51
|
Guidelines for Echocardiographic Diagnosis of Cardiomyopathy: Recommendations from Echocardiography Group of Ultrasound Medicine Branch in Chinese Medical Association, Echocardiography Committee of Cardiovascular Branch in Chinese Medical Association. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2022. [DOI: 10.37015/audt.2022.210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
52
|
Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, Blankstein R, Boyd J, Bullock-Palmer RP, Conejo T, Diercks DB, Gentile F, Greenwood JP, Hess EP, Hollenberg SM, Jaber WA, Jneid H, Joglar JA, Morrow DA, O'Connor RE, Ross MA, Shaw LJ. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Cardiovasc Comput Tomogr 2022; 16:54-122. [PMID: 34955448 DOI: 10.1016/j.jcct.2021.11.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM This clinical practice guideline for the evaluation and diagnosis of chest pain provides recommendations and algorithms for clinicians to assess and diagnose chest pain in adult patients. METHODS A comprehensive literature search was conducted from November 11, 2017, to May 1, 2020, encompassing randomized and nonrandomized trials, observational studies, registries, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Collaboration, Agency for Healthcare Research and Quality reports, and other relevant databases. Additional relevant studies, published through April 2021, were also considered. STRUCTURE Chest pain is a frequent cause for emergency department visits in the United States. The "2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain" provides recommendations based on contemporary evidence on the assessment and evaluation of chest pain. This guideline presents an evidence-based approach to risk stratification and the diagnostic workup for the evaluation of chest pain. Cost-value considerations in diagnostic testing have been incorporated, and shared decision-making with patients is recommended.
Collapse
|
53
|
Cortigiani L, Carpeggiani C, Meola L, Djordjevic-Dikic A, Bovenzi F, Picano E. Reduced Sympathetic Reserve Detectable by Heart Rate Response after Dipyridamole in Anginal Patients with Normal Coronary Arteries. J Clin Med 2021; 11:jcm11010052. [PMID: 35011796 PMCID: PMC8745735 DOI: 10.3390/jcm11010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
Background. Patients with ischemia and normal coronary arteries (INOCA) may show abnormal cardiac sympathetic function, which could be unmasked as a reduced heart rate reserve (HRR) during dipyridamole stress echocardiography (SE). Objectives. To assess whether HRR during dipyridamole SE predicts outcome. Methods. Dipyridamole SE was performed in 292 patients with INOCA. HRR was measured as peak/rest heart rate and considered abnormal when ≤1.22 (≤1.17 in presence of permanent atrial fibrillation). All-cause death was the only endpoint. Results. HRR during SE was normal in 183 (63%) and abnormal in 109 patients (37%). During a follow-up of 10.4 ± 5.5 years, 89 patients (30%) died. The 15-year mortality rate was 27% in patients with normal and 54% in those with abnormal HRR (p < 0.0001). In a multivariable analysis, a blunted HRR during SE was an independent predictor of outcome (hazard ratio 1.86, 95% confidence intervals 1.20–2.88; p = 0.006) outperforming inducible ischemia. Conclusions. A blunted HRR during dipyridamole SE predicts a worse survival in INOCA patients, independent of inducible ischemia.
Collapse
Affiliation(s)
- Lauro Cortigiani
- Cardiology Division, San Luca Hospital, 55100 Lucca, Italy; (L.M.); (F.B.)
- Correspondence: ; Tel.: +39-0583970449; Fax: +39-0583970445
| | - Clara Carpeggiani
- CNR Institute of Clinical Physiology, 56125 Pisa, Italy; (C.C.); (E.P.)
| | - Laura Meola
- Cardiology Division, San Luca Hospital, 55100 Lucca, Italy; (L.M.); (F.B.)
| | - Ana Djordjevic-Dikic
- Cardiology Clinic, Medical School, University of Belgrade, 11000 Belgrade, Serbia;
| | - Francesco Bovenzi
- Cardiology Division, San Luca Hospital, 55100 Lucca, Italy; (L.M.); (F.B.)
| | - Eugenio Picano
- CNR Institute of Clinical Physiology, 56125 Pisa, Italy; (C.C.); (E.P.)
| |
Collapse
|
54
|
Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, Blankstein R, Boyd J, Bullock-Palmer RP, Conejo T, Diercks DB, Gentile F, Greenwood JP, Hess EP, Hollenberg SM, Jaber WA, Jneid H, Joglar JA, Morrow DA, O'Connor RE, Ross MA, Shaw LJ. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2021; 78:e187-e285. [PMID: 34756653 DOI: 10.1016/j.jacc.2021.07.053] [Citation(s) in RCA: 415] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM This clinical practice guideline for the evaluation and diagnosis of chest pain provides recommendations and algorithms for clinicians to assess and diagnose chest pain in adult patients. METHODS A comprehensive literature search was conducted from November 11, 2017, to May 1, 2020, encompassing randomized and nonrandomized trials, observational studies, registries, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Collaboration, Agency for Healthcare Research and Quality reports, and other relevant databases. Additional relevant studies, published through April 2021, were also considered. STRUCTURE Chest pain is a frequent cause for emergency department visits in the United States. The "2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain" provides recommendations based on contemporary evidence on the assessment and evaluation of chest pain. This guideline presents an evidence-based approach to risk stratification and the diagnostic workup for the evaluation of chest pain. Cost-value considerations in diagnostic testing have been incorporated, and shared decision-making with patients is recommended.
Collapse
|
55
|
2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2021; 78:2218-2261. [PMID: 34756652 DOI: 10.1016/j.jacc.2021.07.052] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM This executive summary of the clinical practice guideline for the evaluation and diagnosis of chest pain provides recommendations and algorithms for clinicians to assess and diagnose chest pain in adult patients. METHODS A comprehensive literature search was conducted from November 11, 2017, to May 1, 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Collaboration, Agency for Healthcare Research and Quality reports, and other relevant databases. Additional relevant studies, published through April 2021, were also considered. STRUCTURE Chest pain is a frequent cause for emergency department visits in the United States. The "2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain" provides recommendations based on contemporary evidence on the assessment and evaluation of chest pain. These guidelines present an evidence-based approach to risk stratification and the diagnostic workup for the evaluation of chest pain. Cost-value considerations in diagnostic testing have been incorporated and shared decision-making with patients is recommended.
Collapse
|
56
|
Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, Blankstein R, Boyd J, Bullock-Palmer RP, Conejo T, Diercks DB, Gentile F, Greenwood JP, Hess EP, Hollenberg SM, Jaber WA, Jneid H, Joglar JA, Morrow DA, O'Connor RE, Ross MA, Shaw LJ. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021; 144:e368-e454. [PMID: 34709879 DOI: 10.1161/cir.0000000000001029] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM This clinical practice guideline for the evaluation and diagnosis of chest pain provides recommendations and algorithms for clinicians to assess and diagnose chest pain in adult patients. METHODS A comprehensive literature search was conducted from November 11, 2017, to May 1, 2020, encompassing randomized and nonrandomized trials, observational studies, registries, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Collaboration, Agency for Healthcare Research and Quality reports, and other relevant databases. Additional relevant studies, published through April 2021, were also considered. Structure: Chest pain is a frequent cause for emergency department visits in the United States. The "2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain" provides recommendations based on contemporary evidence on the assessment and evaluation of chest pain. This guideline presents an evidence-based approach to risk stratification and the diagnostic workup for the evaluation of chest pain. Cost-value considerations in diagnostic testing have been incorporated, and shared decision-making with patients is recommended.
Collapse
|
57
|
Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, Blankstein R, Boyd J, Bullock-Palmer RP, Conejo T, Diercks DB, Gentile F, Greenwood JP, Hess EP, Hollenberg SM, Jaber WA, Jneid H, Joglar JA, Morrow DA, O'Connor RE, Ross MA, Shaw LJ. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021; 144:e368-e454. [PMID: 34709928 DOI: 10.1161/cir.0000000000001030] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM This executive summary of the clinical practice guideline for the evaluation and diagnosis of chest pain provides recommendations and algorithms for clinicians to assess and diagnose chest pain in adult patients. METHODS A comprehensive literature search was conducted from November 11, 2017, to May 1, 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Collaboration, Agency for Healthcare Research and Quality reports, and other relevant databases. Additional relevant studies, published through April 2021, were also considered. Structure: Chest pain is a frequent cause for emergency department visits in the United States. The "2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain" provides recommendations based on contemporary evidence on the assessment and evaluation of chest pain. These guidelines present an evidence-based approach to risk stratification and the diagnostic workup for the evaluation of chest pain. Cost-value considerations in diagnostic testing have been incorporated and shared decision-making with patients is recommended.
Collapse
|
58
|
Lin J, Wu W, Gao L, He J, Zhu Z, Pang K, Wang J, Liu M, Wang H. Global Myocardial Work Combined with Treadmill Exercise Stress to Detect Significant Coronary Artery Disease. J Am Soc Echocardiogr 2021; 35:247-257. [PMID: 34710569 DOI: 10.1016/j.echo.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/31/2021] [Accepted: 10/17/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Myocardial work (MW) derived from the left ventricular pressure-strain loop is a novel and noninvasive method for assessing left ventricular function that accounts for loading conditions. We aimed to explore whether global MW combined with treadmill exercise stress could detect significant coronary artery disease (CAD) in patients with angina pectoris. METHODS Eighty-five patients with angina pectoris and no prior CAD history were included. All patients underwent treadmill exercise stress echocardiography and coronary angiography. Global MW was constructed from speckle-tracking echocardiography indexed to the brachial systolic blood pressure. The association between MW parameters and the presence of significant CAD was assessed with logistic regression. The discriminative power of MW parameters to detect CAD was assessed with receiver operative characteristic curve, net reclassification improvement, and integrated discrimination improvement analysis. RESULTS Twenty-five patients had a positive exercise echocardiogram, while significant coronary artery stenosis (≥70% in one or more major epicardial vessels or ≥50% in the left main coronary artery) was observed in 41 patients. The global wasted work (GWW) and global work efficiency (GWE) were significantly higher or lower, respectively, in patients with significant CAD compared with those of nonsignificant CAD at the peak exercise and during recovery periods (P < .05 for all). Multivariate logistic regression analysis demonstrated that peak GWE and recovery GWW could predict significant CAD. Peak GWE had the highest area under the receiver operating characteristic curve (AUC) among all global MW parameters (AUC = 0.836). Furthermore, a model comprising peak GWE and recovery GWW performed better for the identification of significant CAD than peak GWE alone (AUC = 0.856). CONCLUSIONS Peak GWE could detect significant CAD. The new model, incorporating peak GWE and recovery GWW, not only identified but also provided additional value for estimating the probability of significant CAD. Global MW parameters combined with exercise stress perform as an accurate noninvasive screening before the invasive diagnostic technique.
Collapse
Affiliation(s)
- Jingru Lin
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weichun Wu
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences (W.W.), Beijing, China
| | - Lijian Gao
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia He
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenhui Zhu
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kunjing Pang
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Mengyi Liu
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
59
|
Hagendorff A, Helfen A, Flachskampf FA, Ewen S, Kruck S, La Rosée K, Knierim J, Voigt JU, Kreidel F, Fehske W, Brandt R, Zahn R, Knebel F. Manual zur Indikation und Durchführung spezieller echokardiographischer Anwendungen. DER KARDIOLOGE 2021. [PMCID: PMC8521495 DOI: 10.1007/s12181-021-00509-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Das zweite Manual zur Indikation und Durchführung der Echokardiographie bezieht sich auf spezifische Anwendungen der Echokardiographie und besondere Fragestellungen bei speziellen Patientengruppen. Dabei stehen v. a. praktische Aspekte im Vordergrund. Methodisch etabliert sind die transösophageale Echokardiographie, die Stressechokardiographie und die Kontrastechokardiographie. Bei nahezu allen echokardiographischen Untersuchungen spielen aktuell 3‑D-Echokardiographie und Deformationsbildgebung eine Rolle. Das gesamte Spektrum der echokardiographischen Möglichkeiten wird derzeit in Notfall- und Intensivmedizin, bei der Überwachung und Führung von Katheterinterventionen, bei strukturellen Herzerkrankungen, bei herzchirurgischen Operationen, bei der Nachsorge von kardialen Unterstützungssystemen, bei kongenitalen Vitien im Erwachsenenalter und bei der Versorgung von hochinfektiösen Patienten in Pandemiezeiten angewandt. Die diagnostischen Fortschritte der konventionellen und modernen echokardiographischen Anwendungen stehen im Fokus dieses Manuals. Die 3‑D-Echokardiographie zur Charakterisierung der kardialen Morphologie und die Deformationsbildgebung zur Objektivierung der kardialen Funktion sind bei vielen Indikationen im klinischen Alltag etabliert. Die Stressechokardiographie zur Ischämie‑, Vitalitäts- und Vitiendiagnostik, die Bestimmung der koronaren Flussreserve und die Kontrastechokardiographie bei der linksventrikulären Wandbewegungsanalyse und kardialen Tumordetektion finden zunehmend klinische Anwendung. Wie für die konventionelle Echokardiographie im ersten Manual der Echokardiographie 2009 beschrieben, erfordert der Einsatz moderner echokardiographischer Verfahren die standardisierte Dokumentation und Akquisition bestimmter Bildsequenzen bei optimierter Geräteeinstellung, da korrekte und reproduzierbare Auswertungen nur bei guter Bildqualität möglich sind.
