51
|
Abstract
Arylamines and nitroarenes are very important intermediates in the industrial manufacture of dyes, pesticides and plastics, and are significant environmental pollutants. The metabolic steps of N-oxidation and nitroreduction to yield N-hydroxyarylamines are crucial for the toxic properties of arylamines and nitroarenes. Nitroarenes are reduced by microorganisms in the gut or by nitroreductases and aldehyde dehydrogenase in hepatocytes to nitrosoarenes and N-hydroxyarylamines. N-Hydroxyarylamines can be further metabolized to N-sulphonyloxyarylamines, N-acetoxyarylamines or N-hydroxyarylamine N-glucuronide. These highly reactive intermediates are responsible for the genotoxic and cytotoxic effects of this class of compounds. N-Hydroxyarylamines can form adducts with DNA, tissue proteins, and the blood proteins albumin and haemoglobin in a dose-dependent manner. DNA and protein adducts have been used to biomonitor humans exposed to such compounds. All these steps are dependent on enzymes, which are present in polymorphic forms. This article reviews the metabolism of arylamines and nitroarenes and the biomonitoring studies performed in animals and humans exposed to these substances.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Nussbaumstrasse 26, D-80336 München, Germany.
| | | |
Collapse
|
52
|
Ruchirawa M, Mahidol C, Tangjarukij C, Pui-ock S, Jensen O, Kampeerawipakorn O, Tuntaviroon J, Aramphongphan A, Autrup H. Exposure to genotoxins present in ambient air in Bangkok, Thailand--particle associated polycyclic aromatic hydrocarbons and biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2002; 287:121-32. [PMID: 11883753 DOI: 10.1016/s0048-9697(01)01008-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exposure to genotoxic compounds in ambient air has been studied in Bangkok, Thailand, by analysis of polycyclic aromatic hydrocarbons (PAHs) associated with particles and using different biomarkers of exposure. Eighty-nine male, non-smoking Royal Thai police officers were investigated. The police officers were divided into a high exposure group (traffic police) and low exposure (office duty). Particulate matter was collected using personal pumps (2 l/min) and the eight carcinogenic PAHs were analysed by standard procedures. The traffic police was exposed to a 20-fold higher level of total PAHs than office police (74.25 ng/m3 vs. 3.11; P= 0.001). A two-fold variation was observed between the different police stations. The major PAHs in all groups was benzo[g,h,l]pyrelene. Large inter-individual differences in biomarker levels were observed, but the level of all markers was statistically significantly higher in the traffic police group than in the office group. The level of 1-hydroxypyrene (1-HOP) was 0.181+/-0.078 (range 0.071-0.393) micromol/mol creatinine in the traffic group and 0.173+/-0.151 (P = 0.044) in the office group. The bulky carcinogen DNA-adduct level, determined by P32-post-labelling, was 1.6+/-0.9 (range 0.4-4.3) adducts/10(8) nucleotides in the traffic group and 1.2+/-1.0 (0.2-4.9) in the office group (P = 0.029; Mann-Whitney U-test). The serum PAH-albumin adduct level was 1.76 (0.51-3.07) fmol adducts/microg albumin in the traffic group and 1.35+/-0.77 (0.11-3.45; P = 0.001) in the office group. Lower biomarker levels were observed during the period when the traffic police officers were wearing a simple facemask, indicating that these masks protect against particle-associated PAHs. No statistically significant correlations were observed between biomarker levels and the level of individual PAHs or total PAH. Our data show, that people in Bangkok, who spend most of the day outside air-conditioned offices, are exposed to high levels of genotoxic PAHs. However, for people who spend their working day in offices, the exposure is similar to people living in other metropolitan areas.
