51
|
Weise M, Vettel C, Spiger K, Gilsbach R, Hein L, Lorenz K, Wieland T, Aktories K, Orth JHC. A systemic Pasteurella multocida toxin aggravates cardiac hypertrophy and fibrosis in mice. Cell Microbiol 2015; 17:1320-31. [PMID: 25759205 DOI: 10.1111/cmi.12436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/20/2015] [Accepted: 03/06/2015] [Indexed: 11/30/2022]
Abstract
Pasteurella multocida toxin (PMT) persistently activates heterotrimeric G proteins of the Gαq/11 , Gα12/13 and Gαi family without interaction with G protein-coupled receptors (GPCRs). We show that PMT acts on heart tissue in vivo and on cardiomyocytes and cardiac fibroblasts in vitro by deamidation of heterotrimeric G proteins. Increased normalized ventricle weights and fibrosis were detected after intraperitoneal administration of PMT in combination with the GPCR agonist phenylephrine. In neonatal rat cardiomyocytes, PMT stimulated the mitogen-activated protein kinase pathway, which is crucial for the development of cellular hypertrophy. The toxin induced phosphorylation of the canonical phosphorylation sites of the extracellular-regulated kinase 1/2 and, additionally, caused phosphorylation of the recently recognized autophosphorylation site, which appears to be important for the development of cellular hypertrophy. Moreover, PMT stimulated the small GTPases Rac1 and RhoA. Both switch proteins are involved in cardiomyocyte hypertrophy. In addition, PMT stimulated RhoA and Rac1 in neonatal rat cardiac fibroblasts. RhoA and Rac1 have been implicated in the regulation of connective tissue growth factor (CTGF) secretion and expression. Accordingly, we show that PMT treatment increased secretion and expression of CTGF in cardiac fibroblasts. Altogether, the data indicate that PMT is an inducer of pathological remodelling of cardiac cells and identifies the toxin as a promising tool for studying heterotrimeric G protein-dependent signalling in cardiac cells.
Collapse
Affiliation(s)
- Markus Weise
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Dept. I, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, Freiburg, 79104, Germany
| | - Christiane Vettel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katharina Spiger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ralf Gilsbach
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Dept. II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Dept. II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Dept. I, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, Freiburg, 79104, Germany.,BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| | - Joachim H C Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Dept. I, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, Freiburg, 79104, Germany
| |
Collapse
|
52
|
Del Olmo-Turrubiarte A, Calzada-Torres A, Díaz-Rosas G, Palma-Lara I, Sánchez-Urbina R, Balderrábano-Saucedo NA, González-Márquez H, Garcia-Alonso P, Contreras-Ramos A. Mouse models for the study of postnatal cardiac hypertrophy. IJC HEART & VASCULATURE 2015; 7:131-140. [PMID: 28785661 PMCID: PMC5497247 DOI: 10.1016/j.ijcha.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/19/2015] [Accepted: 02/01/2015] [Indexed: 12/16/2022]
Abstract
The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH), in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP) isoproterenol (ISO) was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB), neonates (7-15 days) and young adults (6 weeks of age). Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR), alpha and beta myosins (α-MHC, β-MHC) and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS). Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.
Collapse
Affiliation(s)
- A Del Olmo-Turrubiarte
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Mexico
| | - A Calzada-Torres
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Mexico
| | - G Díaz-Rosas
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Mexico
| | | | - R Sánchez-Urbina
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Mexico
| | | | - H González-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Mexico
| | | | - A Contreras-Ramos
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Mexico
| |
Collapse
|
53
|
Folino A, Sprio AE, Di Scipio F, Berta GN, Rastaldo R. Alpha-linolenic acid protects against cardiac injury and remodelling induced by beta-adrenergic overstimulation. Food Funct 2015; 6:2231-9. [DOI: 10.1039/c5fo00034c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Linolenic acid (ALA)-enriched diet prevented isoproterenol (ISO)-induced fibrosis in the ventricular myocardium.