Collapse
Affiliation(s)
- Andreas Hagendorff
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103 Leipzig, Deutschland
| | - Andreas Helfen
- Medizinische Klinik I, Katholisches Klinikum Lünen Werne GmbH St. Marien-Hospital Lünen, Lünen, Deutschland
| | - Frank A. Flachskampf
- Department of Medical Sciences, Universität Uppsala, und Klinisk fysiologi och kardiologi, Uppsala University Hospital, Uppsala, Schweden
| | - Sebastian Ewen
- Klinik für Innere Medizin III – Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Deutschland
| | - Sebastian Kruck
- Cardio Centrum Ludwigsburg Bietigheim, Ludwigsburg, Deutschland
| | - Karl La Rosée
- Gemeinschaftspraxis Dr. La Rosée & Prof. Dr. Müller, Bonn, Deutschland
| | - Jan Knierim
- Klinik für Herz‑, Thorax- und Gefäßchirurgie, Deutsches Herzzentrum Berlin, Berlin, Deutschland
| | - Jens-Uwe Voigt
- Department of Cardiovascular Diseases, University Hospital Gasthuisberg und Department of Cardiovascular Sciences, Cath. University Leuven, Leuven, Belgien
| | - Felix Kreidel
- Zentrum für Kardiologie, Universitätsmedizin Mainz, Mainz, Deutschland
| | - Wolfgang Fehske
- Klinik III für Innere Medizin, Universitätsklinikum Köln – Herzzentrum, Universität zu Köln, Köln, Deutschland
| | - Roland Brandt
- Abteilung für Kardiologie, Kerckhoff Klinik GmbH, Bad Nauheim, Deutschland
| | - Ralf Zahn
- Medizinische Klinik B – Abteilung für Kardiologie, Klinikum der Stadt Ludwigshafen gGmbH, Ludwigshafen am Rhein, Deutschland
- Kommission für Klinische Kardiovaskuläre Medizin, Deutsche Gesellschaft für Kardiologie, Düsseldorf, Deutschland
| | - Fabian Knebel
- Medizinische Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Deutschland
- Sana Klinikum Lichtenberg, Berlin, Deutschland
| |
Collapse
|
60
|
Ciampi Q, Zagatina A, Cortigiani L, Wierzbowska-Drabik K, Kasprzak JD, Haberka M, Djordjevic-Dikic A, Beleslin B, Boshchenko A, Ryabova T, Gaibazzi N, Rigo F, Dodi C, Simova I, Samardjieva M, Barbieri A, Morrone D, Lorenzoni V, Prota C, Villari B, Antonini-Canterin F, Pepi M, Carpeggiani C, Pellikka PA, Picano E. Prognostic value of stress echocardiography assessed by the ABCDE protocol. Eur Heart J 2021; 42:3869-3878. [PMID: 34449837 PMCID: PMC8486488 DOI: 10.1093/eurheartj/ehab493] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
AIM The aim of this study was to assess the prognostic value of ABCDE-SE in a prospective, large scale, multicentre, international, effectiveness study. Stress echocardiography (SE) was recently upgraded to the ABCDE protocol: step A, regional wall motion abnormalities; step B, B lines; step C, left ventricular contractile reserve; step D, Doppler-based coronary flow velocity reserve in left anterior descending coronary artery; and step E, electrocardiogram-based heart rate reserve. METHODS AND RESULTS From July 2016 to November 2020, we enrolled 3574 all-comers (age 65 ± 11 years, 2070 males, 58%; ejection fraction 60 ± 10%) with known or suspected chronic coronary syndromes referred from 13 certified laboratories. All patients underwent clinically indicated ABCDE-SE. The employed stress modality was exercise (n = 952, with semi-supine bike, n = 887, or treadmill, n = 65 with adenosine for step D) or pharmacological stress (n = 2622, with vasodilator, n = 2151; or dobutamine, n = 471). SE response ranged from score 0 (all steps normal) to score 5 (all steps abnormal). All-cause death was the only endpoint. Rate of abnormal results was 16% for A, 30% for B, 36% for C, 28% for D, and 37% for E steps. During a median follow-up of 21 months (interquartile range: 13-36), 73 deaths occurred. Global X2 was 49.5 considering clinical variables, 50.7 after step A only (P = NS (not significant)) and 80.6 after B-E steps (P < 0.001 vs. step A). Annual mortality rate ranged from 0.4% person-year for score 0 up to 2.7% person-year for score 5. CONCLUSION ABCDE-SE allows an effective prediction of survival in patients with chronic coronary syndromes.
Collapse
Affiliation(s)
- Quirino Ciampi
- Cardiology Division, Fatebenefratelli Hospital, Benevento, Italy
| | - Angela Zagatina
- Cardiology Department, Saint Petersburg State University Hospital, Russian Federation
| | | | | | | | - Maciej Haberka
- Department of Cardiology, SHS, Medical University of Silesia, Katowice, Poland
| | - Ana Djordjevic-Dikic
- Cardiology Clinic, Clinical Center of Serbia, Medical School, University of Belgrade, Belgrade, Serbia
| | - Branko Beleslin
- Cardiology Clinic, Clinical Center of Serbia, Medical School, University of Belgrade, Belgrade, Serbia
| | - Alla Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Tamara Ryabova
- Cardiology Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nicola Gaibazzi
- Cardiology Department, Parma University Hospital, Parma, Italy
| | - Fausto Rigo
- Cardiology Department, Ospedale di Dolo-Venice, Venice, Italy
| | - Claudio Dodi
- Cardiology Department, Ospedale di Cremona, Cremona, Italy
| | - Iana Simova
- Cardiology Department, Heart and Brain Center of Excellence, University Hospital, Pleven, Sofia, Bulgaria
| | - Martina Samardjieva
- Cardiology Department, Heart and Brain Center of Excellence, University Hospital, Pleven, Sofia, Bulgaria
| | | | | | | | | | - Bruno Villari
- Cardiology Division, Fatebenefratelli Hospital, Benevento, Italy
| | - Francesco Antonini-Canterin
- Highly Specialized Rehabilitation Hospital Motta di Livenza, Cardiac Prevention and Rehabilitation Unit, Treviso, Italy.,Italian Society of Echocardiography and Cardiovascular Imaging, Milano, Italy
| | - Mauro Pepi
- Italian Society of Echocardiography and Cardiovascular Imaging, Milano, Italy.,Cardiology Division, Fondazione Cardiologica Monzino, Milano, Italy
| | - Clara Carpeggiani
- Biomedicine Department, CNR, Institute of Clinical Physiology, Via Moruzzi 1, Building C- Room 130, 56124 Pisa, Italy
| | | | - Eugenio Picano
- Biomedicine Department, CNR, Institute of Clinical Physiology, Via Moruzzi 1, Building C- Room 130, 56124 Pisa, Italy
| |
Collapse
|
61
|
Picano E. Coronary flow velocity reserve with transthoracic echocardiography: a game changer. Acta Cardiol 2021; 78:491-494. [PMID: 34565288 DOI: 10.1080/00015385.2021.1980957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
62
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- gadu] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
63
|
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
64
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- -] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
65
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- #] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
66
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42:3599-3726. [PMID: 34447992 DOI: 10.1093/eurheartj/ehab368] [Citation(s) in RCA: 6702] [Impact Index Per Article: 1675.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
67
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- -] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
68
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 and 1880=1880] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
69
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- awyx] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
70
|
Pergola V, Previtero M, Lorenzoni G, Ocagli H, Simeti G, Aruta P, Baritussio A, Cecchetto A, Leoni L, Mancuso D, Gregori D, Salvo GD, Iliceto S, Mele D. Feasibility and Role of Right Ventricular Stress Echocardiography in Adult Patients. J Cardiovasc Echogr 2021; 31:68-72. [PMID: 34485031 PMCID: PMC8388328 DOI: 10.4103/jcecho.jcecho_4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The great technological advancements in the field of echocardiography have led to applications of stress echocardiography (SE) in almost all diagnostic fields of cardiology, from ischemic heart disease to valvular heart disease and diastolic function. However, the assessment of the right ventricle (RV) in general, and in particular in regard to the contractile reserve of the RV, is an area that has not been previously explored. We, therefore, propose a study to investigate the potential use of SE for the assessment of RV function in adult patients. Aims and objectives: The primary aim is to evaluate the feasibility of right ventricular SE. The secondary aim is to assess right ventricular contractile reserve. Matherials and Methods: Eighty-one patients undergoing a physical or dobutamine stress echocardiogram for cardiovascular risk stratification or chest pain were the subject of the study. An exercise leg cycle using a standard WHO protocol was used to simultaneously assess the right and left ventricular global and regional function as well as acquiring Doppler data. Whereas the patient had limitations in mobility, a dobutamine SE was be performed. We evaluated the average values of tricuspid annular plane systolic excursion (TAPSE), fractional area change (FAC), S-wave, systolic pulmonary artery pressure (sPAP), and right ventricle global longitudinal (free wall) strain (RVGLS) during baseline and at the peak of the effort. RV contractile reserve was defined as the change in RVGLS from rest to peak exercise. We also assessed the reproducibility of these measurements between two different expert operators (blind analysis). Results: At least 3 over 5 RV function parameters were measurable both during baseline and at the peak of the effort in 95% of patients, while all 5 parameters in 65% of our population, demonstrating an excellent feasibility. All RV-studied variables showed a statistically significant increase (P < 0.001) at peak compared to the baseline. The average percentage increases at peak were 31.1% for TAPSE, 24.8% for FAC, 50.6% for S-wave, 55.2% for PAPS, and 39.8% for RV strain. The reproducibility between operators at baseline and peak was excellent. Our study demonstrates that TAPSE, FAC, and S-wave are highly feasible at rest and at peak, while TAPSE, S-wave, and sPAP are the most reliable measurements during RV stress echo. Conclusion: RVGLS is useful in the assessment of RV contractile reserve in patients with good acoustic window. Further studies are needed to evaluate the impact of contrast echocardiography in improving RV contractile reserve assessment during SE.
Collapse
Affiliation(s)
- Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Marco Previtero
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, Unit of Biostatistics, Epidemiology and Public Health, University of Padova, Padova, Italy
| | - Giulia Lorenzoni
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, Unit of Biostatistics, Epidemiology and Public Health, University of Padova, Padova, Italy
| | - Honoria Ocagli
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, Unit of Biostatistics, Epidemiology and Public Health, University of Padova, Padova, Italy
| | - Giuseppe Simeti
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Patrizia Aruta
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Anna Baritussio
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Antonella Cecchetto
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Loira Leoni
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Daniela Mancuso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Dario Gregori
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, Unit of Biostatistics, Epidemiology and Public Health, University of Padova, Padova, Italy
| | - Giovanni Di Salvo
- Department of Women Children Health, University of Padova, Padova, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Donato Mele
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
71
|
Kersten J, Eberhardt N, Prasad V, Keßler M, Markovic S, Mörike J, Nita N, Stephan T, Tadic M, Tesfay T, Rottbauer W, Buckert D. Non-invasive Imaging in Patients With Chronic Total Occlusions of the Coronary Arteries-What Does the Interventionalist Need for Success? Front Cardiovasc Med 2021; 8:713625. [PMID: 34527713 PMCID: PMC8435679 DOI: 10.3389/fcvm.2021.713625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/06/2021] [Indexed: 10/26/2022] Open
Abstract
Chronic total occlusion (CTO) of coronary arteries is a common finding in patients with known or suspected coronary artery disease (CAD). Although tremendous advances have been made in the interventional treatment of CTOs over the past decade, correct patient selection remains an important parameter for achieving optimal results. Non-invasive imaging can make a valuable contribution. Ischemia and viability, two major factors in this regard, can be displayed using echocardiography, single-photon emission tomography, positron emission tomography, computed tomography, and cardiac magnetic resonance imaging. Each has its own strengths and weaknesses. Although most have been studied in patients with CAD in general, there is an increasing number of studies with positive preselectional factors for patients with CTOs. The aim of this review is to provide a structured overview of the current state of pre-interventional imaging for CTOs.