Collapse
Affiliation(s)
- Mathuros Ruchirawa
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Marczynski B, Rihs HP, Rossbach B, Hölzer J, Angerer J, Scherenberg M, Hoffmann G, Brüning T, Wilhelm M. Analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine and DNA strand breaks in white blood cells of occupationally exposed workers: comparison with ambient monitoring, urinary metabolites and enzyme polymorphisms. Carcinogenesis 2002; 23:273-81. [PMID: 11872632 DOI: 10.1093/carcin/23.2.273] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The relationship between biomarkers of effect (8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo, HPLC system) and tail extent moment (comet assay)), markers of external and internal exposure, and biomarkers of susceptibility was evaluated for coke-oven and graphite-electrode-producing plant workers exposed to polycyclic aromatic hydrocarbons (PAHs). Mean 8-oxodGuo levels in white blood cells (WBC) of exposed workers were between 1.38 times (coke-oven, n = 20; P < 0.01) and 2.15 times (graphite-electrode-producing plant, n = 30; P < 0.01) higher than levels found in control samples (mean +/- SD 0.52 +/- 0.16 8-oxodGuo/10(5) dGuo, n = 47). The mean tail extent moment in lymphocytes was 1.38 times higher for coke-oven workers (n = 19; P = 0.09) and 3.13 times higher for graphite-electrode-producing plant workers (n = 29; P < 0.01) when compared with controls (mean plus minus SD 2.54 +/- 0.68, n = 32). Elevated tail extent moments (>3.73) were found in the majority (84%) of PAH-exposed workers showing increased DNA adduct levels (>0.78 8-oxodGuo/10(5) dGuo). However, no association (P > 0.05) was found between DNA damage (8-oxodGuo/10(5) dGuo or tail extent moment) in WBC of all PAH-exposed workers and either benzo[a]pyrene levels or the sum of 16 PAH levels in the air at work place. Furthermore, no relation (P > 0.05) could be established between DNA damage in WBC and biomarkers of internal exposure (1-hydroxypyrene (1-OHP) and sum of five hydroxyphenanthrenes (OHPHs)). Higher exposure to airborne pyrene and phenanthrene led to increasing concentrations of the metabolites 1-OHP (P < 0.01) and the sum of five OHPHs (P < 0.01) in the urine of PAH-exposed workers. The polymorphisms of genes CYP1A1, GSTM1, GSTT1 and GSTP1 (biomarkers of susceptibility) showed no association with biomarkers of effect. In conclusion, both biomarkers of effect may be appropriate for further surveillance studies of workers under PAH exposure.
Collapse
Affiliation(s)
- B Marczynski
- Research Institute of Occupational Medicine at the Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Wild CP, Law GR, Roman E. Molecular epidemiology and cancer: promising areas for future research in the post-genomic era. Mutat Res 2002; 499:3-12. [PMID: 11804601 DOI: 10.1016/s0027-5107(01)00290-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This manuscript addresses how epidemiology might benefit from the sequencing of the human genome in terms of identifying the aetiology of cancer. Given that most human cancer is the result of both genetic and environmental risk factors, accurate assessment of both is required to develop an understanding of molecular mechanisms of carcinogenesis. Sequencing the human genome is a major scientific advance, which needs to be considered in the context of the multifactorial aetiology of cancer if it is to bring the maximum benefit. Likewise, assessment of environmental exposure is challenging for a number of reasons, particularly when exposures are relatively low level and vary over time. Biomarkers of environmental exposures (e.g. carcinogen-DNA and -protein adducts) offer the potential to overcome some of these limitations. Furthermore, markers of genetic alterations may permit the detection of relevant early stages of malignancy to inform surveillance and effective treatment, and provide an approach to disease classification. We conclude that in order to progress our understanding of cancer aetiology, a balanced approach integrating molecular measures into well-designed epidemiological studies is required.
Collapse
Affiliation(s)
- Christopher P Wild
- Molecular Epidemiology Unit, Academic Unit of Epidemiology and Health Services Research, Algernon Firth Building, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
55
|
Matullo G, Guarrera S, Carturan S, Peluso M, Malaveille C, Davico L, Piazza A, Vineis P. DNA repair gene polymorphisms, bulky DNA adducts in white blood cells and bladder cancer in a case-control study. Int J Cancer 2001; 92:562-7. [PMID: 11304692 DOI: 10.1002/ijc.1228] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Individuals differ widely in their ability to repair DNA damage, and DNA-repair deficiency may be involved in modulating cancer risk. In a case-control study of 124 bladder-cancer patients and 85 hospital controls (urological and non-urological), 3 DNA polymorphisms localized in 3 genes of different repair pathways (XRCC1-Arg399Gln, exon 10; XRCC3-Thr241Met, exon 7; XPD-Lys751Gln, exon 23) have been analyzed. Results were correlated with DNA damage measured as (32)P-post-labeling bulky DNA adducts in white blood cells from peripheral blood. Genotyping was performed by PCR-RFLP analysis, and allele frequencies in cases/controls were as follows: XRCC1-399Gln = 0.34/0.39, XRCC3-241Met = 0.48/0.35 and XPD-751Gln = 0.42/0.42. Odds ratios (ORs) were significantly greater than 1 only for the XRCC3 (exon 7) variant, and they were consistent across the 2 control groups. XPD and XRCC1 appear to have no impact on the risk of bladder cancer. Indeed, the effect of XRCC3 was more evident in non-smokers [OR = 4.8, 95% confidence interval (CI) 1.1-21.2]. XRCC3 apparently interacted with the N-acetyltransferase type 2 (NAT-2) genotype. The effect of XRCC3 was limited to the NAT-2 slow genotype (OR = 3.4, 95% CI 1.5-7.9), suggesting that XRCC3 might be involved in a common repair pathway of bulky DNA adducts. In addition, the risk of having DNA adduct levels above the median was higher in NAT-2 slow acetylators, homozygotes for the XRCC3-241Met variant allele (OR = 14.6, 95% CI 1.5-138). However, any discussion of interactions should be considered preliminary because of the small numbers involved. Our results suggest that bladder-cancer risk can be genetically modulated by XRCC3, which may repair DNA cross-link lesions produced by aromatic amines and other environmental chemicals.