Collapse
Affiliation(s)
- A. Folino
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - A. E. Sprio
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - F. Di Scipio
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - G. N. Berta
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - R. Rastaldo
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| |
Collapse
|
54
|
Huang H, Joseph LC, Gurin MI, Thorp EB, Morrow JP. Extracellular signal-regulated kinase activation during cardiac hypertrophy reduces sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) transcription. J Mol Cell Cardiol 2014; 75:58-63. [PMID: 25008120 DOI: 10.1016/j.yjmcc.2014.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Pathologic cardiac hypertrophy can lead to heart failure, but the mechanisms involved are poorly understood. SERCA2 is critical for normal cardiac calcium handling and function and SERCA2 mRNA and protein levels are reduced by cardiac hypertrophy. We hypothesized that extracellular signal-regulated kinase (ERK) 1/2 activation during hypertrophy reduced SERCA2 transcription. Using a neonatal rat ventricular myocyte model of hypertrophy, we found that pharmacologic inhibitors of ERK activation preserve SERCA2 mRNA levels during hypertrophy. ERK activation is sufficient to reduce SERCA2 mRNA. We determined that ERK represses SERCA2 transcription via nuclear factor-kappaB (NFkB), and activation of NFkB is sufficient to reduce SERCA2 mRNA in cardiomyocytes. This work establishes novel connections between ERK, NFkB, and SERCA2 repression during cardiac hypertrophy. This mechanism may have implications for the progression of hypertrophy to heart failure.
Collapse
Affiliation(s)
- Haiyan Huang
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons of Columbia University, 622 W 168th Street, New York, NY 10032, United States
| | - Leroy C Joseph
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons of Columbia University, 622 W 168th Street, New York, NY 10032, United States
| | - Michael I Gurin
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons of Columbia University, 622 W 168th Street, New York, NY 10032, United States
| | - Edward B Thorp
- Department of Pathology and Feinberg Cardiovascular Research Institute, Northwestern University, Feinberg School of Medicine, 300 E. Superior Street, Chicago, IL 60611, United States
| | - John P Morrow
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons of Columbia University, 622 W 168th Street, New York, NY 10032, United States.
| |
Collapse
|
55
|
Subramanian M, Hunt AL, Petrucci GA, Chen Z, Hendley ED, Palmer BM. Differential metal content and gene expression in rat left ventricular hypertrophy due to hypertension and hyperactivity. J Trace Elem Med Biol 2014; 28:311-6. [PMID: 24629670 PMCID: PMC4082731 DOI: 10.1016/j.jtemb.2014.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/22/2022]
Abstract
The spontaneously hypertensive rat (SHR) has been studied extensively as a model of left ventricular hypertrophy (LVH) and associated cardiac dysfunction due to hypertension (HT). The SHR also possesses a hyperactive trait (HA). Crossbreeding SHR with Wistar-Kyoto (WKY) control rats, which are nonHT and nonHA, followed by selected inbreeding produced two additional homozygous strains: WKHT and WKHA, in which the traits of HT and HA, respectively, are expressed separately. WKHT, WKHA and SHR all display LVH, but only the SHR exhibits cardiac dysfunction. We hypothesized that cardiac dysfunction in the SHR is uniquely characterized by calcium overload. We measured total cardiac Ca, Cu, Fe, K, Mg and Zn in the four strains. We found elevated Ca and depressed Cu, Mg and Zn with HT, but not unique to SHR. We surmise that HT promotes aberrant regulation of cardiac Ca(2+), Cu(2+), Mg(2+) and Zn(2+), which does not necessarily result in cardiac dysfunction. Interestingly, Cu was elevated in HA strains compared to nonHA counterparts. We then analyzed gene expression as mRNA of Cu-containing proteins, most notably mitochondrial-Cox, Dbh, Lox, Loxl1, Loxl2, Sod1 and Tyr. The gene expression profiles of Lox, Loxl1, Loxl2 and Sod1 were found especially high in the WKHA, which if reflective of protein content could account for the high Cu content in the WKHA. The mRNA of other genes, notably Mb, Fxyd1, Maoa and Maob were also examined. We found that Maoa gene expression and monoamine oxidase-A (MAO-A) protein content were low in the SHR compared to the other strains. The finding that MAO-A protein is low in the SHR and normal in the WKHT and WKHA strains is most consistent with the idea that MAO-A protects against the development of cardiac dysfunction in LVH but not against LVH in these rats.