Collapse
Affiliation(s)
- Johannes Kersten
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Nina Eberhardt
- Department for Nuclear Medicine, University of Ulm, Ulm, Germany
| | - Vikas Prasad
- Department for Nuclear Medicine, University of Ulm, Ulm, Germany
| | - Mirjam Keßler
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Sinisa Markovic
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Johannes Mörike
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Nicoleta Nita
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Tilman Stephan
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Marijana Tadic
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Temsgen Tesfay
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | | | - Dominik Buckert
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| |
Collapse
|
72
|
Picano E, Ciampi Q, Cortigiani L, Arruda-Olson AM, Borguezan-Daros C, de Castro e Silva Pretto JL, Cocchia R, Bossone E, Merli E, Kane GC, Varga A, Agoston G, Scali MC, Morrone D, Simova I, Samardjieva M, Boshchenko A, Ryabova T, Vrublevsky A, Palinkas A, Palinkas ED, Sepp R, Torres MAR, Villarraga HR, Preradović TK, Citro R, Amor M, Mosto H, Salamè M, Leeson P, Mangia C, Gaibazzi N, Tuttolomondo D, Prota C, Peteiro J, Van De Heyning CM, D’Andrea A, Rigo F, Nikolic A, Ostojic M, Lowenstein J, Arbucci R, Haber DML, Merlo PM, Wierzbowska-Drabik K, Kasprzak JD, Haberka M, Camarozano AC, Ratanasit N, Mori F, D’Alfonso MG, Tassetti L, Milazzo A, Olivotto I, Marchi A, Rodriguez-Zanella H, Zagatina A, Padang R, Dekleva M, Djordievic-Dikic A, Boskovic N, Tesic M, Giga V, Beleslin B, Di Salvo G, Lorenzoni V, Cameli M, Mandoli GE, Bombardini T, Caso P, Celutkiene J, Barbieri A, Benfari G, Bartolacelli Y, Malagoli A, Bursi F, Mantovani F, Villari B, Russo A, De Nes M, Carpeggiani C, Monte I, Re F, Cotrim C, Bilardo G, Saad AK, Karuzas A, Matuliauskas D, Colonna P, Antonini-Canterin F, Pepi M, Pellikka PA. Stress Echo 2030: The Novel ABCDE-(FGLPR) Protocol to Define the Future of Imaging. J Clin Med 2021; 10:3641. [PMID: 34441937 PMCID: PMC8397117 DOI: 10.3390/jcm10163641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
With stress echo (SE) 2020 study, a new standard of practice in stress imaging was developed and disseminated: the ABCDE protocol for functional testing within and beyond CAD. ABCDE protocol was the fruit of SE 2020, and is the seed of SE 2030, which is articulated in 12 projects: 1-SE in coronary artery disease (SECAD); 2-SE in diastolic heart failure (SEDIA); 3-SE in hypertrophic cardiomyopathy (SEHCA); 4-SE post-chest radiotherapy and chemotherapy (SERA); 5-Artificial intelligence SE evaluation (AI-SEE); 6-Environmental stress echocardiography and air pollution (ESTER); 7-SE in repaired Tetralogy of Fallot (SETOF); 8-SE in post-COVID-19 (SECOV); 9: Recovery by stress echo of conventionally unfit donor good hearts (RESURGE); 10-SE for mitral ischemic regurgitation (SEMIR); 11-SE in valvular heart disease (SEVA); 12-SE for coronary vasospasm (SESPASM). The study aims to recruit in the next 5 years (2021-2025) ≥10,000 patients followed for ≥5 years (up to 2030) from ≥20 quality-controlled laboratories from ≥10 countries. In this COVID-19 era of sustainable health care delivery, SE2030 will provide the evidence to finally recommend SE as the optimal and versatile imaging modality for functional testing anywhere, any time, and in any patient.
Collapse
Affiliation(s)
- Eugenio Picano
- CNR, Biomedicine Department, Institute of Clinical Physiology, 56100 Pisa, Italy; (M.D.N.); (C.C.)
| | - Quirino Ciampi
- Cardiology Division, Fatebenefratelli Hospital, 82100 Benevento, Italy; (Q.C.); (B.V.)
| | | | - Adelaide M. Arruda-Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (A.M.A.-O.); (G.C.K.); (H.R.V.); (R.P.); (P.A.P.)
| | | | | | - Rosangela Cocchia
- Azienda Ospedaliera Rilevanza Nazionale A. Cardarelli Hospital, 80100 Naples, Italy; (R.C.); (E.B.)
| | - Eduardo Bossone
- Azienda Ospedaliera Rilevanza Nazionale A. Cardarelli Hospital, 80100 Naples, Italy; (R.C.); (E.B.)
| | - Elisa Merli
- Department of Cardiology, Ospedale per gli Infermi, Faenza, 48100 Ravenna, Italy;
| | - Garvan C. Kane
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (A.M.A.-O.); (G.C.K.); (H.R.V.); (R.P.); (P.A.P.)
| | - Albert Varga
- Institute of Family Medicine, Szeged University Medical School, University of Szeged, 6720 Szeged, Hungary; (A.V.); (G.A.)
| | - Gergely Agoston
- Institute of Family Medicine, Szeged University Medical School, University of Szeged, 6720 Szeged, Hungary; (A.V.); (G.A.)
| | | | - Doralisa Morrone
- Cardiothoracic Department, University of Pisa, 56100 Pisa, Italy;
| | - Iana Simova
- Heart and Brain Center of Excellence, Cardiology Department, University Hospital, Medical University, 5800 Pleven, Bulgaria; (I.S.); (M.S.)
| | - Martina Samardjieva
- Heart and Brain Center of Excellence, Cardiology Department, University Hospital, Medical University, 5800 Pleven, Bulgaria; (I.S.); (M.S.)
| | - Alla Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, 634009 Tomsk, Russia; (A.B.); (T.R.); (A.V.)
| | - Tamara Ryabova
- Cardiology Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, 634009 Tomsk, Russia; (A.B.); (T.R.); (A.V.)
| | - Alexander Vrublevsky
- Cardiology Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, 634009 Tomsk, Russia; (A.B.); (T.R.); (A.V.)
| | - Attila Palinkas
- Internal Medicine Department, Elisabeth Hospital, 6800 Hódmezővásárhely, Hungary;
| | - Eszter D. Palinkas
- Albert Szent-Gyorgyi Clinical Center, Department of Internal Medicine, Division of Non-Invasive Cardiology, University Hospital, 6725 Szeged, Hungary; (R.S.); (E.D.P.)
| | - Robert Sepp
- Albert Szent-Gyorgyi Clinical Center, Department of Internal Medicine, Division of Non-Invasive Cardiology, University Hospital, 6725 Szeged, Hungary; (R.S.); (E.D.P.)
| | | | - Hector R. Villarraga
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (A.M.A.-O.); (G.C.K.); (H.R.V.); (R.P.); (P.A.P.)
| | - Tamara Kovačević Preradović
- Clinic of Cardiovascular Diseases, University Clinical Centre of the Republic of Srpska, 78 000 Banja Luka, Bosnia and Herzegovina; (T.K.P.); (T.B.)
| | - Rodolfo Citro
- Cardiology Department and Echocardiography Lab, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84100 Salerno, Italy;
| | - Miguel Amor
- Cardiology Department, Ramos Mejia Hospital, Buenos Aires C1221, Argentina; (M.A.); (H.M.); (M.S.)
| | - Hugo Mosto
- Cardiology Department, Ramos Mejia Hospital, Buenos Aires C1221, Argentina; (M.A.); (H.M.); (M.S.)
| | - Michael Salamè
- Cardiology Department, Ramos Mejia Hospital, Buenos Aires C1221, Argentina; (M.A.); (H.M.); (M.S.)
| | - Paul Leeson
- RDM Division of Cardiovascular Medicine, Cardiovascular Clinical Research Facility, University of Oxford, Oxford OX3 9DU, UK;
| | - Cristina Mangia
- CNR, ISAC-Institute of Sciences of Atmosphere and Climate, 73100 Lecce, Italy;
| | - Nicola Gaibazzi
- Cardiology Department, Parma University Hospital, 43100 Parma, Italy; (N.G.); (D.T.)
| | - Domenico Tuttolomondo
- Cardiology Department, Parma University Hospital, 43100 Parma, Italy; (N.G.); (D.T.)
| | - Costantina Prota
- Cardiology Department, Vallo della Lucania Hospital, 84100 Salerno, Italy;
| | - Jesus Peteiro
- CHUAC-Complexo Hospitalario Universitario A Coruna, CIBER-CV, University of A Coruna, 15070 La Coruna, Spain;
| | | | - Antonello D’Andrea
- UOC Cardiologia/UTIC/Emodinamica, PO Umberto I, Nocera Inferiore (ASL Salerno)—Università Luigi Vanvitelli della Campania, 84014 Salerno, Italy; (A.D.); (P.C.)
| | - Fausto Rigo
- Department of Cardiology, Dolo Hospital, 30031 Venice, Italy;
| | - Aleksandra Nikolic
- Department of Noninvasive Cardiology, Institute for Cardiovascular Diseases Dedinje, School of Medicine, Belgrade 11000, Serbia; (A.N.); (M.O.)
| | - Miodrag Ostojic
- Department of Noninvasive Cardiology, Institute for Cardiovascular Diseases Dedinje, School of Medicine, Belgrade 11000, Serbia; (A.N.); (M.O.)
| | - Jorge Lowenstein
- Cardiodiagnosticos, Investigaciones Medicas Center, Buenos Aires C1082, Argentina; (J.L.); (R.A.); (D.M.L.H.); (P.M.M.)
| | - Rosina Arbucci
- Cardiodiagnosticos, Investigaciones Medicas Center, Buenos Aires C1082, Argentina; (J.L.); (R.A.); (D.M.L.H.); (P.M.M.)
| | - Diego M. Lowenstein Haber
- Cardiodiagnosticos, Investigaciones Medicas Center, Buenos Aires C1082, Argentina; (J.L.); (R.A.); (D.M.L.H.); (P.M.M.)
| | - Pablo M. Merlo
- Cardiodiagnosticos, Investigaciones Medicas Center, Buenos Aires C1082, Argentina; (J.L.); (R.A.); (D.M.L.H.); (P.M.M.)
| | - Karina Wierzbowska-Drabik
- Department of Cardiology, Bieganski Hospital, Medical University, 91-347 Lodz, Poland; (K.W.-D.); (J.D.K.)
| | - Jaroslaw D. Kasprzak
- Department of Cardiology, Bieganski Hospital, Medical University, 91-347 Lodz, Poland; (K.W.-D.); (J.D.K.)
| | - Maciej Haberka
- Department of Cardiology, SHS, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Ana Cristina Camarozano
- Medicine Department, Hospital de Clinicas UFPR, Federal University of Paranà, Curitiba 80000-000, Brazil;
| | - Nithima Ratanasit
- Department of Medicine, Division of Cardiology, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Fabio Mori
- SOD Diagnostica Cardiovascolare, DAI Cardio-Toraco-Vascolare, Azienda Ospedaliera-Universitaria Careggi, 50139 Firenze, Italy; (F.M.); (M.G.D.); (L.T.); (A.M.); (I.O.); (A.M.)
| | - Maria Grazia D’Alfonso
- SOD Diagnostica Cardiovascolare, DAI Cardio-Toraco-Vascolare, Azienda Ospedaliera-Universitaria Careggi, 50139 Firenze, Italy; (F.M.); (M.G.D.); (L.T.); (A.M.); (I.O.); (A.M.)
