. In addition, over half of patients exhibit either cranial or laryngeal involvement. Protein truncating mutations and missense mutations within the THAP domain of THAP1 tend to manifest at an earlier age and exhibit more extensive anatomical distributions than mutations localized to other regions of THAP1.
Collapse
|
63
|
Kakazu Y, Koh JY, Ho KWD, Gonzalez-Alegre P, Harata NC. Synaptic vesicle recycling is enhanced by torsinA that harbors the DYT1 dystonia mutation. Synapse 2012; 66:453-64. [PMID: 22213465 DOI: 10.1002/syn.21534] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/20/2011] [Accepted: 12/17/2011] [Indexed: 11/08/2022]
Abstract
Early-onset generalized dystonia, DYT1, is caused by a mutation in the gene encoding the evolutionarily conserved AAA+ ATPase torsinA. Synaptic abnormalities have been implicated in DYT1 dystonia, but the details of the synaptic pathophysiology are only partially understood. Here, we demonstrate a novel role for torsinA in synaptic vesicle recycling, using cultured hippocampal neurons from a knock-in mouse model of DYT1 dystonia (ΔE-torsinA) and live-cell imaging with styryl FM dyes. Neurons from heterozygous ΔE-torsinA mice released a larger fraction of the total recycling pool (TRP) during a single round of electrical stimulation than did wild-type neurons. Moreover, when the neurons were subjected to prior high activity, the time course of release was shortened. In neurons from homozygous mice, these enhanced exocytosis phenotypes were similar, but in addition the size of the TRP was reduced. Notably, when release was triggered by applying a calcium ionophore rather than electrical stimuli, neither a single nor two ΔE-torsinA alleles affected the time course of release. Thus, the site of action of ΔE-torsinA is at or upstream of the rise in calcium concentration in nerve terminals. Our results suggest that torsinA regulates synaptic vesicle recycling in central neurons. They also indicate that this regulation is influenced by neuronal activity, further supporting the idea that synaptic abnormalities contribute to the pathophysiology of DYT1 dystonia.
Collapse
Affiliation(s)
- Yasuhiro Kakazu
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
64
|
Phukan J, Albanese A, Gasser T, Warner T. Primary dystonia and dystonia-plus syndromes: clinical characteristics, diagnosis, and pathogenesis. Lancet Neurol 2011; 10:1074-85. [PMID: 22030388 DOI: 10.1016/s1474-4422(11)70232-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dystonias are a heterogeneous group of hyperkinetic movement disorders characterised by involuntary sustained muscle contractions that lead to abnormal postures and repetitive movements. Dystonia syndromes represent common movement disorders and yet are often misdiagnosed or unrecognised. In recent years, there have been substantial advances in the understanding of the spectrum of clinical features that encompass dystonia syndromes, from severe generalised childhood dystonia that is often genetic in origin, to adult-onset focal dystonias and rarer forms of secondary dystonias, to dystonia as a feature of other types of CNS dysfunction. There has also been a rationalisation of the classification of dystonia and a greater understanding of the causes of dystonic movements from the study of genetics, neurophysiology, and functional imaging in the most prevalent form of dystonia syndrome, primary dystonia.
Collapse
Affiliation(s)
- Julie Phukan
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, London, UK
| | | | | | | |
Collapse
|
65
|
Stamelou M, Edwards MJ, Hallett M, Bhatia KP. The non-motor syndrome of primary dystonia: clinical and pathophysiological implications. Brain 2011; 135:1668-81. [PMID: 21933808 DOI: 10.1093/brain/awr224] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dystonia is typically considered a movement disorder characterized by motor manifestations, primarily involuntary muscle contractions causing twisting movements and abnormal postures. However, growing evidence indicates an important non-motor component to primary dystonia, including abnormalities in sensory and perceptual functions, as well as neuropsychiatric, cognitive and sleep domains. Here, we review this evidence and discuss its clinical and pathophysiological implications.
Collapse
Affiliation(s)
- Maria Stamelou
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology Queen Square, London, WC1N 3BG UK
| | | | | | | |
Collapse
|