Collapse
Affiliation(s)
- Meenakumari Subramanian
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, United States
| | - Adam L Hunt
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Giuseppe A Petrucci
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Zengyi Chen
- Department of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Edith D Hendley
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, United States
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
56
|
Lorenz K, Stathopoulou K, Schmid E, Eder P, Cuello F. Heart failure-specific changes in protein kinase signalling. Pflugers Arch 2014; 466:1151-62. [DOI: 10.1007/s00424-014-1462-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/14/2023]
|
57
|
Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2403-13. [DOI: 10.1016/j.bbadis.2013.07.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022]
|
58
|
Tarone G, Sbroggiò M, Brancaccio M. Key role of ERK1/2 molecular scaffolds in heart pathology. Cell Mol Life Sci 2013; 70:4047-54. [PMID: 23532408 PMCID: PMC11114054 DOI: 10.1007/s00018-013-1321-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
The ability of cardiomyocytes to detect mechanical and humoral stimuli is critical for adaptation of the myocardium in response to new conditions and for sustaining the increased workload during stress. While certain stimuli mediate a beneficial adaptation to stress conditions, others result in maladaptive remodelling, ultimately leading to heart failure. Specific signalling pathways activating either adaptive or maladaptive cardiac remodelling have been identified. Paradoxically, however, in a number of cases, the transduction pathways involved in such opposing responses engage the same signalling proteins. A notable example is the Raf-MEK1/2-ERK1/2 signalling pathway that can control both adaptive and maladaptive remodelling. ERK1/2 signalling requires a signalosome complex where a scaffold protein drives the assembly of these three kinases into a linear pathway to facilitate their sequential phosphorylation, ultimately targeting specific effector molecules. Interestingly, a number of different Raf-MEK1/2-ERK1/2 scaffold proteins have been identified, and their role in determining the adaptive or maladaptive cardiac remodelling is a promising field of investigation for the development of therapeutic strategies capable of selectively potentiating the adaptive response.
Collapse
Affiliation(s)
- Guido Tarone
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, via Nizza, 52, 10126, Turin, Italy,
| | | | | |
Collapse
|
59
|
Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2013; 110:9806-11. [PMID: 23720316 DOI: 10.1073/pnas.1301509110] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is a strong predictor of morbidity and mortality in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors have been shown to suppress cardiac hypertrophy through mechanisms that remain poorly understood. We report that class I HDACs function as signal-dependent repressors of cardiac hypertrophy via inhibition of the gene encoding dual-specificity phosphatase 5 (DUSP5) DUSP5, a nuclear phosphatase that negatively regulates prohypertrophic signaling by ERK1/2. Inhibition of DUSP5 by class I HDACs requires activity of the ERK kinase, mitogen-activated protein kinase kinase (MEK), revealing a self-reinforcing mechanism for promotion of cardiac ERK signaling. In cardiac myocytes treated with highly selective class I HDAC inhibitors, nuclear ERK1/2 signaling is suppressed in a manner that is absolutely dependent on DUSP5. In contrast, cytosolic ERK1/2 activation is maintained under these same conditions. Ectopic expression of DUSP5 in cardiomyocytes results in potent inhibition of agonist-dependent hypertrophy through a mechanism involving suppression of the gene program for hypertrophic growth. These findings define unique roles for class I HDACs and DUSP5 as integral components of a regulatory signaling circuit that controls cardiac hypertrophy.