| | - Luigi Tassetti
- SOD Diagnostica Cardiovascolare, DAI Cardio-Toraco-Vascolare, Azienda Ospedaliera-Universitaria Careggi, 50139 Firenze, Italy; (F.M.); (M.G.D.); (L.T.); (A.M.); (I.O.); (A.M.)
| | - Alessandra Milazzo
- SOD Diagnostica Cardiovascolare, DAI Cardio-Toraco-Vascolare, Azienda Ospedaliera-Universitaria Careggi, 50139 Firenze, Italy; (F.M.); (M.G.D.); (L.T.); (A.M.); (I.O.); (A.M.)
| | - Iacopo Olivotto
- SOD Diagnostica Cardiovascolare, DAI Cardio-Toraco-Vascolare, Azienda Ospedaliera-Universitaria Careggi, 50139 Firenze, Italy; (F.M.); (M.G.D.); (L.T.); (A.M.); (I.O.); (A.M.)
| | - Alberto Marchi
- SOD Diagnostica Cardiovascolare, DAI Cardio-Toraco-Vascolare, Azienda Ospedaliera-Universitaria Careggi, 50139 Firenze, Italy; (F.M.); (M.G.D.); (L.T.); (A.M.); (I.O.); (A.M.)
| | | | - Angela Zagatina
- Cardiology Department, Saint Petersburg State University Hospital, 199034 Saint Petersburg, Russia;
| | - Ratnasari Padang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (A.M.A.-O.); (G.C.K.); (H.R.V.); (R.P.); (P.A.P.)
| | - Milica Dekleva
- Clinical Cardiology Department, Clinical Hospital Zvezdara, Medical School, University of Belgrade, Belgrade 11000, Serbia;
| | - Ana Djordievic-Dikic
- University Clinical Centre of Serbia, Medical School, Cardiology Clinic, University of Belgrade, 11000 Belgrade, Serbia; (A.D.-D.); (N.B.); (M.T.); (V.G.); (B.B.)
| | - Nikola Boskovic
- University Clinical Centre of Serbia, Medical School, Cardiology Clinic, University of Belgrade, 11000 Belgrade, Serbia; (A.D.-D.); (N.B.); (M.T.); (V.G.); (B.B.)
| | - Milorad Tesic
- University Clinical Centre of Serbia, Medical School, Cardiology Clinic, University of Belgrade, 11000 Belgrade, Serbia; (A.D.-D.); (N.B.); (M.T.); (V.G.); (B.B.)
| | - Vojislav Giga
- University Clinical Centre of Serbia, Medical School, Cardiology Clinic, University of Belgrade, 11000 Belgrade, Serbia; (A.D.-D.); (N.B.); (M.T.); (V.G.); (B.B.)
| | - Branko Beleslin
- University Clinical Centre of Serbia, Medical School, Cardiology Clinic, University of Belgrade, 11000 Belgrade, Serbia; (A.D.-D.); (N.B.); (M.T.); (V.G.); (B.B.)
| | - Giovanni Di Salvo
- Division of Pediatric Cardiology, University Hospital, 35100 Padua, Italy;
| | | | - Matteo Cameli
- Division of Cardiology, University Hospital, 53100 Siena, Italy; (M.C.); (G.E.M.)
| | - Giulia Elena Mandoli
- Division of Cardiology, University Hospital, 53100 Siena, Italy; (M.C.); (G.E.M.)
| | - Tonino Bombardini
- Clinic of Cardiovascular Diseases, University Clinical Centre of the Republic of Srpska, 78 000 Banja Luka, Bosnia and Herzegovina; (T.K.P.); (T.B.)
| | - Pio Caso
- UOC Cardiologia/UTIC/Emodinamica, PO Umberto I, Nocera Inferiore (ASL Salerno)—Università Luigi Vanvitelli della Campania, 84014 Salerno, Italy; (A.D.); (P.C.)
| | - Jelena Celutkiene
- Centre of Cardiology and Angiology, Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| | - Andrea Barbieri
- Noninvasive Cardiology, University Hospital, 43100 Parma, Italy;
| | - Giovanni Benfari
- Cardiology Department, University of Verona, 37121 Verona, Italy;
| | - Ylenia Bartolacelli
- Paediatric Cardiology and Adult Congenital Heart Disease Unit, S. Orsola-Malpighi Hospital, 40100 Bologna, Italy;
| | - Alessandro Malagoli
- Nephro-Cardiovascular Department, Division of Cardiology, Baggiovara Hospital, University of Modena and Reggio Emilia, 41126 Modena, Italy;
| | - Francesca Bursi
- ASST Santi Paolo e Carlo, Presidio Ospedale San Paolo, 20100 Milano, Italy;
| | - Francesca Mantovani
- Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, Cardiology, 42100 Reggio Emilia, Italy;
| | - Bruno Villari
- Cardiology Division, Fatebenefratelli Hospital, 82100 Benevento, Italy; (Q.C.); (B.V.)
| | - Antonello Russo
- Association for Public Health “Salute Pubblica”, 72100 Brindisi, Italy;
| | - Michele De Nes
- CNR, Biomedicine Department, Institute of Clinical Physiology, 56100 Pisa, Italy; (M.D.N.); (C.C.)
| | - Clara Carpeggiani
- CNR, Biomedicine Department, Institute of Clinical Physiology, 56100 Pisa, Italy; (M.D.N.); (C.C.)
| | - Ines Monte
- Echocardiography Laboratory, Cardio-Thorax-Vascular Department, “ Policlinico Vittorio Emanuele”, Catania University, 95100 Catania, Italy;
| | - Federica Re
- Ospedale San Camillo, Cardiology Division, 00100 Rome, Italy;
| | - Carlos Cotrim
- Heart Center, Hospital da Cruz Vermelha, Lisbon, and Medical School of University of Algarve, 1549-008 Lisbon, Portugal;
| | - Giuseppe Bilardo
- UOC di Cardiologia, ULSS1 DOLOMITI, Presidio Ospedaliero di Feltre, 32032 Belluno, Italy;
| | - Ariel K. Saad
- División de Cardiología, Hospital de Clínicas José de San Martín, Buenos Aires C1120, Argentina;
| | - Arnas Karuzas
- Ligence Medical Solutions, 49206 Vilnius, Lithuania; (A.K.); (D.M.)
| | | | - Paolo Colonna
- Cardiology Hospital, Policlinico University Hospital of Bari, 70100 Bari, Italy;
- Italian Society of Echocardiography and Cardiovascular Imaging, 20138 Milan, Italy; (F.A.-C.); (M.P.)
| | - Francesco Antonini-Canterin
- Italian Society of Echocardiography and Cardiovascular Imaging, 20138 Milan, Italy; (F.A.-C.); (M.P.)
- Cardiac Prevention and Rehabilitation Unit, Highly Specialized Rehabilitation Hospital Motta di Livenza, Motta di Livenza, 31045 Treviso, Italy
| | - Mauro Pepi
- Italian Society of Echocardiography and Cardiovascular Imaging, 20138 Milan, Italy; (F.A.-C.); (M.P.)
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Patricia A. Pellikka
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (A.M.A.-O.); (G.C.K.); (H.R.V.); (R.P.); (P.A.P.)
| | | |
Collapse
|
73
|
Almeida AG, Carpenter JP, Cameli M, Donal E, Dweck MR, Flachskampf FA, Maceira AM, Muraru D, Neglia D, Pasquet A, Plein S, Gerber BL. Multimodality imaging of myocardial viability: an expert consensus document from the European Association of Cardiovascular Imaging (EACVI). Eur Heart J Cardiovasc Imaging 2021; 22:e97-e125. [PMID: 34097006 DOI: 10.1093/ehjci/jeab053] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
In clinical decision making, myocardial viability is defined as myocardium in acute or chronic coronary artery disease and other conditions with contractile dysfunction but maintained metabolic and electrical function, having the potential to improve dysfunction upon revascularization or other therapy. Several pathophysiological conditions may coexist to explain this phenomenon. Cardiac imaging may allow identification of myocardial viability through different principles, with the purpose of prediction of therapeutic response and selection for treatment. This expert consensus document reviews current insight into the underlying pathophysiology and available methods for assessing viability. In particular the document reviews contemporary viability imaging techniques, including stress echocardiography, single photon emission computed tomography, positron emission tomography, cardiovascular magnetic resonance, and computed tomography and provides clinical recommendations for how to standardize these methods in terms of acquisition and interpretation. Finally, it presents clinical scenarios where viability assessment is clinically useful.
Collapse
Affiliation(s)
- Ana G Almeida
- Faculty of Medicine, Lisbon University, University Hospital Santa Maria/CHLN, Portugal
| | - John-Paul Carpenter
- Cardiology Department, University Hospitals Dorset, NHS Foundation Trust, Poole Hospital, Longfleet Road, Poole, Dorset BH15 2JB, United Kingdom
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 16, Siena, Italy
| | - Erwan Donal
- Department of Cardiology, CHU Rennes, Inserm, LTSI-UMR 1099, Université de Rennes 1, Rennes F-35000, France
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, The University of Edinburgh & Edinburgh Heart Centre, Chancellors Building Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Frank A Flachskampf
- Dept. of Med. Sciences, Uppsala University, and Cardiology and Clinical Physiology, Uppsala University Hospital, Akademiska, 751 85 Uppsala, Sweden
| | - Alicia M Maceira
- Cardiovascular Imaging Unit, Ascires Biomedical Group Colon St, 1, Valencia 46004, Spain; Department of Medicine, Health Sciences School, CEU Cardenal Herrera University, Lluís Vives St. 1, 46115 Alfara del Patriarca, Valencia, Spain
| | - Denisa Muraru
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149, Milan, Italy
| | - Danilo Neglia
- Fondazione Toscana G. Monasterio-Via G. Moruzzi 1, Pisa, Italy
| | - Agnès Pasquet
- Service de Cardiologie, Département Cardiovasculaire, Cliniques Universitaires St. Luc, and Division CARD, Institut de Recherche Expérimental et Clinique (IREC), UCLouvain, Av Hippocrate 10, B-1200 Brussels, Belgium
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | - Bernhard L Gerber
- Department of Biomedical Imaging Science, Leeds, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
74
|
[Personalized ischemia diagnostics in chronic coronary syndrome]. Internist (Berl) 2021; 62:729-740. [PMID: 34106293 DOI: 10.1007/s00108-021-01035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Myocardial ischemia is triggered by a mismatch between the oxygen supply and demand of the myocardial tissue. The most common cause is coronary artery disease; however, not every coronary stenosis is hemodynamically relevant and leads to myocardial ischemia. The guidelines recommend noninvasive ischemia diagnostics prior to invasive treatment in patients with chronic coronary syndrome. Cardiac computed tomography, stress echocardiography, nuclear cardiological procedures (positron emission tomography and single photon emission computed tomography) and cardiac magnetic resonance imaging are the main diagnostic tools for this purpose and are incorporated into the clinical routine. This article provides a review of the indications, the relative advantages and disadvantages of the respective methods and their utilization in routine clinical practice.
Collapse
|
75
|
Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, Dendale P, Dorobantu M, Edvardsen T, Folliguet T, Gale CP, Gilard M, Jobs A, Jüni P, Lambrinou E, Lewis BS, Mehilli J, Meliga E, Merkely B, Mueller C, Roffi M, Rutten FH, Sibbing D, Siontis GC. Guía ESC 2020 sobre el diagnóstico y tratamiento del síndrome coronario agudo sin elevación del segmento ST. Rev Esp Cardiol (Engl Ed) 2021. [DOI: 10.1016/j.recesp.2020.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
76
|
Bombardini T, Cortigiani L, Ciampi Q, Ostojic MC, Kovacevic-Preradovic T, Picano E. The prognostic value of stroke work/end-diastolic volume ratio during stress echocardiography. Acta Cardiol 2021; 76:384-395. [PMID: 32233739 DOI: 10.1080/00015385.2020.1746054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND The ventricular stroke work (SW) refers to the work done by the left ventricle to eject the volume of blood during one cardiac cycle. The cath-lab relationship between SW and end-diastolic volume (EDV) is the preload-recruitable SW (PRSW). Recently a non-invasive single-beat PRSW (SBPRSW) has been proposed. However, the single beat formula needs mathematical skillness, and extra software. Aim of this study was to compare the non-invasive SBPRSW with the simpler non-invasive SW/EDVratio in the stress-echo lab. METHODS We studied 692 patients, age 62 ± 12 years, ejection fraction 50 ± 17%, with negative stress echo (SE)(exercise, n = 130, dobutamine, n = 124, dipyridamole, n = 438) and follow-up data. The PRSW was estimated at rest and at peak stress by the SBPRSW technique and compared with the SW/EDV. All patients were followed-up. Event rates were estimated with Kaplan-Meier curves. RESULTS SBPRSW and SW/EDV were linearly correlated at rest (r = 0.842, p < .001) and at peak stress (r = 0.860, p < .001). During a median follow-up of 20 months (first quartile 8, third quartile 40 months), 132 major events were registered: at receiver operating characteristic (ROC) analysis rest SBPRSW vs. SW/EDV (AUC 0.691 vs. 0.722) and peak stress (AUC 0.744 vs. 0.800) demonstrated both a significant prognostic power (all p < .001) with non-inferior survival prediction of the simpler SW/EDV ratio at Kaplan-Meier curves (Chi-square rest = 38, peak = 56) vs. SBPRSW (Chi-square rest = 14, peak = 42). CONCLUSIONS The data obtained with the non-invasive SBPRSW and by the simpler SW/EDV are highly comparable. PRSW with either SB or SW/EDV approach is effective in predicting follow-up events.