Collapse
Affiliation(s)
- G Matullo
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Research from several sources provides strong evidence that vegetables, fruits, and whole grains, dietary fibre, certain micronutrients, some fatty acids and physical activity protect against some cancers. In contrast, other factors, such as obesity, alcohol, some fatty acids and food preparation methods may increase risks. Unravelling the multitude of plausible mechanisms for the effects of dietary factors on cancer risk will likely necessitate that nutrition research moves beyond traditional epidemiological and metabolic studies. Nutritional sciences must build on recent advances in molecular biology and genetics to move the discipline from being largely 'observational' to focusing on 'cause and effect'. Such basic research is fundamental to cancer prevention strategies that incorporate effective dietary interventions for target populations.
Collapse
Affiliation(s)
- P Greenwald
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Building 31, Room 10A52, 31 Center Drive, MSC 2580, Bethesda, MD 20892-2580, USA.
| | | | | |
Collapse
|
57
|
Abstract
At least six types of gene-environment interactions (GEI) have been proposed (Kouhry and Wagener, 1993). In the first type, neither the environmental exposure (EE) nor the genetic risk factor (GRF) have any effect by themselves, but interaction between them causes disease. This is the case of phenylalanine exposure and the phenylketonuria genotype. Type 2 is a situation in which the GRF has no effect on disease in the absence of exposure, but exacerbates the effects of the latter. This is the most important type of GEI in relation to metabolic susceptibility genes and human carcinogenesis. The third type is the converse of the second (EE is ineffective per se, but enhances the effect of GRF). Type 4 occurs when both FE and GRF increase the risk for disease, but the combination is interactive or synergistic: an example is the interaction between Xeroderma Pigmentosum and LWV radiation. Types 5 and 6, according to the classification proposed by Kouhry, refer to cases in which the GRF is protective. The model of GEI that is emerging as the most important in chemical carcinogenesis refers to metabolic susceptibility genes. The general population can be divided into subgroups depending on their susceptibility to the action of carcinogens, based on their ability to metabolize such compounds to electrophilic, reactive metabolites (which form adducts with DNA), or, respectively, electrophobic metabolites that are excreted. The present contribution is a short review of the relevant literature, with particular emphasis on some polymorphisms involved in dietary exposures. In addition, the practical implications of genetic testing in this field are discussed.
Collapse
Affiliation(s)
- P Vineis
- Unit of Cancer Epidemiology, University of Torino and CPO-Piemonte, Torino, Italy.
| |
Collapse
|
58
|
Palli D, Vineis P, Russo A, Berrino F, Krogh V, Masala G, Munnia A, Panico S, Taioli E, Tumino R, Garte S, Peluso M. Diet, metabolic polymorphisms and dna adducts: the EPIC-Italy cross-sectional study. Int J Cancer 2000; 87:444-51. [PMID: 10897053 DOI: 10.1002/1097-0215(20000801)87:3<444::aid-ijc21>3.0.co;2-#] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA adducts in peripheral leukocytes are considered a reliable indicator of internal dose exposure to genotoxic agents and, possibly, of cancer risk. We investigated their association with diet and other individual characteristics in healthy adults. The prospective study EPIC-Italy, a section of a larger European project, enrolled 47,749 men and women, aged 35-64 years, in 5 centres: all provided individual information about dietary and life-style habits and a blood sample. In a cross-sectional study, approximately 100 volunteers were randomly selected from each of the three main geographical study areas (Northern, Central and Southern Italy). DNA adducts and four polymorphic metabolic genotypes were determined in peripheral leukocytes by using (32)P-postlabelling technique and PCR methods. Among 309 subjects (153 men), 72.8% had detectable levels of DNA adducts (mean: 8.1 +/- 0.6 per 10(9) nucleotides). Strong negative associations emerged with the reported frequency of consumption of fresh fruit and vegetables, olive oil, and the intake of antioxidants. DNA adducts were higher in subjects with GSTT1 null genotype (p = 0.05). Significant differences between study centres emerged in multivariate analyses (mean levels: 11.0, 10.0, 7.2, 6.5 and 5.2 for Florence, Naples, Turin, Varese and Ragusa, respectively). A possible opposite seasonal variation was found according to latitude: adduct levels tended to be lower in winter in Florence and the southern centres, and during summer in the two northern centres. Frequent consumption of fresh fruit and vegetables is associated with reduced levels of DNA adducts, possibly contributing to the role of diet in modulating cancer risk.
Collapse
Affiliation(s)
- D Palli
- Epidemiology Unit, CSPO, A.O. Careggi, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
|
60
|
|