Collapse
|
60
|
Jia JJ, Zeng XS, Li Y, Ma S, Bai J. Ephedrine induced thioredoxin-1 expression through β-adrenergic receptor/cyclic AMP/protein kinase A/dopamine- and cyclic AMP-regulated phosphoprotein signaling pathway. Cell Signal 2013; 25:1194-1201. [PMID: 23416460 DOI: 10.1016/j.cellsig.2013.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/08/2013] [Indexed: 01/04/2023]
Abstract
Ephedrine (Eph) is one of alkaloids that has been isolated from the ancient herb ephedra (ma huang) and is used as the treatment of asthma, hypotension and fatigue. However, its molecular mechanism remains unknown. Thioredoxin-1 (Trx-1) is a redox regulating protein, which has various biological activities, including regulating transcription factor DNA binding activity and neuroprotection. In this study, we found that Eph induced Trx-1 expression, which was inhibited by propranolol (β-adrenergic receptor inhibitor), but not by phenoxybenzamine (α-adrenergic receptor inhibitor) in rat pheochromocytoma PC12 cells. Moreover, the increase of Trx-1 expression was inhibited by SQ22536 (adenylyl cyclase inhibitor) and H-89 (protein kinase A inhibitor). Interestingly, the effect of Eph on dopamine- and cyclic AMP-regulated phosphoprotein (DARPP-32) was similar to Trx-1. Thus, the relationship between Trx-1 and DARPP-32 was further studied. The DARPP-32 siRNA significantly reduced Trx-1 expression, but Trx-1 siRNA did not exchange DARPP-32. These results suggested that Eph induced the Trx-1 expression through β-adrenergic receptor/cyclic AMP/PKA/DARPP-32 signaling pathway. Furthermore, Eph induced PKA-mediated cyclic AMP response element-binding protein (CREB) phosphorylation. Down-regulation of DARPP-32 expression decreased phosphorylated CREB. In addition, Eph had a significant effect on the viability of the rat pheochromocytoma PC12 cells through β-adrenergic receptors. Trx-1 may play an important role in the actions of Eph.
Collapse
Affiliation(s)
- Jin-Jing Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | | | | | | | | |
Collapse
|
61
|
Ruppert C, Deiss K, Herrmann S, Vidal M, Oezkur M, Gorski A, Weidemann F, Lohse MJ, Lorenz K. Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc Natl Acad Sci U S A 2013; 110:7440-5. [PMID: 23589880 PMCID: PMC3645583 DOI: 10.1073/pnas.1221999110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are central mediators of cardiac hypertrophy and are discussed as potential therapeutic targets. However, direct inhibition of ERK1/2 leads to exacerbated cardiomyocyte death and impaired heart function. We have previously identified ERK(Thr188) autophosphorylation as a regulatory phosphorylation of ERK1/2 that is a key factor in cardiac hypertrophy. Here, we investigated whether interference with ERK(Thr188) phosphorylation permits the impairment of ERK1/2-mediated cardiac hypertrophy without increasing cardiomyocyte death. The impact of ERK(Thr188) phosphorylation on cardiomyocyte hypertrophy and cell survival was analyzed in isolated cells and in mice using the mutant ERK2(T188A), which is dominant-negative for ERK(Thr188) signaling. ERK2(T188A) efficiently attenuated cardiomyocyte hypertrophic responses to phenylephrine and to chronic pressure overload, but it affected neither antiapoptotic ERK1/2 signaling nor overall physiological cardiac function. In contrast to its inhibition of pathological hypertrophy, ERK2(T188A) did not interfere with physiological cardiac growth occurring with age or upon voluntary exercise. A preferential role of ERK(Thr188) phosphorylation in pathological types of hypertrophy was also seen in patients with aortic valve stenosis: ERK(Thr188) phosphorylation was increased 8.5 ± 1.3-fold in high-gradient, rapidly progressing cases (≥40 mmHg gradient), whereas in low-gradient, slowly progressing cases, the increase was not significant. Because interference with ERK(Thr188) phosphorylation (i) inhibits pathological hypertrophy and (ii) does not impair antiapoptotic ERK1/2 signaling and because ERK(Thr188) phosphorylation shows strong prevalence for aortic stenosis patients with rapidly progressing course, we conclude that interference with ERK(Thr188) phosphorylation offers the possibility to selectively address pathological types of cardiac hypertrophy.
Collapse
Affiliation(s)
- Catharina Ruppert
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
- Comprehensive Heart Failure Center, and
| | - Katharina Deiss
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Sebastian Herrmann
- Comprehensive Heart Failure Center, and
- Departments of Internal Medicine I and
| | - Marie Vidal
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Mehmet Oezkur
- Comprehensive Heart Failure Center, and
- Thoracic and Cardiovascular Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; and
| | - Armin Gorski
- Comprehensive Heart Failure Center, and
- Thoracic and Cardiovascular Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; and
| | - Frank Weidemann
- Comprehensive Heart Failure Center, and
- Departments of Internal Medicine I and
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
- Comprehensive Heart Failure Center, and
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
- Comprehensive Heart Failure Center, and
- Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|