Collapse
Affiliation(s)
- Tonino Bombardini
- Faculty of Medicine, Clinical Center of The Republic of Srpska, University of Banja-Luka, Banja-Luka, Bosnia-Herzegovina
| | | | - Quirino Ciampi
- Cardiology Division, Fatebenefratelli Hospital, Benevento, Italy
| | - Miodrag C. Ostojic
- Faculty of Medicine, Clinical Center of The Republic of Srpska, University of Banja-Luka, Banja-Luka, Bosnia-Herzegovina
| | - Tamara Kovacevic-Preradovic
- Faculty of Medicine, Clinical Center of The Republic of Srpska, University of Banja-Luka, Banja-Luka, Bosnia-Herzegovina
| | - Eugenio Picano
- Biomedicine Department, CNR, Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
77
|
Dykun I, Hendricks S, Balcer B, Totzeck M, Al-Rashid F, Rassaf T, Mahabadi AA. Implications of Alterations in Pre-test Probability in the 2019 Update of ESC Guidelines for Chronic Coronary Syndromes on Diagnostic Accuracy of Pharmacological Stress-Echocardiography: A Retrospective Cohort Study. J Cardiovasc Imaging 2021; 29:160-165. [PMID: 33938170 PMCID: PMC8099569 DOI: 10.4250/jcvi.2020.0176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND With the 2019 update of European Society of Cardiology (ESC) guidelines for chronic coronary syndromes, the pre-test probabilities (PTPs) based on age, sex, and symptoms have undergone major revisions. We aimed to determine implications of these alterations on diagnostic accuracy of dobutamine stress echocardiography (DSE). METHODS We retrospectively included consecutive patients undergoing pharmacological stress-echocardiography for evaluation of suspected obstructive coronary artery disease. DSE was performed as non-invasive imaging test and was indicated by individual treating physician's decision. Sensitivity, specificity, positive and negative predictive value as well as accuracy were assessed for detection of obstructive coronary artery disease, defined as revascularization therapy following DSE. RESULTS We included 206 patients (mean age 63.2 ± 12.4 years, 59.7% male). 51% of the cohort had a PTP of < 15% according to both scores. 9.2% of patients with PTP < 15% according to the original Diamond and Forrester score had a PTP > 15% according to 2019 ESC guidelines, predominantly due to the accountancy of dyspnea. In contrast, 13.6% of patient had a PTP ≥ 15% according to the original Diamond and Forrester score, while PTP was assessed below this threshold by updated guidelines. The differences in patient selection according to updated guidelines did not alter the diagnostic accuracy of DSE (68% for both). CONCLUSIONS Changes in assessment of PTP according to updated ESC guidelines from 2019 led to a relevant reclassification of patients with suspected coronary artery disease, ultimately changing the group of patients appropriate for DSE for evaluation of myocardial ischemia. Comparing the diagnostic performance in appropriate PTP groups, however, led to similar results.
Collapse
Affiliation(s)
- Iryna Dykun
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany.
| | - Stefanie Hendricks
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastian Balcer
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany
| | - Fadi Al-Rashid
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany
| | - Amir A Mahabadi
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
78
|
Son JW. Influence of Changes in Pretest-probability for Chronic Coronary Syndromes on Diagnostic Performance of Dobutamine Stress Echocardiography. J Cardiovasc Imaging 2021; 29:166-168. [PMID: 33938171 PMCID: PMC8099574 DOI: 10.4250/jcvi.2021.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jang Won Son
- Division of Cardiology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Korea.
| |
Collapse
|
79
|
Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, Dendale P, Dorobantu M, Edvardsen T, Folliguet T, Gale CP, Gilard M, Jobs A, Jüni P, Lambrinou E, Lewis BS, Mehilli J, Meliga E, Merkely B, Mueller C, Roffi M, Rutten FH, Sibbing D, Siontis GCM. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021; 42:1289-1367. [PMID: 32860058 DOI: 10.1093/eurheartj/ehaa575] [Citation(s) in RCA: 3029] [Impact Index Per Article: 757.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
80
|
Koracevic G, Micic S, Stojanovic M. By discontinuing beta-blockers before an exercise test we may precipitate a rebound phenomenon. Curr Vasc Pharmacol 2021; 19:624-633. [PMID: 33653252 DOI: 10.2174/1570161119666210302152322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a need to analyse the current approach to beta-blocker (BB) use in relation to exercise-based stress tests. OBJECTIVE We compared various guidelines regarding recommending abrupt vs gradual discontinuation of BB prior to exercise tests. We also analyse the shortcomings of the currently recommended approach and suggest a new approach to avoid BB rebound. METHODS A narrative review is used to analyse this topic due to lack of valid randomized clinical trials. RESULTS Omitting the BB therapy prior to exercise-based test has been recommended in guidelines for many years. Although reasonable, this approach has potential disadvantages since sudden BB withdrawal may induce a rebound phenomenon, which is, also, acknowledged in several guidelines. CONCLUSIONS We observed inconsistency among relevant guidelines; there is no homogenous approach regarding BB use before exercise tests. Most guidelines recommend BB withdrawal for a couple of days before the test; they do not advise BB dose tapering. This approach is not standardised and raises the risk of BB rebound phenomenon both before and during the test. Therefore, we suggest using the half the prescribed BB dose at the usual time of administration (in the morning, prior to the exercise test).
Collapse
Affiliation(s)
- Goran Koracevic
- Department for Cardiovascular Diseases, Clinical Center Nis. Serbia
| | | | | |
Collapse
|
81
|
Mahmoud O, Beer D, Mahmaljy H, Youniss M, Campoverde EH, Elias H, Stanton M, Patel M, Hashmi I, Young K, Kuppuraju R, Jacobs S, Alsaid A. Prevalence and Predictors of Obstructive Coronary Artery Disease in Nonlow-risk Acute Chest Pain Patients Who Rule Out for Myocardial Infarction in the High-sensitivity Troponin Era. Crit Pathw Cardiol 2021; 20:10-15. [PMID: 32511135 DOI: 10.1097/hpc.0000000000000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The best management approach for chest pain patients who rule out for myocardial infarction (MI) in the high-sensitivity troponin (hsTn) era remains elusive. Patients, especially those with nonlow clinical risk scores, are often referred for inpatient ischemic testing to uncover obstructive coronary artery disease (CAD). Whether the prevalence of obstructive CAD in this cohort is high enough to justify routine testing is not known. METHODS We conducted a retrospective cohort analysis of 1517 emergency department chest pain patients who ruled out for MI by virtue of a stable high-sensitivity troponin T (hsTnT) levels (defined as <5 ng/L intermeasurements increase) and were admitted for inpatient testing. RESULTS Abnormal ischemia evaluation (including 5.9% with evidence of fixed wall motion or perfusion defects) was 11.9%. Of those undergoing invasive angiography (n = 292), significant coronary stenoses (≥70% or unstable lesions) and multivessel CAD occurred in 16.8% and 5.5%, respectively. In a multivariate logistic regression model, known CAD, prior MI, chest pain character, mildly elevated hsTnT, and left ventricular ejection fraction <40% were predictive of an abnormal ischemia evaluation result, whereas electrocardiography findings and the modified History, EKG, Age, Risk factors, and troponin (HEART) score were not. Of note, 30-day adverse cardiac events were strikingly low at 0.4% with no deaths despite an overwhelming majority (>90%) of patients scoring intermediate or high on the modified HEART score. CONCLUSIONS A considerable percentage of acute chest pain patients who rule out for MI by hsTn had evidence of obstructive CAD, and the modified HEART score was not predictive of an abnormal ischemia evaluation.
Collapse
Affiliation(s)
- Osama Mahmoud
- From the Heart Institute, Geisinger Medical Center, Danville, PA
| | - Dominik Beer
- From the Heart Institute, Geisinger Medical Center, Danville, PA
| | - Hadi Mahmaljy
- From the Heart Institute, Geisinger Medical Center, Danville, PA
| | - Mohamed Youniss
- From the Heart Institute, Geisinger Medical Center, Danville, PA
| | | | - Hadi Elias
- From the Heart Institute, Geisinger Medical Center, Danville, PA
| | - Matthew Stanton
- Department of Internal Medicine, Geisinger Medical Center, Danville, PA
| | - Maulin Patel
- Department of Internal Medicine, Geisinger Medical Center, Danville, PA
| | - Insia Hashmi
- Department of Internal Medicine, Geisinger Medical Center, Danville, PA
| | - Katelyn Young
- Department of Internal Medicine, Geisinger Medical Center, Danville, PA
| | - Rajesh Kuppuraju
- Department of Internal Medicine, Geisinger Medical Center, Danville, PA
| | - Steven Jacobs
- Department of Internal Medicine, Geisinger Medical Center, Danville, PA
| | - Amro Alsaid
- From the Heart Institute, Geisinger Medical Center, Danville, PA
| |
Collapse
|
82
|
Singh A, Sturzoiu T, Vallabhaneni S, Shirani J. Stress cardiomyopathy induced during dobutamine stress echocardiography. Int J Crit Illn Inj Sci 2020; 10:43-48. [PMID: 33376690 PMCID: PMC7759070 DOI: 10.4103/ijciis.ijciis_86_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/18/2019] [Accepted: 01/20/2020] [Indexed: 11/04/2022] Open
Abstract
Background Catecholamines play a central role in pathogenesis of stress cardiomyopathy (SC). We aimed to review the clinical characteristics, procedural details and outcomes of patients with SC during dobutamine stress echocardiography (DSE). Methods/Results A total of 20 adults [age 64±15 years, 80% women, 67% hypertension, 20% diabetes, 33% hypercholesterolemia, 19% chronic kidney disease, 13% known anxiety disorder] with SC during DSE were identified from local digital archives of our laboratory (n=3) or reports in English literature (n=17). Indication for DSE was suspected coronary artery disease (CAD) in all patients. Left ventricular (LV) ejection fraction was normal at baseline. SC developed at a blood pressure of 154±47/86±24 mmHg, heart rate of 130±17 bpm (88±10% predicted maximum) and peak rate-pressure product of 20559±3898 mmHg*bpm. ST segment elevation was seen in 65%. SC occurred at peak dobutamine infusion rate of 38±6 μg/kg/min in 85% and during recovery in 15%. Atropine [0.7±0.6 (0.25-2) mg] was given to 7 patients. LV ejection fraction dropped to 30±6% with apical (40%), apical and mid (45%) or basal and mid (10%) circumferential LV ballooning. One patient (5%) had a mixed pattern of wall motion abnormality. LV outflow tract obstruction developed in 15%. Major adverse cardiac events occurred in 7 (35%) and included death (n=1), congestive heart failure (n=2), hypotension (n=3) and atrial fibrillation with heart failure (n=1). At a mean follow up duration of 19±19 days, complete or partial recovery of LV wall motion abnormality was seen in 18 and 1 patient, respectively. Conclusion SC uncommonly occurs during DSE. However, death and other adverse events (hypotension, heart failure and atrial fibrillation) may occur and require urgent attention. Once managed, complete recovery is expected in most patients.
Collapse
Affiliation(s)
- Amitoj Singh
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Tudor Sturzoiu
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| | | | - Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| |
Collapse
|
83
|
Gan GCH, Bhat A, Chen HHL, Gu KH, Fernandez F, Kadappu KK, Byth K, Eshoo S, Thomas L. Left Atrial Reservoir Strain by Speckle Tracking Echocardiography: Association With Exercise Capacity in Chronic Kidney Disease. J Am Heart Assoc 2020; 10:e017840. [PMID: 33372523 PMCID: PMC7955492 DOI: 10.1161/jaha.120.017840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Left atrial (LA) function plays a pivotal role in modulating left ventricular performance. The aim of our study was to evaluate the relationship between resting LA function by strain analysis and exercise capacity in patients with chronic kidney disease (CKD) and evaluate its utility compared with exercise E/e'. Methods and Results Consecutive patients with stage 3 and 4 CKD without prior cardiac history were prospectively recruited from outpatient nephrology clinics and underwent clinical evaluation and resting and exercise stress echocardiography. Resting echocardiographic parameters including E/e' and phasic LA strain (LA reservoir [LASr], conduit, and contractile strain) were measured and compared with exercise E/e'. A total of 218 (63.9±11.7 years, 64% men) patients with CKD were recruited. Independent clinical parameters associated with exercise capacity were age, estimated glomerular filtration rate, body mass index, and sex (P<0.01 for all), while independent resting echocardiographic parameters included E/e', LASr, and LA contractile strain (P<0.01 for all). Among resting echocardiographic parameters, LASr demonstrated the strongest positive correlation to metabolic equivalents achieved (r=0.70; P<0.01). Receiver operating characteristic curves demonstrated that LASr (area under the curve, 0.83) had similar diagnostic performance as exercise E/e' (area under the curve, 0.79; P=0.20 on DeLong test). A model combining LASr and clinical metrics showed robust association with metabolic equivalents achieved in patients with CKD. Conclusions LASr, a marker of decreased LA compliance is an independent correlate of exercise capacity in patients with stage 3 and 4 CKD, with similar diagnostic value to exercise E/e'. Thus, LASr may serve as a resting biomarker of functional capacity in this population.
Collapse
Affiliation(s)
- Gary C H Gan
- Department of Cardiology Blacktown Hospital Sydney NSW Australia.,Department of Cardiology Westmead Hospital Sydney NSW Australia.,University of New South Wales Sydney NSW Australia.,Western Sydney University Sydney NSW Australia
| | - Aditya Bhat
- Department of Cardiology Blacktown Hospital Sydney NSW Australia.,University of New South Wales Sydney NSW Australia.,Western Sydney University Sydney NSW Australia
| | - Henry H L Chen
- Department of Cardiology Blacktown Hospital Sydney NSW Australia
| | - Kennith H Gu
- Department of Cardiology Blacktown Hospital Sydney NSW Australia.,Western Sydney University Sydney NSW Australia
| | | | - Krishna K Kadappu
- University of New South Wales Sydney NSW Australia.,Western Sydney University Sydney NSW Australia.,Department of Cardiology Liverpool Hospital Sydney NSW Australia.,Department of Cardiology Campbelltown Hospital Sydney NSW Australia
| | - Karen Byth
- Research and Education Network Western Sydney Local Health District Sydney NSW Australia
| | - Suzanne Eshoo
- Department of Cardiology Blacktown Hospital Sydney NSW Australia.,Western Sydney University Sydney NSW Australia
| | - Liza Thomas
- Department of Cardiology Westmead Hospital Sydney NSW Australia.,University of New South Wales Sydney NSW Australia.,University of Sydney Sydney NSW Australia
| |
Collapse
|
84
|
Bongers-Karmaoui MN, Jaddoe VWV, Roest AAW, Gaillard R. The Cardiovascular Stress Response as Early Life Marker of Cardiovascular Health: Applications in Population-Based Pediatric Studies-A Narrative Review. Pediatr Cardiol 2020; 41:1739-1755. [PMID: 32879997 PMCID: PMC7695663 DOI: 10.1007/s00246-020-02436-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Stress inducement by physical exercise requires major cardiovascular adaptations in both adults and children to maintain an adequate perfusion of the body. As physical exercise causes a stress situation for the cardiovascular system, cardiovascular exercise stress tests are widely used in clinical practice to reveal subtle cardiovascular pathology in adult and childhood populations with cardiac and cardiovascular diseases. Recently, evidence from small studies suggests that the cardiovascular stress response can also be used within research settings to provide novel insights on subtle differences in cardiovascular health in non-diseased adults and children, as even among healthy populations an abnormal response to physical exercise is associated with an increased risk of cardiovascular diseases. This narrative review is specifically focused on the possibilities of using the cardiovascular stress response to exercise combined with advanced imaging techniques in pediatric population-based studies focused on the early origins of cardiovascular diseases. We discuss the physiology of the cardiovascular stress response to exercise, the type of physical exercise used to induce the cardiovascular stress response in combination with advanced imaging techniques, the obtained measurements with advanced imaging techniques during the cardiovascular exercise stress test and their associations with cardiovascular health outcomes. Finally, we discuss the potential for cardiovascular exercise stress tests to use in pediatric population-based studies focused on the early origins of cardiovascular diseases.
Collapse
Affiliation(s)
- Meddy N Bongers-Karmaoui
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Arno A W Roest
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
85
|
Novo G, Santoro C, Manno G, Di Lisi D, Esposito R, Mandoli GE, Evola V, Pastore MC, Sperlongano S, D'Andrea A, Cameli M, Galderisi M. Usefulness of Stress Echocardiography in the Management of Patients Treated with Anticancer Drugs. J Am Soc Echocardiogr 2020; 34:107-116. [PMID: 33223357 DOI: 10.1016/j.echo.2020.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022]
Abstract
In recent years, the survival of patients with cancer has improved thanks to advances in antineoplastic therapeutic protocols. This has led to an increasing burden of cardiovascular complications related to cancer treatment. Therefore, a new branch of cardiology has been created, "cardio-oncology," with the aims of preventing cardiovascular complications related to antineoplastic treatment, achieving early diagnosis and treatment of any complications, and allowing completion of the expected antineoplastic treatment. Stress echocardiography has a pivotal role in achieving a timely diagnosis of coronary artery disease and thus is the best management approach in this clinical setting. Atherosclerotic processes can be exacerbated by both chemotherapy and chest irradiation in patients with cancer, even several years after anticancer treatment completion. Moreover, stress echocardiography has many other potential applications, such as in the evaluation of subclinical left ventricular dysfunction and contractile reserve in patients treated with anticancer drugs that have the potential to induce myocardial damage, as well as evaluating valve disease. The objective of this review is to delineate the role of stress echocardiography in cardio-oncology.
Collapse
Affiliation(s)
- Giuseppina Novo
- Division of Cardiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital Paolo Giaccone, Palermo, University of Palermo, Palermo, Italy
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University Hospital, Naples, Italy
| | - Girolamo Manno
- Division of Cardiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital Paolo Giaccone, Palermo, University of Palermo, Palermo, Italy.
| | - Daniela Di Lisi
- Division of Cardiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital Paolo Giaccone, Palermo, University of Palermo, Palermo, Italy
| | - Roberta Esposito
- Department of Advanced Biomedical Sciences, Federico II University Hospital, Naples, Italy
| | - Giulia Elena Mandoli
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Vincenzo Evola
- Division of Cardiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital Paolo Giaccone, Palermo, University of Palermo, Palermo, Italy
| | - Maria Concetta Pastore
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Simona Sperlongano
- Unit of Cardiology, Department of Translational Medical Sciences, Monaldi Hospital, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonello D'Andrea
- Unit of Cardiology and Intensive Coronary Care, "Umberto I" Hospital, Nocera Inferiore, Salerno, Italy
| | - Matteo Cameli
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University Hospital, Naples, Italy
| |
Collapse
|
86
|
Khan JN, Griffiths T, Kanagala P, Kwok CS, Sandhu K, Cabezon S, Baig S, Naneishvili T, Kay Lee VC, Pasricha A, Robins E, Fatima T, Mihai A, Rai K, Booth S, Lee D, Bennett S, Butler R, Duckett S, Heatlie G. Accuracy and Prognostic Value of Physiologist-Led Stress Echocardiography for Coronary Disease. Heart Lung Circ 2020; 30:721-729. [PMID: 33191138 DOI: 10.1016/j.hlc.2020.09.933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND We demonstrated that physiologist-led stress echocardiography (PLSE) is feasible for coronary artery disease (CAD) assessment. We sought to extend our work by assessing its accuracy and prognostic value. METHODS Retrospective study of 898 subjects undergoing PLSE (n=393) or cardiologist-led stress echocardiography (CLSE) (n=505) for CAD assessment using exercise or dobutamine. For accuracy assessment, the primary outcome was the ability of stress echocardiography to identify significant CAD on invasive coronary angiography (ICA). Incidence of 24-month non-fatal MI, total and cardiac mortality, revascularisation and combined major adverse cardiac events (MACE) were assessed. RESULTS Demographics, comorbidities, CAD predictors, CAD pre-test probability and cardiac medications were matched between the PLSE and CLSE groups. PLSE had high sensitivity, specificity, positive and negative predictive value and accuracy (85%, 74%, 69%, 88%, 78% respectively). PLSE accuracy measures were similar and non-inferior to CLSE. There was a similar incidence of individual and combined outcomes in PLSE and CLSE subjects. Negative stress echocardiography conferred a comparably low incidence of non-fatal MI (PLSE 1.4% vs. CLSE 0.9%, p=0.464), cardiac mortality (0.6% vs. 0.0%, p=0.277) and MACE (6.8% vs. 3.1%, p=0.404). CONCLUSION This is the first study of the accuracy compared with gold standard of ICA, and prognostic value of PLSE CAD assessment. PLSE demonstrates high and non-inferior accuracy compared with CLSE for CAD assessment. Negative PLSE and CLSE confer a similarly very low incidence of cardiac outcomes, confirming for the first time the important prognostic value of PLSE.
Collapse
Affiliation(s)
- Jamal Nasir Khan
- Department of Cardiology, University Hospital of Coventry & Warwickshire, Coventry, England, UK; University of Warwick, Coventry, England, UK.
| | - Timothy Griffiths
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Prathap Kanagala
- Department of Cardiology, Aintree Hospital, Liverpool, England, UK
| | - Chun Shing Kwok
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Kully Sandhu
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Sinead Cabezon
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Shanat Baig
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Tamara Naneishvili
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Vetton Chee Kay Lee
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Arron Pasricha
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Emily Robins
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Tamseel Fatima
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Andreea Mihai
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | - Kam Rai
- Department of Cardiology, University Hospital of Coventry & Warwickshire, Coventry, England, UK
| | - Samantha Booth
- Department of Cardiology, University Hospital of Coventry & Warwickshire, Coventry, England, UK
| | - Doug Lee
- Department of Cardiology, University Hospital of Coventry & Warwickshire, Coventry, England, UK
| | - Sadie Bennett
- Department of Cardiology, University Hospital of North Midlands, Stoke-on-Trent, England, UK
| | | | | | | |
Collapse
|
87
|
Morhy SS, Barberato SH, Lianza AC, Soares AM, Leal GN, Rivera IR, Barberato MFA, Guerra V, Ribeiro ZVDS, Pignatelli R, Rochitte CE, Vieira MLC. Position Statement on Indications for Echocardiography in Fetal and Pediatric Cardiology and Congenital Heart Disease of the Adult - 2020. Arq Bras Cardiol 2020; 115:987-1005. [PMID: 33295472 PMCID: PMC8452202 DOI: 10.36660/abc.20201122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
| | - Silvio Henrique Barberato
- Cardioeco - Centro de Diagnóstico Cardiovascular, Curitiba, PR - Brasil
- Quanta Diagnóstico e Terapia, Curitiba, PR - Brasil
| | - Alessandro Cavalcanti Lianza
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
- Instituto da Criança e do Adolescente do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP - Brasil
- Hospital do Coração, São Paulo, SP - Brasil
| | - Andressa Mussi Soares
- Hospital Evangélico de Cachoeiro de Itapemirim e Clínica CORImagem, Cachoeiro de Itapemirim, ES - Brasil
| | - Gabriela Nunes Leal
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
- Instituto da Criança e do Adolescente do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP - Brasil
- Hospital do Coração, São Paulo, SP - Brasil
- Hospital e Maternidade São Luiz Itaim, São Paulo, SP - Brasil
| | | | | | - Vitor Guerra
- The Hospital for Sick Children, Toronto - Canadá
| | | | - Ricardo Pignatelli
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas - EUA
| | - Carlos Eduardo Rochitte
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (InCor, FMUSP), São Paulo, SP - Brasil
| | - Marcelo Luiz Campos Vieira
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (InCor, FMUSP), São Paulo, SP - Brasil
| |
Collapse
|
88
|
Zavadovsky KV, Ilyushenkova JN, Vasiltseva OY, Shipulin VV, Anfinogenova YJ, Bogdanov YI, Boshchenko AA. Intralobar Sequestration Associated With the Coronary-Pulmonary Artery Fistula From the System of the Circumflex Artery. Circ Cardiovasc Imaging 2020; 13:e010234. [PMID: 32842752 DOI: 10.1161/circimaging.119.010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Konstantin V Zavadovsky
- Nuclear Medicine Department (K.V.Z., J.N.I., V.V.S.), Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences. Russian Federation
| | - Julia N Ilyushenkova
- Nuclear Medicine Department (K.V.Z., J.N.I., V.V.S.), Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences. Russian Federation
| | - Oksana Ya Vasiltseva
- Department of Atherosclerosis and Coronary Artery Disease (O.Y.V., A.A.B.), Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences. Russian Federation
| | - Vladimir V Shipulin
- Nuclear Medicine Department (K.V.Z., J.N.I., V.V.S.), Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences. Russian Federation
| | - Yana J Anfinogenova
- Population Cardiology Department (Y.J.A.), Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences. Russian Federation
| | - Yuri I Bogdanov
- Department of Invasive Cardiology (Y.I.B.), Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences. Russian Federation
| | - Alla A Boshchenko
- Department of Atherosclerosis and Coronary Artery Disease (O.Y.V., A.A.B.), Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences. Russian Federation
| |
Collapse
|
89
|
Bombardini T, Zagatina A, Ciampi Q, Cortigiani L, D'Andrea A, Borguezan Daros C, Zhuravskaya N, Kasprzak JD, Wierzbowska-Drabik K, de Castro E Silva Pretto JL, Djordjevic-Dikic A, Beleslin B, Petrovic M, Boskovic N, Tesic M, Monte IP, Simova I, Vladova M, Boshchenko A, Ryabova T, Citro R, Amor M, Vargas Mieles PE, Arbucci R, Dodi C, Rigo F, Gligorova S, Dekleva M, Severino S, Torres MA, Salustri A, Rodrìguez-Zanella H, Costantino FM, Varga A, Agoston G, Bossone E, Ferrara F, Gaibazzi N, Rabia G, Celutkiene J, Haberka M, Mori F, D'Alfonso MG, Reisenhofer B, Camarozano AC, Salamé M, Szymczyk E, Wejner-Mik P, Wdowiak-Okrojek K, Kovacevic Preradovic T, Lattanzi F, Morrone D, Scali MC, Ostojic M, Nikolic A, Re F, Barbieri A, DI Salvo G, Colonna P, DE Nes M, Paterni M, Merlo PM, Lowenstein J, Carpeggiani C, Gregori D, Picano E. Feasibility and value of two-dimensional volumetric stress echocardiography. Minerva Cardiol Angiol 2020; 70:148-159. [PMID: 32657562 DOI: 10.23736/s2724-5683.20.05304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Stroke volume response during stress is a major determinant of functional status in heart failure and can be measured by two-dimensional (2-D) volumetric stress echocardiography (SE). The present study hypothesis is that SE may identify mechanisms underlying the change in stroke volume by measuring preload reserve through end-diastolic volume (EDV) and left ventricular contractile reserve (LVCR) with systolic blood pressure and end-systolic volume (ESV). METHODS We enrolled 4735 patients (age 63.6±11.3 years, 2800 male) referred to SE for known or suspected coronary artery disease (CAD) and/or heart failure (HF) in 21 SE laboratories in 8 countries. In addition to regional wall motion abnormalities (RWMA), force was measured at rest and peak stress as the ratio of systolic blood pressure by cuff sphygmomanometer/ESV by 2D with Simpson's or linear method. Abnormal values of LVCR (peak/rest) based on force were ≤1.10 for dipyridamole (N.=1992 patients) and adenosine (N.=18); ≤2.0 for exercise (N.=2087) or dobutamine (N.=638). RESULTS Force-based LVCR was obtained in all 4735 patients. Lack of stroke volume increase during stress was due to either abnormal LVCR and/or blunted preload reserve, and 57% of patients with abnormal LVCR nevertheless showed increase in stroke volume. CONCLUSIONS Volumetric SE is highly feasible with all stresses, and more frequently impaired in presence of ischemic RWMA, absence of viability and reduced coronary flow velocity reserve. It identifies an altered stroke volume response due to reduced preload and/or contractile reserve.
Collapse
Affiliation(s)
- Tonino Bombardini
- Faculty of Medicine, University of Banja-Luka, Clinical Center of The Republic of Srpska, Banja-Luka, Bosnia-Herzegovina
| | - Angela Zagatina
- Department of Cardiology, Saint Petersburg University Clinic, Saint Petersburg University, Russia
| | - Quirino Ciampi
- Division of Cardiology, Fatebenefratelli Hospital, Benevento, Italy
| | | | - Antonello D'Andrea
- Department of Cardiology, Echocardiography Lab and Rehabilitation Unit, Monaldi Hospital, Second University of Naples, Naples, Italy
| | | | - Nadezhda Zhuravskaya
- Department of Cardiology, Saint Petersburg University Clinic, Saint Petersburg University, Russia
| | | | | | | | - Ana Djordjevic-Dikic
- Cardiology Clinic, Clinical Center of Serbia, Medical School, University of Belgrade, Belgrade, Serbia
| | - Branko Beleslin
- Cardiology Clinic, Clinical Center of Serbia, Medical School, University of Belgrade, Belgrade, Serbia
| | - Marija Petrovic
- Cardiology Clinic, Clinical Center of Serbia, Medical School, University of Belgrade, Belgrade, Serbia
| | - Nikola Boskovic
- Cardiology Clinic, Clinical Center of Serbia, Medical School, University of Belgrade, Belgrade, Serbia
| | - Milorad Tesic
- Cardiology Clinic, Clinical Center of Serbia, Medical School, University of Belgrade, Belgrade, Serbia
| | - Ines P Monte
- Echocardiography Lab, Department of Cardiothoracic and Vascular Medicine, A.O.U. Policlinic Rodolico, University of Catania, Catania, Italy
| | - Iana Simova
- Department of Cardiology, Acibadem City Clinic Cardiovascular Center, University Hospital, Sofia, Bulgaria
| | - Martina Vladova
- Department of Cardiology, Acibadem City Clinic Cardiovascular Center, University Hospital, Sofia, Bulgaria
| | - Alla Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Tamara Ryabova
- Cardiology Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Rodolfo Citro
- Echocardiography Lab, Department of Cardiology, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| | - Miguel Amor
- Ramos Mejia Hospital, Buenos Aires, Argentina
| | | | - Rosina Arbucci
- Service of Heart Diagnostics, Investigaciones Medicas, Buenos Aires, Argentina
| | - Claudio Dodi
- Casa di Cura Figlie di San Camillo, Cremona, Italy
| | - Fausto Rigo
- Department of Cardiology, Ospedale dell'Angelo, Mestre, Venice, Italy
| | | | | | - Sergio Severino
- Coronary Care Unit, Department of Cardiology, Monaldi Hospital, Second University of Naples, Naples, Italy
| | - Marco A Torres
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Alessandro Salustri
- Department of Non-invasive Cardiology, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Albert Varga
- Institute of Family Medicine, University of Szeged, Szeged, Hungary
| | - Gergely Agoston
- Institute of Family Medicine, University of Szeged, Szeged, Hungary
| | | | | | - Nicola Gaibazzi
- Department of Cardiology, Parma University Hospital, Parma, Italy
| | - Granit Rabia
- Department of Cardiology, Parma University Hospital, Parma, Italy
| | - Jelena Celutkiene
- Center of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Hospital, Vilnius, Lithuania
| | - Maciej Haberka
- Department of Cardiology, SHS, Medical University of Silesia, Katowice, Poland
| | - Fabio Mori
- Section of Cardiovascular Diagnostics, Department of Cardiothoracic and Vascular Medicine, Careggi University Hospital, Florence, Italy
| | - Maria G D'Alfonso
- Section of Cardiovascular Diagnostics, Department of Cardiothoracic and Vascular Medicine, Careggi University Hospital, Florence, Italy
| | - Barbara Reisenhofer
- Division of Cardiology, Pontedera-Volterra Hospital, ASL Toscana3 Nord-Ovest, Pontedera, Pisa, Italy
| | - Ana C Camarozano
- Hospital de Clinicas UFPR, Department of Medicine, Federal University of Paranà, Curitiba, Brazil
| | | | - Ewa Szymczyk
- Chair of Cardiology, Bieganski Hospital, Medical University, Lodz, Poland
| | - Paulina Wejner-Mik
- Chair of Cardiology, Bieganski Hospital, Medical University, Lodz, Poland
| | | | - Tamara Kovacevic Preradovic
- Faculty of Medicine, University of Banja-Luka, Clinical Center of The Republic of Srpska, Banja-Luka, Bosnia-Herzegovina
| | - Fabio Lattanzi
- Department of Surgical, Medical, Molecular Pathology and Critical Area Medicine, Section of Cardiovascular Diseases, University of Pisa, Pisa, Italy
| | - Doralisa Morrone
- Department of Surgical, Medical, Molecular Pathology and Critical Area Medicine, Section of Cardiovascular Diseases, University of Pisa, Pisa, Italy
| | - Maria C Scali
- Nottola-Montepulciano Hospital, Division of Cardiology, ASL Toscana Centro, Siena, Italy
| | - Miodrag Ostojic
- School of Medicine, Institute for Cardiovascular Disease Dedinje, Belgrade, Serbia
| | - Aleksandra Nikolic
- School of Medicine, Institute for Cardiovascular Disease Dedinje, Belgrade, Serbia
| | - Federica Re
- San Camillo Hospital, Division of Cardiology, Rome, Italy
| | - Andrea Barbieri
- Division of Cardiology, Policlinico University Hospital, Modena, Italy
| | - Giovanni DI Salvo
- Division of Cardiology, Department of Pediatric Cardiology, Brompton Hospital, Imperial College of London, London, UK
| | - Paolo Colonna
- Cardiology Hospital, Policlinico University Hospital, Bari, Italy
| | - Michele DE Nes
- Department of Biomedicine, Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Marco Paterni
- Department of Biomedicine, Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Pablo M Merlo
- Service of Heart Diagnostics, Investigaciones Medicas, Buenos Aires, Argentina
| | - Jorge Lowenstein
- Service of Heart Diagnostics, Investigaciones Medicas, Buenos Aires, Argentina
| | - Clara Carpeggiani
- Department of Biomedicine, Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Dario Gregori
- Biostatistics, Epidemiology and Public Health Unit, Padua University, Padua, Italy
| | - Eugenio Picano
- Department of Biomedicine, Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy -
| | | |
Collapse
|
90
|
Manual zur Indikation und Durchführung der Echokardiographie – Update 2020 der Deutschen Gesellschaft für Kardiologie. KARDIOLOGE 2020. [DOI: 10.1007/s12181-020-00402-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
91
|
Cymberknop LJ, Farro I, Americo C, Martinez F, Lluberas N, Parma G, Aramburu J, Armentano RL. Arterial-Ventricular Coupling Evaluation in Individuals with Stress-Evidenced Diastolic Dysfunction: A Pilot Study . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2598-2601. [PMID: 33018538 DOI: 10.1109/embc44109.2020.9176106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Arterial-ventricular coupling (AVC) has been recognized as a key determinant of global cardiovascular performance. Diastolic dysfunction (DD) occurs when inadequate filling of the ventricles is related to an abnormal elevation of intracardiac filling pressures. In some cases, DD is evidenced during cardiac stress, provoked by exercise. OBJECTIVE To evaluate AVC in individuals with stress evidenced DD, in relation to controls. MATERIALS AND METHODS Stress echocardiography was applied to assess cardiac function during exercise. Arterial-ventricular coupling was evaluated, based on the assessment of left ventricular and arterial elastances. RESULTS AVC showed a significant difference at peak exercise compared to controls, basically due to a loss of cardiac contractility. CONCLUSION The manifestation of AVC coupling imbalance could act as a complementary parameter to support the diagnosis of DD.
Collapse
|
92
|
Stress echocardiography: differences between practices in Greece. A survey of the Echocardiology Working Group of the Hellenic Society of Cardiology. Hellenic J Cardiol 2020; 62:221-224. [DOI: 10.1016/j.hjc.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022] Open
|
93
|
Coronary Flow Velocity Reserve Reduction Is Associated with Cardiovascular, Cancer, and Noncancer, Noncardiovascular Mortality. J Am Soc Echocardiogr 2020; 33:594-603. [DOI: 10.1016/j.echo.2020.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
|
94
|
Petrovic MT, Djordjevic-Dikic A, Giga V, Boskovic N, Vukcevic V, Cvetic V, Mladenovic A, Radmili O, Markovic Z, Dobric M, Aleksandric S, Tesic M, Juricic S, Nedeljkovic Beleslin B, Stojkovic S, Ostojic MC, Beleslin B, Picano E. The Coronary ARteriogenesis with combined Heparin and EXercise therapy in chronic refractory Angina (CARHEXA) trial: A double-blind, randomized, placebo-controlled stress echocardiographic study. Eur J Prev Cardiol 2020; 28:1452-1459. [PMID: 33611455 DOI: 10.1177/2047487320915661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Coronary collateral circulation exerts protective effects on myocardial ischaemia due to coronary artery disease and can be promoted by exercise with heparin co-administration. Whether this arteriogenetic effect is accompanied by functional improvement of left ventricle during stress and lessening of angina symptoms remains unknown. AIMS To evaluate the anti-ischaemic efficacy of heparin plus exercise in coronary artery disease. METHODS In a prospective, single-centre, randomized, double-blind study we recruited 32 'no-option' patients (27 males; mean age 61 ± 8 years) with stable angina, exercise-induced ischaemia and coronary artery disease not suitable for revascularization. All underwent a two-week cycle of exercise (two exercise sessions per day, five days per week) and were randomized (n = 16 per group) to intravenous placebo (0.9% saline) versus unfractionated heparin (5.000 IU intravenously), 10 min prior to exercise. We assessed Canadian Cardiovascular Society angina class, stress electrocardiogram and echo parameters (wall motion score index) and computed tomography angiography for collaterals. RESULTS After two-week cycle, Canadian Cardiovascular Society class statistically decreased in both groups (heparin plus exercise group: 2.6 ± 0.7 to 1.9 ± 0.7, p < 0.001, exercise group: 2.4 ± 0.7 to 2.1 ± 0.9, p = 0.046). Only the heparin plus exercise group improved time-to-ST segment depression (before 270, 228-327 s vs. after 339, 280-360 s, p = 0.012) and wall motion score index (before 1.38 ± 0.25 vs. after 1.28 ± 0.18, p = 0.005). By multi-slice computed tomography angiography, collaterals improved in 12/15 (80%) in the heparin plus exercise group versus 2/16 (12.5%) in the exercise group (p < 0.001). CONCLUSION A two-week, 10-test cycle of heparin plus exercise is better than exercise in improving angina class, myocardial ischaemia and collaterals by computed tomography angiography.
Collapse
Affiliation(s)
- Marija T Petrovic
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Ana Djordjevic-Dikic
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Vojislav Giga
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Nikola Boskovic
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Vladan Vukcevic
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Vladimir Cvetic
- Radiology Department, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Ana Mladenovic
- Radiology Department, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Oliver Radmili
- Radiology Department, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Zeljko Markovic
- Radiology Department, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Milan Dobric
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Srdjan Aleksandric
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Milorad Tesic
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Stefan Juricic
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Biljana Nedeljkovic Beleslin
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Sinisa Stojkovic
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | | | - Branko Beleslin
- Cardiology Clinic, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Eugenio Picano
- Institute of Clinical Physiology, CNR - Consiglio Nazionale Ricerche, Italy
| |
Collapse
|
95
|
The Effect of Dobutamine Stress Testing on Vortex Formation Time in Patients Evaluated for Ischemia. J Cardiovasc Transl Res 2020; 14:735-743. [PMID: 32253745 DOI: 10.1007/s12265-020-09998-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
|
96
|
Cho IJ. False-positive Stress Echocardiography: Not as Simple as It Looks. J Cardiovasc Imaging 2020; 28:134-136. [PMID: 32052611 PMCID: PMC7114447 DOI: 10.4250/jcvi.2020.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- In Jeong Cho
- Division of Cardiology, Department of Internal Medicine, Ewha Womans University Seoul Hospital, College of Medicine, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
97
|
Kossaify A, Bassil E, Kossaify M. Stress Echocardiography: Concept and Criteria, Structure and Steps, Obstacles and Outcomes, Focused Update and Review. Cardiol Res 2020; 11:89-96. [PMID: 32256915 PMCID: PMC7092766 DOI: 10.14740/cr851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/28/2020] [Indexed: 01/06/2023] Open
Abstract
Stress echocardiography (SEC) is a technique established more than 35 years ago; however, it is still poorly implemented in many countries and institutions, and this reluctance may be related to many obstacles such as operator skills, lack of awareness or institutional policy. Stress echo was initially used for assessing coronary artery disease (CAD), with respect to myocardial viability, using wall motion response; however, current use of stress echo extends beyond CAD, such as valvular heart disease and diastolic stress test. Dobutamine is a commonly used agent when pharmaceutical approach is implemented. With regard to CAD, there are four stress responses: normal, ischemic, viable and necrotic. A low dose dobutamine protocol is recommended in patients with baseline wall motion abnormalities, and a very low dose dobutamine is used in low flow low gradient aortic stenosis in order to check the flow and contractility reserve. Of note, respecting protocols, indications and contraindications are important to avoid or minimize risks of complications during the procedure. This article presents a focused update and review regarding SEC, along with an overview of the different indications, structures and steps, and obstacles and outcomes; also the article aims to highlight more awareness and sensitization on this useful technique.
Collapse
Affiliation(s)
- Antoine Kossaify
- Cardiology Division, Echocardiology Unit, University Hospital Notre Dame des Secours, PO Box 3, Byblos, Lebanon.,Holy Spirit University of Kaslik (USEK), School of Medicine, St Charbel Street, Byblos, Lebanon
| | - Elie Bassil
- Cardiology Division, Echocardiology Unit, University Hospital Notre Dame des Secours, PO Box 3, Byblos, Lebanon.,Holy Spirit University of Kaslik (USEK), School of Medicine, St Charbel Street, Byblos, Lebanon
| | - Mikhael Kossaify
- Cardiology Division, Echocardiology Unit, University Hospital Notre Dame des Secours, PO Box 3, Byblos, Lebanon.,Holy Spirit University of Kaslik (USEK), School of Medicine, St Charbel Street, Byblos, Lebanon
| |
Collapse
|
98
|
Chai SC, Teo HK, Lee PS, Kam CJW, Tong KL. Prognostic impact of stress echocardiography with discordant stress electrocardiography in patients with suspected coronary artery disease. Singapore Med J 2020; 61:142-148. [PMID: 32488267 PMCID: PMC7905114 DOI: 10.11622/smedj.2019105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION During stress echocardiography, the echocardiologist routinely collects both echocardiographic images and stress electrocardiogram (ECG) concurrently. The managing physician faces a dilemma when the stress ECG and stress echocardiography results are discordant; for example, when a patient has negative stress echocardiography but positive stress ECG. We therefore sought to evaluate the prognostic value of stress echocardiography in relation to concordant or discordant stress ECG findings in our local Singapore setting, which has a well-defined Southeast Asian population. METHODS This was a retrospective observational study of all patients who underwent stress echocardiography in 2012 at Changi General Hospital, Singapore. All study patients were followed up for 18 months via electronic medical records. RESULTS There was no difference in the major adverse cardiovascular events (MACE) outcome of patients with normal stress echocardiography and normal stress ECG (reference group) as compared with patients with normal stress echocardiography but positive (discordant) stress ECG (odds ratio 2.02, 95% confidence interval 0.82‒4.98; p = 0.125). CONCLUSION This study will help to reassure cardiologists that discordant results (negative stress echocardiography but positive stress ECG) do not portend a higher risk of MACE when compared to concordant results (i.e. both stress echocardiography and stress ECG are negative).
Collapse
Affiliation(s)
- Siang Chew Chai
- Department of Cardiology, Changi General Hospital, Singapore
| | - Hooi Khee Teo
- Department of Cardiology, Changi General Hospital, Singapore
| | - Pei Shan Lee
- Department of Renal Medicine, Changi General Hospital, Singapore
| | | | - Khim Leng Tong
- Department of Cardiology, Changi General Hospital, Singapore
| |
Collapse
|
99
|
Sucato V, Novo G, Saladino A, Evola S, Galassi AR. Coronary microvascular dysfunction. Minerva Cardioangiol 2020; 68:153-163. [PMID: 32083426 DOI: 10.23736/s0026-4725.20.05070-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with coronary microvascular dysfunction (CMVD) represent a widespread population and despite the good prognosis, many of them have a poor quality of life with strong limitations in their daily activities because of the angina symptoms. This article summarizes the most frequent clinical presentation pictures like stable and unstable microvascular angina. Main risk factors are discussed, followed by the latest updates on the subject about different pathogenic hypotheses, diagnosis and treatment. Not very well understood microvascular alterations, like slow flow phenomenon and no reflow are discussed and both prognosis and the impact of the disease in the quality of life are analyzed.
Collapse
Affiliation(s)
- Vincenzo Sucato
- Division of Cardiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) "G. D'Alessandro", Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy -
| | - Giuseppina Novo
- Division of Cardiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) "G. D'Alessandro", Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Antonino Saladino
- Division of Cardiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) "G. D'Alessandro", Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Salvatore Evola
- Division of Cardiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) "G. D'Alessandro", Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Alfredo R Galassi
- Division of Cardiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) "G. D'Alessandro", Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| |
Collapse
|
100
|
Nelasov NJ, Sidorov RV, Morgunov MN, Doltmurzieva NS, Eroshenko OL, Arzumanjan EA, Nechaeva AG, Shluik SV. [Echocardiographic Stress Test with Adenosine Triphosphate: Optimization of the Algorithm]. ACTA ACUST UNITED AC 2019; 59:39-47. [PMID: 31849298 DOI: 10.18087/cardio.2019.11.2665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To: 1) optimize algorithm of stress echocardiography (s-Echo) with intravenous adenosine triphosphate (ATP) infusion taking into account pharmacokinetics and pharmacodynamics of ATP in human body, 2) test new algorithm in patients with coronary and other heart diseases. MATERIALS AND METHODS In order to determine spectrum of factors influencing the results of stress test with ATP we inspected main scientific data bases and found 48 publications on ATP application for diagnostic purposes. Analysis of these publications allowed us to optimize algorithm of ATP s-Echo. Optimized algorithm was tested on 26 subjects, who underwent ATP 4D strain-stress-echocardiography of the left ventricle. RESULTS AND DISCUSSION Optimized algorithm has three stages: registration of Echo data sets before, at the time of ATP infusion, and after 5 min of ATP infusion termination. Registration of Echo parameters at the second stage must begin not earlier than 3 min after the onset of ATP infusion and only in the presence of signs of coronary vasodilation. We think that the main indirect criterion of submaximal coronary vasodilation is 5 mm Hg or more decrease in systolic blood pressure (SBP), but not below SBP level of 90 mm Hg. Initial dose of ATP is 140 µg/kg/min. If after 2 min of infusion SBP do not diminish we increase the infusion rate at first to 175 and then to 210 µg/kg/min. While testing new algorithm in all cases we have achieved criteria of effective vasodilation. Mean SBP decrease was 16.4±13.7 mm Hg, heart rate increase - 12.7±8.1 bpm. In all patients we obtained interpretable 4D LV Echo data sets for visual analysis of local contractility and automatic strain analysis. CONCLUSION Optimization of ATP s-Echo algorithm was performed. Safety and efficacy of optimized algorythm for registration of echo data was demonstrated. New ATP infusion algorithm can also be recommended for testing with other cardiac imaging modalities in evaluation of myocardial perfusion and contractility (SPECT, CT, MRI, PET).
Collapse
|